RESTRICTED

SERIAL NO. 458-

# INSTRUCTION BOOK

For

## NAVY MODEL TCZ RADIO TRANSMITTING EQUIPMENT

**Frequency Range** 300 Kc to 600 Kc 2,000 Kc to 18,100 Kc

MANUFACTURED FOR

### **U.S. NAVY DEPARTMENT, BUREAU OF SHIPS**

By

COLLINS RADIO COMPANY

CEDAR RAPIDS, IOWA

Contract: NXs-491

Dated: 9 May 1942

#### RESTRICTED

#### SECURITY NOTICE

NOTICE: This document contains information affecting the national defense of the United States within the meaning of the Espionage Act, 50 U.S.C., 31 and 32, as amended. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law. (ARTS  $75\frac{1}{2}$  & 76, U.S.N. REGS 1920.) The information contained in restricted documents and the essential characteristics of restricted material will not be communicated to the public or to the press, but may be given to any person known to be in the service of the United States and to persons of undoubted loyalty and discretion who are cooperating in Government work.

#### RECORD OF CORRECTIONS MADE

| CHANGE NO. | DATE | SIGNATURE OF OFFICER MAKING CORRECTIONS |
|------------|------|-----------------------------------------|
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            | íľ   |                                         |
|            |      | ,                                       |
|            |      |                                         |
|            |      |                                         |
|            | 1    | ۵.<br>۱                                 |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
| -          |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            | 2    |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            | 1    |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
| -          |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |
|            |      |                                         |

#### RESTRICTED

### TABLE OF CONTENTS

#### I GENERAL DESCRIPTION

#### Page No.

|       |                         | <br>               |
|-------|-------------------------|--------------------|
| 1.1.  | Equipment               | <br>1              |
| 1.2.  | General                 | <br>4              |
| 1.3.  | Types of Emission       | <br>4              |
| 1.4.  | Audio Input             | <br><b>5</b>       |
| 1.5.  | Frequency Range         | <br><b>5</b>       |
| 1.6.  | Frequency Change System | <br><b>5</b>       |
| 1.7.  | Power Output            | <br><b>5</b>       |
| 1.8.  | Power Source            | <br>6              |
| 1.9.  | Control                 | <br>6              |
| 1.10. | Overload Protection     | <br>7              |
| 1.11. | Accessories             | <br>$\overline{7}$ |
| 1.12. | Abbreviations           | <br>9              |
| 1.13. | Symbol Designations     | <br>9              |
|       |                         |                    |

#### **II FUNCTIONAL CHARACTERISTICS**

| 2.1.  | Power Control Circuits for A-C Supply  | 11 |
|-------|----------------------------------------|----|
| 2.2.  | Power Control Circuits for D-C Supply  | 14 |
| 2.3.  | Transmitter Power Control Circuits     | 15 |
| 2.4.  | Filament Circuits                      | 18 |
| 2.5.  | Emission Selection and Carrier Control | 18 |
| 2.6.  | Applicable Remote Control Circuits     | 19 |
| 2.7.  | Audio Circuits                         | 20 |
| 2.8.  | CFI Oscillator Circuit                 | 22 |
| 2.9.  | Radio-Frequency Circuits               | 23 |
| 2.10. | Autotune System                        | 28 |
| 2.11. | Unit Function                          | 35 |

#### III INSTALLATION

| 3.1. | Uncrating         | 39 |
|------|-------------------|----|
| 3.2. | General           | 39 |
| 3.3. | Tubes             | 40 |
| 3.4. | Crystals          | 40 |
| 3.5. | Operational Check | 40 |
| 3.6. | Mounting of Units | 40 |
| 3.7. | Cables            | 42 |
| 3.8. | Connections       | 42 |
| 3.9. | Fuses             | 43 |

#### IV OPERATION

| 4.1. |                             | 45 |
|------|-----------------------------|----|
| 4.2. | General                     | 45 |
| 4.3. | Autotune System             | 47 |
| 4.4. | CFI Adjustment              | 48 |
| 4.5. | R-F Circuit Adjustment      | 48 |
|      | R-F Ammeter                 |    |
| 4.7. | Audio Adjustment            | 54 |
| 4.8. | Routine Operation Procedure | 55 |

#### TABLE OF CONTENTS

| v  | MAINTE | ENANCE                                       | Page No. |
|----|--------|----------------------------------------------|----------|
|    | 5.1.   |                                              | 58       |
|    | 5.2.   |                                              |          |
|    | 5.3.   | Operational Check                            |          |
|    | 5.4.   | Routine Check                                | 58       |
|    | 5.5.   | Servicing                                    | 60       |
|    | 5.6.   | Radio-Frequency Circuit Alignment            | 66       |
|    | 5.7.   | Maintenance of Autotune Mechanism            | 72       |
|    | 5.8.   | Replacement of Parts                         | 78       |
| VI | DATA   |                                              |          |
|    | Table  | I-L-F Oscillator Calibration Data            | 83       |
|    | Table  | II-H-F Oscillator Calibration Data           | 85       |
|    |        | Low Frequency Tuning Charts                  | 96       |
|    |        | High Frequency Tuning Charts                 | 98       |
|    | Table  | III—Typical Antenna Tuning Data              | $_{101}$ |
|    | Table  | IV-Typical Audio Frequency Data              | 105      |
|    | Table  | V-Typical Operating Voltages and Currents    | 106      |
|    | Table  | VI-Voltage to Ground from Vacuum Tube        |          |
|    |        | Terminals                                    | 107      |
|    | Table  | VII—Voltage to Ground from Cable Connector   |          |
|    |        | Terminals                                    | 108      |
|    | Table  | VIII-Resistance to Ground from Vacuum Tube   |          |
|    |        | Terminals                                    | 109      |
|    | Table  | IX-Resistance to Ground from Cable Connector |          |
|    |        | Terminals                                    | 110      |
|    | Table  | X-Resistance Measurements on Autotune Motor  | 111      |
|    | Table  | XI-General Specifications of Equipment       | 112      |
|    | Table  | XII-Equipment Supplied on Contract           | 115      |

Not Supplied on Contract\_\_\_\_\_115 Table XIV—Interchangeability of Units\_\_\_\_\_116

Table XIII—Equipment Required for Operation, but

#### VII APPENDIX

| Table XV—List of Major Units118                       | 3 |
|-------------------------------------------------------|---|
| Table XVI-List of Manufacturers119                    |   |
| Table XVII—Parts List by Symbol Designation123        | 3 |
| Table XVIII—Spare Parts List by Symbol Designation158 | 3 |
| List for AC equipment158                              | 3 |
| List for DC equipment171                              | L |
| Illustrations184                                      | 1 |
| Commercial Bulletins253                               | 3 |
| Table XIX—Tube Complement265                          | 5 |
| Tube Specification Data Sheets266                     | 3 |
| Table XX—Applicable Color Codes281                    | L |
| Capacitor Code281                                     | L |
| Resistor Code283                                      | 3 |
| Cable Wire Code283                                    | 3 |
|                                                       |   |

en 1. m. . .

#### Title

Fig.

۰.

|                 | productor and a second s |      |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1               | Complete TCZ Equipment—Navy Type COL-211101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| _               | Power Unit Shown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0    |
| 2               | Type COL-52286 Transmitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 3               | Type COL-52286 Transmitter, Top View Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| 4               | Type COL-52286 Transmitter, Units Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| 5               | Type COL-211101 Motor-Generator-Rectifier Power Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 6               | Type COL-211102 Dynamotor Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 7               | Type COL-23410 Remote Control Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 8<br>9          | Type -40127 Crystal Holder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 9<br>10         | Type COL-481628 Antenna Shunt Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 11              | Type COL-47370 Antenna Loading Coil<br>Simplified Power Control Circuits for A.C. Power Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 0  |
| 11              | (Dwg. No. 500 1458 00B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10   |
| 12              | Simplified Power Control Circuits for D.C. Power Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 10 |
| 14              | (Dwg. No. 500 1457 00B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13   |
| 13              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 10              | (Dwg. No. 500 1459 00C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16   |
| 14              | Filament Circuits (Dwg. No. 500 1454 00A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| 15              | Emission Selection and Carrier Control Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                 | (Dwg. No. 500 1456 00B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 18 |
| 16              | Speech Amplifier Circuits (Dwg. No. 500 1453 00A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 17              | Modulator Circuits (Dwg. No. 500 0223 00A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 18              | Sidetone Amplifier Circuit (Dwg. No. 500 0226 00A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 19              | MCW Oscillator Circuit (Dwg. No. 500 0219 00A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| <b>20</b>       | CFI Oscillator Circuit (Dwg. No. 500 0221 00A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| <b>21</b>       | Low Frequency R-F Circuits (Dwg. No. 500 1460 00C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 23 |
| 22              | High Frequency R-F Exciter Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                 | (Dwg. No. 500 0229 00C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 24 |
| 23              | High Frequency P.A. Circuits (Dwg. No. 500 0222 00A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26   |
| <b>24</b>       | Collins Autotune System—Mechanical Portion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                 | (Dwg. No. 500 0010 00D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29   |
| 25              | Collins Autotune System—Electrical Portion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                 | (Dwg. No. 502 3850 003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 26              | Autotune Operation Sequence (Dwg. No. 502 3850 003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 33 |
| 27              | Complete TCZ Installation Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07   |
| 00              | (Dwg. No. 500 1475 00D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37   |
| 28              | Simplified TCZ Installation Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00   |
| 20              | (Dwg. No. 500 1474 00D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 29              | Tube Placement Diagram (Dwg. No. K1627B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 30<br>21        | Microphone Switch and Sidetone Amp. Gain Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| $31 \\ 32$      | Low Frequency Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 32<br>33        | High Frequency Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| $\frac{33}{34}$ | Frequency Multiplier, Bottom View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| $\frac{54}{35}$ | 96J Autotune Singleturn Unit, Left Side View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 35<br>36        | 96J Autotune Singleturn Unit, Right Side View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| $\frac{36}{37}$ | 96K Autotune Multiturn Unit, Left Side View<br>96K Autotune Multiturn Unit, Right Side View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 38              | Autotune Casting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 00              | Autorane Casting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 10 |

#### $\mathbf{Title}$

Fig.

| 39        | NY818C-A Autotune Motor Schematic                                            |           |
|-----------|------------------------------------------------------------------------------|-----------|
|           | (Dwg. No. 500 0243 00A)                                                      | 111       |
| <b>40</b> | Overall Frequency Response Curve                                             |           |
|           | (Dwg. No. 500 0230 00A)                                                      |           |
| 41        | Type COL-52286 Transmitter Unit, Front Open View                             | $_{-181}$ |
| <b>42</b> | Type COL-52286 Transmitter Unit, Top Open View                               | $_{}184$  |
| <b>43</b> | Type COL-52286 Transmitter Unit, Bottom View                                 | $_{-185}$ |
| 44        | High Frequency Oscillator, Side Open View                                    | -186      |
| <b>45</b> | Frequency Multiplier, Side Open View                                         | $_{}187$  |
| <b>46</b> | Fire Wall Assembly, Top View                                                 | 188       |
| <b>47</b> | Fire Wall Assembly, Bottom View                                              | $_{}188$  |
| 48        | Low Frequency Oscillator Unit, Front View                                    | 189       |
| <b>49</b> | Low Frequency Oscillator Unit, Top Open View                                 | $_{-189}$ |
| 50        | Low Frequency Oscillator Unit, Bottom Open View                              | $_{}190$  |
| 51        | Dummy Low Frequency Oscillator Unit, Front View                              | $_{-191}$ |
| 52        | Dummy Low Frequency Oscillator Unit, Side View                               | 191       |
| 53        | MCW-CFI Unit, Top View                                                       | $_{}192$  |
| <b>54</b> | MCW-CFI Unit, Bottom View                                                    | $_{}192$  |
| 55        | Audio Amplifier Unit, Top View                                               | $_{}193$  |
| 56        | Audio Amplifier Unit, Bottom View                                            | -193      |
| 57        | Multi-Element Switch, Right Side View                                        | $_{}194$  |
| 58        | Multi-Element Switch, Left Side View                                         |           |
| 59        | Type COL-211101 Motor-Generator-Rectifier Power Unit,                        |           |
|           | Front View Open                                                              | $_{}196$  |
| 60        | Type COL-211101 Motor-Generator-Rectifier Power Unit,                        | 107       |
| 01        | Right Side Open View                                                         | 197       |
| 61        | Type COL-211101 Motor-Generator-Rectifier Power Unit,<br>Left Side Open View | 198       |
| 62        | Motor-Generator, Bottom View                                                 |           |
| 63        | Type COL-211102 Dynamotor Assembly,                                          |           |
|           | Front Open View                                                              | 200       |
| 64        | Type COL-211102 Dynamotor Assembly,                                          |           |
| •         | Right Side Open View                                                         | 201       |
| 65        | Type COL-211102 Dynamotor Assembly,                                          |           |
|           | Left Side Open View                                                          | 202       |
| 66        | High Voltage Dynamotor, Bottom View                                          | 203       |
| 67        | Low Voltage Dynamotor, Bottom View                                           |           |
| 68        | Dynamotor Assembly Noise Filter Box, Bottom View                             |           |
| 69        | Type COL-23410 Remote Control Unit, Top View                                 |           |
| 70        | Type COL-23410 Remote Control Unit, Bottom Open View-                        |           |
| 71        | Type COL-47370 Antenna Loading Coil, Front View                              |           |
| 72        | Type COL-47370 Antenna Loading Coil, Top Open View                           |           |
| 73        | Type COL_481628 Antenna Shunt Capacitor, Top View                            |           |
| 74        | 96J Autotune Singleturn Unit, Left Side View                                 |           |
| 75        | 96J Autotune Singleturn Unit, Right Side View                                |           |
| 76        | 96K Autotune Multiturn Unit, Left Side View                                  |           |
| 77        | 96K Autotune Multiturn Unit, Right Side View                                 |           |
| 78        | Autotune Casting                                                             |           |
|           |                                                                              |           |

#### Fig. Title Page No. 79 Type COL-52286 Radio Transmitter Installation Diagram (Dwg. No. K351E)\_\_\_\_\_211 80 Type COL-211101 Motor-Generator-Rectifier Power Unit Installation Diagram (Dwg. No. K1082C)\_\_\_\_\_212 81 Type COL-211102 Dynamotor Assembly Installation Diagram (Dwg. No. K1084C)\_\_\_\_\_213 82 Type COL-23410 Remote Control Unit Installation Diagram (Dwg. No. K1104C)\_\_\_\_\_214 83 Type COL-47370 Antenna Loading Coil Installation Diagram (Dwg. No. K1107C) \_\_\_\_\_215 84 Type COL-481628 Antenna Shunt Capacitor Installation Diagram (Dwg. No. 1370B)\_\_\_\_\_216 85 65X-7 Control Cable Assembly Diagram (Dwg. No. 500 1496 00D) \_\_\_\_\_217 86 65X-8 Power Cable Assembly Diagram (Dwg. No. 500 1497 00D)\_\_\_\_\_218 87 65X-9 Antenna Loading Coil Cable Assembly Diagram (Dwg. No. 500 1498 00C)\_\_\_\_\_219 88 65X-10 Remote Cable (Dwg. No. 500 4474 00D)\_\_\_\_\_220 89 Type COL-52286 Radio Transmitter Schematic (Dwg. No. 500 1461 00E)\_\_\_\_221 90 Type COL-211101 Motor-Generator-Rectifier Power Unit Schematic (Dwg. No. K1081C) \_\_\_\_\_222 91 Type COL-211102 Dynamotor Assembly Schematic (Dwg. No. K1083C) \_\_\_\_\_223 92Type COL-23410 Remote Control Unit Schematic (Dwg. No. K1267A) \_\_\_\_\_224 93 Type COL-47370 Antenna Loading Coil Schematic (Dwg. No. K1432A) \_\_\_\_\_224 94 **Applicable External Microphone and Control Circuits** (Dwg. No. 500 1455 00A) \_\_\_\_\_225 95 Type COL-52286 Radio Transmitter Practical Wiring Diagram (Dwg. No. 502 0805 006) \_\_\_\_\_226 96 High Frequency Oscillator Practical Wiring Diagram (Dwg. No. 502 0804 003) 227 97 Multiplier Practical Wiring Diagram (Dwg. No. K1572C) --- 228 98Low Frequency Oscillator Practical Wiring Diagram (Dwg. No. K1146C)\_\_\_\_\_229 99 MCW-CFI Unit Practical Wiring Diagram (Dwg. No. K1496B)\_\_\_\_\_230 100 Audio Amplifier Practical Wiring Diagram (Dwg. No. K1111C)\_\_\_\_\_231 101 Type COL-211101 Motor-Generator-Rectifier Power Unit Practical Wiring Diagram (Dwg. No. 500 4446 00F) \_\_\_\_\_232 102Type COL-211102 Dynamotor Assembly Practical Wiring Diagram (Dwg. No. 500 4600 00E) \_\_\_\_\_233 103Type COL-23410 Remote Control Unit Practical Wiring Diagram (Dwg. No. K1064C)\_\_\_\_\_234

| Fig. | Title                                                  | Page No. |
|------|--------------------------------------------------------|----------|
| 104  | Type COL-47370 Antenna Loading Coil Practical Wiring   |          |
|      | Diagram (Dwg. No. K1110C)                              |          |
| 105  | H.F. Oscillator Grid Inductor L101 (Dwg. No. 671D)     |          |
| 106  | 1st Multiplier Plate Inductor L105 (Dwg. No. 1687B)    |          |
| 107  | 2nd Multiplier Plate Inductor L106 (Dwg. No. 1686B)    | 238      |
| 108  | P.A. Plate Feed Choke L108 (Dwg. No. 1448A)            | 239      |
| 109  | Output Network Static Drain Choke L110                 |          |
|      | (Dwg. No. 2103A)                                       | 240      |
| 110  | P.A. Plate Inductor-Rotor for L112 (Dwg. No. 1246B)    |          |
| 111  | P.A. Plate Inductor—Stator for L112 (Dwg. No. 1245B)_  |          |
| 112  | Antenna Loading Inductor L113 (Dwg. No. 1258C)         | 243      |
| 113  | P.A. Plate Tank Padding Inductor L114 (Dwg. No. 1114A) |          |
| 114  | L-F Oscillator Grid Inductor L401 (Dwg. No. 1259C)     |          |
| 115  | Antenna Loading Coil—Rotor for L1002 (Dwg. No. 1117C)  |          |
| 116  | Antenna Loading Coil-Stator for L1002 (Dwg. No. 512D)  | 247      |
| 117  | Type -40127 Crystal Holder (Dwg. No. 502 0799 002)     |          |
| 118  | Ceramic Insulators (Dwg. No. 502 0803 005)             |          |
| 119  | Inductors and Reactor Winding Data                     |          |
|      | (Dwg. No. 502 0802 004)                                | 250      |
| 120  | Transformer Winding Data (Dwg. No. 502 0801 004)       |          |
| 121  | RMA Capacitor Color Code Example—Four Dot              |          |
|      | (Dwg. No. 500 0246 00A)                                | 281      |
| 122  | RMA Capacitor Color Code Example-Six Dot               |          |
|      | (Dwg. No. 500 0245 00A)                                | 281      |
| 123  | RMA Resistor Color Code Example-                       |          |
|      | (Dwg. No. 500 0242 00A)                                | 283      |

vi

#### GUARANTEE: 2 YEARS', 1 YEAR SERVICE

The equipment, including all parts and spare parts, except vacuum tubes, shall be guaranteed for a service period of one year with the understanding that, as a condition of this contract, all items found to be defective as to design, material, workmanship, or manufacture shall be replaced without delay and at no expense to the Government, provided that such guarantee and agreement shall not obligate the contractor to make replacement of defective material unless the failure, exclusive of normal shelf life deterioration, occurs within a period of two years from the date of delivery of the equipment to and acceptance by the Government, and provided further, that if any part or parts (except vacuum tubes) fail in service or are found defective in ten per cent (10%) or more, but not less than two, of the total number of equipments furnished under the contract, such part or parts, whether supplied in the equipment or as spares, shall be conclusively presumed to be of defective design, and as a condition of contract subject to one-hundred per cent (100%) replacement of all similar units supplied on subject contract by suitable redesigned replacements. Failure due to poor workmanship while not necessarily indicating poor design, will be considered in the same category as failure due to poor design. Redesigned replacements which will assure proper operation of the equipment shall be supplied promptly, transportation paid, to the Naval activities using such equipment, upon receipt of proper notice and without cost to the Government. All defective parts originally furnished under contract shall be held subject to rejection and return to the contractor.

This period of two years and the service period of one year shall not include any portion of the time that the equipment fails to give satisfactory performance due to defective items and the necessity for replacement thereof, and provided further, that any replacement part shall be guaranteed to give one year of satisfactory service.

#### REPORT OF FAILURE

Report of failure of any part of this equipment, during its service life, shall be made to the Bureau of Ships in accordance with current instructions. The report shall cover all details of the failure and give the date of installation of the equipment. For procedure in reporting failures see Chapter 31 (mimeographed form) of the Manual of Engineering Instructions, or Bureau of Ships Radio and Sound Bulletin Number 7, dated July 1, 1942, or superseding instructions.

Contract NXs-491

Contract Dated 9 May 1942

| Serial Number of Equipment               |  |  |
|------------------------------------------|--|--|
| Date of Acceptance by the Navy           |  |  |
| Date of Delivery to Contract Destination |  |  |
| Date of Completion of Installation       |  |  |
| Date Placed in Service                   |  |  |

Blank spaces in this book shall be filled in at time of installation. Operating personnel shall also mark the "date placed in service" on the date plate located below the model nameplate on the equipment, using suitable methods and care to avoid damaging the equipment.

All requests or requisitions for replacement material should include complete descriptive data covering the part desired, in the following form:

- 1. Name of part desired.
- 2. Navy Type number (if assigned) (including prefix and suffix as applicable).
- 3. Model designation (including suffix) of equipment in which used.
- 4. Navy Type designation (including prefix and suffix where applicable) of major unit in which part is used.
- 5. Symbol designation of part.
- 6. (a) Navy Drawing Number.(b) Manufacturer's Drawing Number.
- 7. Rating or other descriptive data.
- 8. Commercial designation.

#### WARNING

OPERATION OF THIS EQUIPMENT INVOLVES THE USE OF HIGH VOLTAGES WHICH ARE DANGEROUS TO LIFE. OPERATING PERSONNEL MUST AT ALL TIMES OBSERVE ALL SAFETY REGU-LATIONS. DO NOT CHANGE TUBES OR MAKE ADJUSTMENTS IN-SIDE EQUIPMENT WITH HIGH VOLTAGE SUPPLY ON. DO NOT DEPEND UPON DOOR SWITCHES OR INTERLOCKS FOR PROTEC-TION BUT ALWAYS SHUT DOWN MOTOR GENERATORS OR OTHER ASSOCIATED POWER EQUIPMENT AND OPEN MAIN SWITCH IN POWER SUPPLY CIRCUIT. UNDER CERTAIN CONDITIONS DAN-GEROUS POTENTIALS MAY EXIST IN CIRCUITS WITH POWER CONTROLS IN THE OFF POSITION DUE TO CHARGES RETAINED BY CAPACITORS, ETC. TO AVOID CASUALTIES ALWAYS DIS-CHARGE AND GROUND CIRCUITS PRIOR TO TOUCHING THEM.

#### WARNING

Since the use of high voltages which are dangerous to human life is necessary to the successful operation of the radio transmitting equipment covered by these instructions, certain reasonable precautionary measures must be carefully observed by the operating personnel during the adjustment and operation of the equipment.

The major portions of the equipment are within shielding enclosures, provided where necessary with access doors which are generally fitted with safety interlock switches which act to shut off dangerous voltages within the enclosures when the access doors are open.

It should be borne in mind that interlocks are provided only on normal access doors on certain major units and therefore side, back or top screens, commutator covers, if removed, will not cause interlocks to function and will thereby allow access to circuits carrying voltages dangerous to human life.

While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

#### **KEEP AWAY FROM LIVE CIRCUITS**

Under no circumstances should any person be permitted to reach within or in any manner gain access to the enclosure with interlocked gates or doors closed or with power supply line switches to the equipment closed; or to approach or handle any portion of the equipment which is supplied with power, or to connect any apparatus external to the enclosure to circuits within the equipment; or to apply voltages to the equipment for testing purposes while any non-interlocked portion of the shielding or enclosure is removed or open. Whenever feasible in testing circuits, check for continuity and resistance rather than directly checking voltage at various points.

#### DON'T SERVICE OR ADJUST ALONE

Under no circumstances should any person reach within or enter the enclosure for the purpose of servicing or adjusting the equipment without the immediate presence or assistance of another person capable of rendering aid.

#### DON'T TAMPER WITH INTERLOCKS

Under no circumstances should any access gate, door or safety interlock switch be removed, short circuited, or tampered with in any way, nor should reliance be placed upon the interlock switches for removing voltages from the equipment.

"THE ATTENTION OF OFFICERS AND OPERATING PERSONNEL IS DIRECTED TO CHAPTER 67 OF BUREAU OF SHIPS MANUAL OR SUPERSEDING INSTRUCTIONS ON THE SUBJECT OF 'RADIO— SAFETY PRECAUTIONS TO BE OBSERVED'." personnel engaged in the installation, operation and maintenance of this equipment or similar equipment is urged to become familiar with the following rules both in theory and in the practical application thereof. it is the duty of every radioman to be prepared to give adequate first aid and thereby prevent avoidable loss of life. your own life may depend on this.

# electric shock first-aid treatment

Regard electrical apparatus generally, and especially all current-carrying parts, as dangerous, irrespective of voltage. Exercise great care in handling, and avoid broad contacts such as are made by standing on a metal deck or in water. Dangerous contact may result through lessened resistance when the skin and clothing are wet with perspiration. Contact with damp metal surfaces-decks, bulkheads, guns, machinery-may allow the current to ground through the moist skin and body. Electric shock is due to current passing through the body-current actually passing-irrespective of the voltage. A pressure as low as 110 volts has caused death. Current passing through the body in the region of the heart is especially dangerous. In using electric breast drills avoid the possibility of a ground. Usually electric shock does not kill instantly. Life can often be saved even though breathing has stopped.

1. Free the victim from the circuit immediately ---Use a dry nonconductor (rubber gloves, clothing, rope, board) to move either the victim or the wire. Beware of using metal or moist material. Shut off the current. If necessary to cut a live wire, use an ax or hatchet with a dry wooden handle; turn your face away from the electrical flash.

2. Attend instantly to the victim's breathing— Begin resuscitation at once on the spot. Do not stop to loosen clothing; every moment counts.

#### resuscitation by the prone pressure method of artificial respiration for gas asphyxiation, electric shock and drowning

Waste no time. When the patient is removed from the water, gas, smoke, or electric contact, get to work at once with your own hands. Send for the medical officer or nearest physician. No reliance should be placed upon any special mechanical apparatus, as it is frequently out of order and often is not available when most needed. The patient's mouth should be cleared of any obstruction such as chewing gum or tobacco, false teeth, or mucus, so that there is no interference with the entrance and escape of air.





fig 3

# osition

Lay the patient on his belly, one arm extended directly overhead, the other arm bent at elbow and with the face turned outward and resting on hand and forearm, so that the nose and mouth are free for breathing. (See Inset fig. 1.)

Kneel straddling over the patient's thighs with your knees placed at such a distance from the hip bones as will allow you to assume the position shown in Figure 1. Place the palms of the hands on the small of the back with fingers resting on the ribs. the little finger just touching the lowest rib. with the thumb and fingers in a natural position, and the tips of the fingers just out of sight. (See fig. 1.)

# first movement

With arms held straight, swing forward slowly, so that the weight of your body is gradually brought to bear upon the patient. The shoulder should be directly over the heel of the hand at the end of the forward swing. (See fig. 2.) Do not bend your elbows. This operation should take about two seconds.

second movement

Now immediately swing backward, so as to remove the pressure completely. (See fig. 3.)

After two seconds, swing forward again. Thus repeat deliberately twelve to fifteen e times a minute the double movement of compression and release, a complete respiration in four or five seconds.

6 Continue artificial respiration without interruption until natural breathing is restored. Do not get discouraged at the slow results that sometimes happen when resuscitating the apparently drowned. Efforts often have to be continued a long time before signs of life are apparent. Do not discontinue the efforts until certain that all chance is lost. Sometimes, even after several hours work, recovery takes place.

As soon as this artificial respiration has been started and while it is being continued, an assistant should loosen any tight clothing about the patient's neck, chest, or waist. To keep the patient warm during artificial respiration is most important and it may be necessary to cover him with blankets and work through them, as well as to apply hot-water bottles, hot bricks, etc. Do not give any liquids whatever by mouth until the patient is fully conscious.

Y To avoid strain on the heart when the patient revives, he should be kept lying down and not allowed to stand or sit up. If the doctor has not arrived by the time the patient has revived, he should be given some stimulant, such as one teaspoonful of aromatic spirits of ammonia in a small glass of water or a hot drink of coffee or tea, etc. Continue to keep the patient warm and at rest. Resuscitation should be carried on at the nearest possible point to where the patient received his injuries. As a general rule he should not

be moved from this point until he is breathing normally of his own volition and then moved only in a lying position. Should it be necessary, due to extreme weather condition, etc., to move the patient before he is breathing normally, resuscitation should be carried on during the time that he is being moved.

10 A brief return of natural respiration is not a certain indication for stopping the resuscitation. Not infrequently the patient, after a temporary recovery of respiration, stops breathing again. The patient must be watched, and if natural breathing stops, artificial respiration should be resumed at once.

In carrying out resuscitation it may be necessary to change the operator. This change must be made without losing the rhythm of respiration. The relief operator should kneel behind the one giving the artificial respiration and at the end of the movement, the operator crawls forward while the relief takes his place. By this procedure no confusion results at the time of change of operator and a regular rhythm is kept up.

# practice in the performance of artificial respiration on a voluntary subject should be obtained by everyone

#### I GENERAL DESCRIPTION

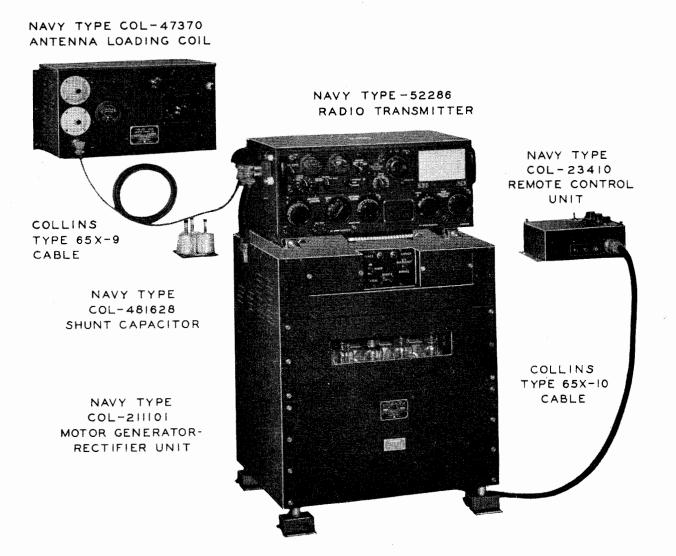



Fig. 1 Complete TCZ Equipment Navy Type COL-211101 Power Unit Shown

#### GENERAL DESCRIPTION

#### 1.1. EQUIPMENT

#### 1.1.1. Main Components

1.1.1.1. The Navy Model TCZ Series Radio Transmitting Equipment covered by these instructions consists of the Transmitter Unit, an Antenna Load Coil Unit, a Control Unit, a Power Supply Unit, an Antenna Shunt Capacitor, and the necessary power and control cables. The Power Supply Unit may be either of two models, a motor generator-rectifier power unit designed to operate from a 115 volt 50/60 cps power source or a dynamotor power unit designed to operate from a 115 volt d-c power source.

The units which constitute the complete Model TCZ Equipment, with overall dimensions and weights of all major items, are tabulated and appear on pages 2 and 3.

1.1.1.2. The accessories necessary to complete the installation but not supplied with the equipment on the contract are listed below:

- 1. Microphone—Carbon of 40 ohms Internal Resistance or Dynamic of 200 ohms Internal Resistance for RED coded circuit per Navy Specifications RE8944A.
  - (a) Cord—3 Conductor, Shielded
  - (b) Cord Plug—3 Circuit, Tip  $\frac{3}{16}''$  Dia. and  $1\frac{3}{16}''$  Long.
- 2. Telegraph Key—Any Type
  - (a) Key Cord—2 Conductor
  - (b) Cord Plug—2 Circuit, Tip  $\frac{3}{16}''$  Dia. and  $1\frac{3}{16}''$  Long.
- Headphones—500 ohm Impedance

   (a) Cord Plug—2 Circuit, Tip ¼" Dia. and 1<sup>5</sup>/<sub>32</sub>" Long.

#### 1.1.2. Tube Complement

| Symbol<br>Designation | Type<br>Number | Quantity | Circuit Function          |
|-----------------------|----------------|----------|---------------------------|
| V101                  | 837            | 1        | High Frequency Oscillator |
| V102                  | 1625           | 1        | 1st Multiplier            |
| V103                  | 1625           | 1        | 2nd Multiplier            |
| V104                  | 813            | 1        | Power Amplifier           |
| V105                  | 811            | 1        | Modulator                 |
| V106                  | 811            | 1        | Modulator                 |
| V201                  | 12SJ7          | 1        | 1st Audio Amplifier       |
| V202                  | 6V6GT          | 1        | Audio Driver              |
| V203                  | 6V6GT          | 1        | Sidetone Amplifier        |
| V301                  | 12SJ7          | 1        | Calibration Oscillator    |
| V302                  | 12SJ7          | 1        | MCW Oscillator            |
| V401                  | 1625           | 1        | Low Frequency Oscillator  |
| V1801                 | 866/866A       | 1        | L.V. Rectifier            |
| V1802                 | 866/866A       | 1        | L.V. Rectifier            |
| V1803                 | 866/866A       | 1        | H.V. Rectifier            |
| V1804                 | 866/866A       | 1        | H.V. Rectifier            |

|                                                                                | Collins<br>Type<br>Number |                             | OVERALL DIMENSIONS<br>(Height, Width, Depth)<br>(Inches) |                                                                        | Volume<br>(Cubic Feet) |          | Weight<br>(Pounds) |          |
|--------------------------------------------------------------------------------|---------------------------|-----------------------------|----------------------------------------------------------|------------------------------------------------------------------------|------------------------|----------|--------------------|----------|
| Name of Unit                                                                   |                           | Navy<br>Type<br>Designation | Crated                                                   | Uncrated                                                               | Crated                 | Uncrated | Crated             | Uncrated |
| Radio Transmitter                                                              | 17H-2                     | COL-52286                   | 20x22x34                                                 | 10 <sup>3</sup> / <sub>4</sub> x23-9/16x13 <sup>1</sup> / <sub>4</sub> | 8.65                   | 1.95     | 135                | 66.0     |
| Motor Generator-<br>Rectifier Power Unit                                       | 413D-1                    | COL-211101                  | 28x31x34                                                 | 29-7/16x23-7/16x20 <sup>1</sup> / <sub>8</sub>                         | 17.0                   | 8.5      | 445                | 320.0    |
|                                                                                | 314N-2                    | COL-23410                   |                                                          | 4¾ <b>x9-3</b> 1/32 <b>x6-9</b> /16                                    | )                      | .175     | Ŋ                  | 8.0      |
| Antenna Loading Coil<br>(300-600 kc)                                           | 180H-3                    | COL-47370                   |                                                          | 10-7/32x18 <sup>5</sup> / <sub>8</sub> x10 <sup>3</sup> / <sub>4</sub> |                        | 1.2      |                    | 14.5     |
| Antenna Shunt                                                                  | 195D-1                    | COL-481628                  |                                                          | 37⁄8x5x41⁄8                                                            |                        | 0.045    |                    | 1.6      |
| Capacitor<br>Control Cable (Trans-<br>mitter to Power Unit)                    | 65X-7                     |                             |                                                          | 10.5'' long                                                            |                        |          |                    |          |
| Power Cable (Trans-<br>mitter to Power Unit)                                   | 65X-8                     |                             | 20x31x35                                                 | 10.5" long                                                             | 12.6                   |          | 145                |          |
| Load Coil Cable (Trans-                                                        | 65X-9                     | V                           |                                                          | 10' long                                                               |                        |          |                    |          |
| mitter to Load Coil)<br>Remote Control Cable<br>(Remote Unit to<br>Power Unit) | 65X-10                    |                             |                                                          | 10' long                                                               |                        |          | -                  |          |
| Instruction Books (2)                                                          |                           |                             |                                                          | 11x8½x1                                                                |                        | 0.108    |                    |          |
| CFI Crystal (200 kc)                                                           |                           | -40127                      |                                                          | 2½ <b>x1-5</b> /16                                                     |                        |          |                    | 2 cz.    |
| Spare Parts                                                                    |                           |                             | 15x19x35                                                 | Ab                                                                     | 5.8                    |          | 142                | 100      |

ю

## EQUIPMENT FOR AC OPERATION

### EQUIPMENT FOR DC OPERATION

|                                                        | Collins<br>Type<br>Number |                             | OVERALL DIMENSIONS<br>(Height, Width, Depth)<br>(Inches) |                                                                        | Volume<br>(Cubic Feet) |                                       | Weight<br>(Pounds) |          |
|--------------------------------------------------------|---------------------------|-----------------------------|----------------------------------------------------------|------------------------------------------------------------------------|------------------------|---------------------------------------|--------------------|----------|
| Name of Unit                                           |                           | Navy<br>Type<br>Designation | Crated                                                   | Uncrated                                                               | Crated                 | Uncrated                              | Crated             | Uncrated |
| Radio Transmitter                                      | 17H-2                     | COL-52286                   | 20x22x34                                                 | 10 <sup>3</sup> / <sub>4</sub> x23-9/16x13 <sup>1</sup> / <sub>4</sub> | 8.65                   | 1.95                                  | 135                | 66.0     |
| Dynamotor Assembly<br>Power Unit                       | 413D-2                    | COL-211102                  | 28x31x34                                                 | 29-7/16x23-7/16x20½                                                    | 17.0                   | 8.5                                   | 335                | 210.0    |
| Remote Control Unit                                    | 314N-2                    | COL-23410                   |                                                          | 4¾ <b>x9-3</b> 1/32 <b>x6-9</b> /16                                    |                        | . 175                                 | <b>.</b>           | 8.0      |
| Antenna Loading Coil<br>(300-600 kc)                   | 180H-3                    | COL-47370                   |                                                          | 10-7/32x18 <sup>5</sup> / <sub>8</sub> x10 <sup>3</sup> / <sub>4</sub> |                        | 1.2                                   |                    | 14.5     |
| Antenna Shunt<br>Capacitor                             | 195D-1                    | COL-481628                  |                                                          | 37/ <sub>8</sub> x5x41/ <sub>8</sub>                                   |                        | 0.045                                 |                    | 1.6      |
| -                                                      | 65X-7                     |                             |                                                          | 10.5'' long                                                            |                        | · · · · · · · · · · · · · · · · · · · |                    |          |
| /                                                      | 65X-8                     |                             | 20x31x30                                                 | 10.5'' long                                                            | 10.7                   |                                       |                    |          |
|                                                        | 65X-9                     |                             | 20031030                                                 | 10' long                                                               | }10.7                  |                                       | <b>}</b> 120       |          |
| Remote Control Cable<br>(Remote Unit to<br>Power Unit) | 65X-10                    | ****************            |                                                          | 10' long                                                               |                        |                                       |                    |          |
| Instruction Books (2)                                  |                           | *****                       |                                                          | 11x8½x1                                                                |                        | 0.108                                 |                    |          |
| CFI Crystal (200 kc)                                   |                           |                             |                                                          | 2½x1-5/16                                                              | J                      | · · · · · · · · · · · · · · · · · · · |                    | 2 oz.    |
| Spare Parts                                            | Annu-1-1                  |                             | 15x19x35                                                 |                                                                        | 5.8                    |                                       | 142                | 100      |

GENERAL DESCRIPTION

#### 1.2. GENERAL

1.2.1. The Model TCZ Series Radio Transmitting Equipment has been designed for installation aboard ship. Particular care has been taken in the design to insure mechanical construction that will withstand the vibration and shock incident to normal service. All materials used in the construction of the equipment are, insofar as practicable, resistant to corrosion resulting from the chemical action of a moist saline atmosphere.

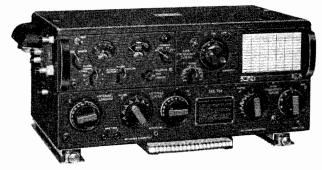
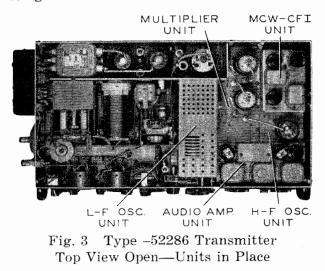




Fig. 2 Type -52286 Transmitter

1.2.2. Sub-assembly type of construction has been used extensively in the Type -52286 Transmitter. This type of construction facilitates the removal of component parts without major disassembly of the unit. The MCW-CFI, the Audio Amplifier, and the L-F Oscillator Units are connected by multiterminal plugs to facilitate removal for servicing. An effort has been made to make all



components that may require replacement easily accessible.

1.2.3. The Collins Autotune System has been incorporated in the Model TCZ Series Equipment to permit rapid frequency change. The Autotune system is an electrically controlled means of mechanically repositioning adjustable elements such as switches, variable inductors and variable capacitors. The accuracy of repositioning is of a very high order and is not seriously affected by wear, humidity or temperature changes. No tools are necessary for the changing of the position of any of the controls. Eleven Autotune positions are available, permitting transmission on any one of eleven preset frequencies. Ten of the frequencies are in the frequency range 2000 kc to 18,100 kc, and one is in the frequency range 300 kc to 600 kc.

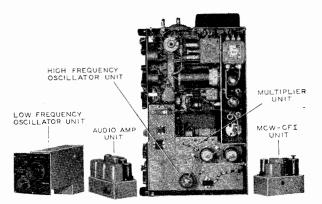



Fig. 4 Type -52286 Transmitter Top View Open—Units Removed

#### 1.3. TYPES OF EMISSION

1.3.1. CW, MCW and VOICE modulated types of emission are available with the TCZ equipment. The audio system is capable of modulating the carrier (100 watts nominal) at least 90% for MCW or VOICE emission. Keying speeds up to 30 words per minute may be used when operating with CW and MCW emission without objectionable chirp or distortion of the length of the keyed characters.

#### 1.4. AUDIO INPUT

1.4.1. Either of two types of microphone may be used with this equipment. An input circuit has been incorporated in the equipment to permit the use of either a carbon or dynamic type of microphone. When the microphone switch, S201, is in DYNAMIC position, an audio input of 16 millivolts to the MICRO-PHONE jack, J102, is required for 90% modulation. When the microphone switch is in the CARBON position 1.45 volt audio input at J102 is required for 90% modulation. The audio frequency response is uniform within 3 db between 300 cps and 4000 cps. The audio frequency distortion is less than 15%rms at 1000 cps and with 90% modulation of the carrier (100 watts nominal).

#### 1.5. FREQUENCY RANGE

1.5.1. Two bands of transmission frequencies are available with the TCZ equipment. Output may be obtained in the low frequency range of 300 kc to 600 kc and in the high frequency range of 2000 kc to 18,100 kc.

1.5.2. When operating in the frequency range 300 kc to 600 kc an external power amplifier plate tank and antenna loading circuit must be used. The necessary circuit is incorporated in the Type COL-47370 Antenna Loading Coil Unit. Selecting low frequency output automatically makes the proper connections from the power amplifier plate to the external tank circuit.

1.5.3. The output circuits of the transmitter have been designed to match antennas from 20 feet to 35 feet in length in the frequency range 300 kc to 600 kc and in the range 2000 kc to 18,100 kc. **NOTE:** While the low frequency oscillator will operate over a range of 200 to 1500 kc, the actual output of the transmitter is limited to approximately a 300 to 600 kc range by the Type COL-47370 loading coil when operating in the L-F position.

#### 1.6. FREQUENCY CHANGE SYSTEM

1.6.1. The Autotune frequency system employed in the TCZ equipment is an electrically controlled mechanical system of positioning the transmitter tuning elements. The positioning elements are driven by a single motor. The system will operate to change the frequency of transmission in less than 25 seconds at normal room temperature and with normal operating voltage. A detailed description of both the mechanical and electrical portions of the Autotune is given in the FUNCTIONAL CHARACTERISTICS section of this Maintenance Manual.

1.6.2. Manual frequency change and tuning adjustments may be made without disturbing the Autotune stop ring adjustments if the CHANNEL selector switch is placed in the MANUAL position and the Autotune mechanism allowed to operate.

#### 1.7. POWER OUTPUT

1.7.1. The power delivered to the antenna varies with frequency and antenna characteristics.

1.7.2. The following table shows the power output obtainable within the two bands of frequencies, 300 kc to 600 kc and 2000 kc to 18,100 kc, with normal supply voltage and antennas having the characteristics listed under Antenna Resistance and Antenna Reactance:

| Frequency | Antenna<br>Reactance | Antenna<br>Resistance | Power<br>Output      | See<br>Note |  |
|-----------|----------------------|-----------------------|----------------------|-------------|--|
|           |                      |                       | 10                   | (1)         |  |
| 300 kc    | -j4500 ohms          | 20.0 ohms             | 16 watts             | (1)         |  |
| 400 kc    | —j3400 ohms          | 16.0 ohms             | $24  \mathrm{watts}$ | (1)         |  |
| 500 kc    | —j2600 ohms          | 14.0 ohms             | 33  watts            | (1)         |  |
| 600 kc    | —j2100 ohms          | $12.0^{\circ}$ ohms   | 41 watts             | (1)         |  |
| 2000 kc   | —j 500 ohms          | 2.1 ohms              | 31 watts             | (2)         |  |
| 3000 kc   | j 200 ohms           | 3.1 ohms              | 60 watts             | (2)         |  |
| 4000 kc   | 0 ohms               | 6.1 ohms              | 80 watts             | (2)         |  |
| 5500 kc   | $+{ m j}$ 380 ohms   | 25.0 ohms             | 90 watts             | (2)         |  |
| 7000 kc   | 0 ohms               | 3500.0 ohms           | 90 watts             | (2)         |  |
| 9000 kc   | —j 350 ohms          | 50.0 ohms             | 90 watts             | (2)         |  |
| 11500 kc  | 0 ohms               | 50.0 ohms             | 90 watts             | (2)         |  |
| 13500 kc  | $+{ m j}$ 350 ohms   | 100.0 ohms            | 90 watts             | (2)         |  |
| 15500 kc  | 0 ohms               | 1500.0 ohms           | 75 watts             | (2)         |  |
| 18000 kc  | —j 350 ohms          | 200.0 ohms            | 65 watts             | (2)         |  |
|           |                      |                       |                      |             |  |

#### GENERAL DESCRIPTION

Note: (1) Measurements were made using the Type COL-47370 Antenna Loading Coil.
(2) Measurements were made while operating into a fixed antenna without a load-ing coil.

#### 1.8. POWER SOURCE

1.8.1. The Model TCZ Equipment may be operated from either of two power sources, 115 volt 50/60 cps a.c. or 115 volt d.c. The source of power that is required depends on the type of power unit that is supplied for the particular installation. If the Type COL-211101 Motor Generator-Rectifier Power Unit is supplied, a 115 volt a-c source of power capable of 4500 watts with good voltage regulation is necessary. A rectifier heating system is used for low temperature operation in the A.C. Power Unit. The equipment should not be operated in a strong draft of air or the effect of the heaters will be nullified. If the Type COL-211102 Dynamotor Assembly is supplied, a 115 volt d-c source of power will be required. Short, heavy power connections are necessary for proper operation of the power units.

**IMPORTANT:** Carefully check the unit nameplate to determine which source of power is required so as to prevent the damaging of the unit by connecting the wrong power source to the input terminals.

#### 1.9. CONTROL

1.9.1. The emission of the transmitter may be controlled from the Type COL-52286 Transmitter panel, the Type COL-23410 Remote Control Unit or a standard Navy Radiophone Unit. The type of emission and the frequency channel may be selected from the transmitter panel or the remote control unit.

1.9.2. The Type -52286 Transmitter controls consist of a TEST switch, a LOCAL-RE-MOTE switch, a CHANNEL selector switch, a metered circuit selector switch, a power level switch, an EMISSION selector switch, LOW FREQUENCY oscillator TUNING, HIGH FREQUENCY oscillator TUNING, ANTENNA TUNING—COARSE, ANTEN-NA TUNING—FINE, and ANTENNA LOADING controls, KEY, MICROPHONE and Throttle Switch jacks for control of emission and two jacks when properly connected for SIDETONE monitoring.

1.9.3. The controls on the Type COL-23410 Remote Control Unit consist of a CHANNEL selector switch, and EMISSION selector switch, a MICROPHONE jack, and a TELE-GRAPH KEY jack.

#### 1.10. OVERLOAD PROTECTION

1.10.1. A time delay relay has been connected in the rectifier plate transformer primary circuit in the Type COL-211101 A.C. Power Supply Unit to prevent the application of plate voltage to the rectifiers before the tubes have reached operating temperature. The plate transformer primaries are fused to protect the circuit components from being damaged by an overload in the output of the rectifier circuit.

1.10.2. The input circuits to the motors and the output circuits of the generators in both units are fused.

#### 1.11. ACCESSORIES

1.11.1 In addition to the transmitter proper, a power unit, a remote control unit, an antenna shunt capacitor, and an antenna loading coil unit are furnished to complete the installation.



Fig. 5 Type COL-211101 Motor-Generator-Rectifier Power Unit



Fig. 6 Type COL-211102 Dynamotor Assembly

1.11.1.1. The power supply unit may be either of two models, the Type COL-211101 A.C. Power Supply Unit designed for operation from a 115 volt 60 cps a-c power source or the Type COL-211102 D.C. Power Supply Unit designed for operation from a 115 volt d-c power source. The Type COL-211101 A.C. Power Supply Unit utilizes two rectifier systems and a motor generator to supply the voltages necessary for the operation of the The Type COL-211102 D.C. equipment. Power Supply Unit utilizes two dynamotors. Both units are supplied with a terminal strip to permit the connecting of the standard Navy Radiophone Unit.

1.11.1.2. The Type COL-23410 Remote Control Unit permits the control of power, the selection of the type of emission, the control of the emission and the selection of the frequency channel from a remote position. The unit also contains a loudspeaker, a headphones cord plug receptacle and an audio level control. The input circuits of the speaker

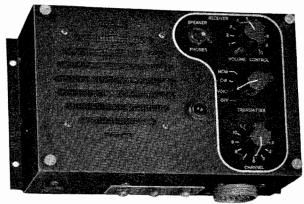



Fig. 7 Type COL-23410 Remote Control Unit

and phones jack are brought out to a terminal strip so that the output of the installation receiver may be easily connected to the unit. Either speaker or headphones reception may be selected by the operation of a toggle switch.

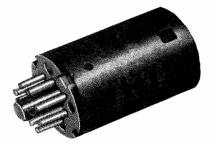



Fig. 8 Type -40127 Crystal Holder

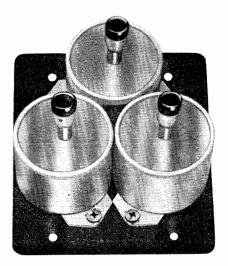



Fig. 9 Type -481628 Antenna Shunt Capacitor

1.11.1.3. The external load coil is used only when low frequency operation (300 kc to 600 kc) is selected. The antenna should be connected to the terminal on the load coil and a connection made from the LOAD COIL terminal on the unit to the transmitter. A relay located in the Type COL-47370 Antenna Load Coil Unit, operated by the telegraph key, TEST switch or the push-to-talk switch on the microphone, connects the tank circuit that is located in the load coil unit to the antenna when operating in the low frequency range. During operation in the frequency range 2000 kc to 18,100 kc the relay remains unoperated and the normally closed contacts connect the output of the transmitter directly to the antenna.



Fig. 10 Type COL-47370 Antenna Loading Coil

1.11.1.4. The Type COL-481628 Antenna Shunt Capacitor is furnished to permit operation in the range 2000 to 3000 kc using a short whip-type antenna.

1.11.1.5. The 200 kc Type -40127 Crystal Unit is mounted in an octal base holder for convenience in mounting in the crystal oscillator calibration unit.

1.11.1.6. Power, control and unit-interconnecting cables are furnished together with the fittings and plug connectors necessary to complete the installation.

1.11.1.7. Complete sets of Phillips and Bristo wrenches are fastened beneath the transmitter cover.

#### 1.12. ABBREVIATIONS

1.12.1. Throughout the Maintenance Manual abbreviations are used in place of some of the more common radio terms and phrases. The terms and definitions listed below should help in the understanding of the sections of this book that follow.

- a. P.A.-Power Amplifier
- b. CW-Continuous-Wave
- c. MCW-Modulated Continuous-Wave
- d. VOICE—Voice modulated radiofrequency
- e. H-F OSCILLATOR—High-Frequency Oscillator (1000 kc to 1510 kc output)
- f. L-F OSCILLATOR—Low-Frequency Oscillator (200 kc to 1500 kc output)
- g. CFI-Calibration Frequency Indicator
- h. 1st MULTIPLIER—First radio-frequency multiplier stage

- i. 2nd MULTIPLIER Second radio-frequency multiplier stage
- j. LOCAL---Control of the power and emission from the transmitter panel
- k. REMOTE Control of the transmitter power and emission from the Remote Control Unit
- l. R-F-Radio Frequency
- m. A-F-Audio Frequency

#### 1.13. SYMBOL DESIGNATIONS

1.13.1. The Symbol Designations used throughout this book refer to the symbols used on the schematic diagrams and photographs. These designations are also used in the Parts List and Spare Parts Lists to identify circuit components with component part numbers and description. Table XV, List of Major Units, gives a complete tabulation of symbol designations used in this equipment.

#### **II FUNCTIONAL CHARACTERISTICS**

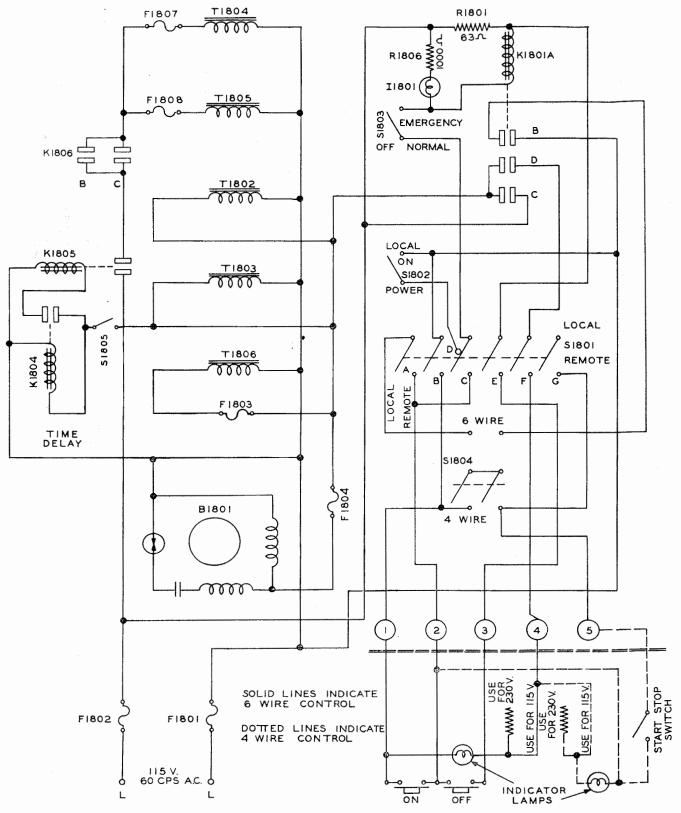



Fig. 11 Simplified Power Control Circuits for A.C. Power Unit (Dwg. No. 500 1458 00B)

10

#### 2.1. POWER CONTROL CIRCUITS FOR A-C SUPPLY

2.1.1. Operational description of the Power Control Circuits is divided into two separate sections. One section pertains to the operation of the primary power circuit in the Power Unit and the other section to the explanation of the power control circuits in the transmitter unit. (See Paragraph 2.3.)

2.1.2. Refer to Figure 94. It will be noted that the external power control circuits are of the standard 4 wire and 6 wire types. The 6 wire control is designed for momentary contact operation while the 4 wire control is designed for a start-stop switch of the toggle or knife-blade type.

2.1.3. The power mains are fused by F1801 and F1802. These fuses protect all the power components in the Power Unit. In addition to the power mains fuses, there are individual protective fuses in the primary circuits of each separate power supply in the Power Unit. Fuse sizes should be strictly adhered to when replacements are necessary.

2.1.4. Refer to Figure 11. Operation of filament power relay K1801 completes the circuits necessary for application of primary power to the rectifier filament transformers, the motor of the direct current motor-generator set, and the time delay relay K1804. Subsequent operation of interlock relay K1805 and plate power relay K1806 applies primary power to the plate power transformers T1804 and T1805.

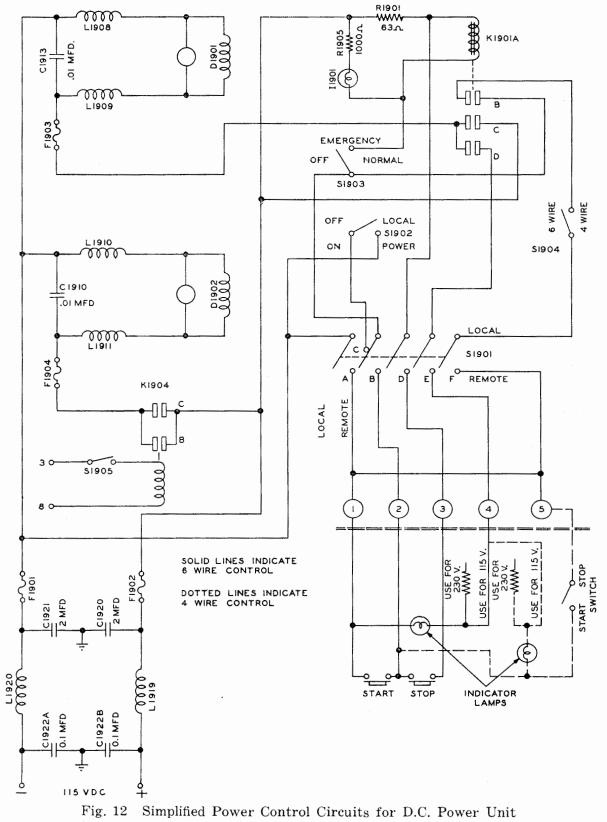
2.1.5. Assuming proper power connections are made to the power unit, the LOCAL-REMOTE switch S1801 in the LOCAL position, the EMERGENCY switch S1803 in the NORMAL position and the LOCAL POWER switch S1802 in the ON position, the coil of filament power relay K1801 would be energized through fuse F1801, the contacts of LOCAL POWER switch S1802, the "D" contacts of LOCAL-REMOTE switch, S1801, the contacts of EMERGENCY switch, S1803, the coil of filament power relay, K1801, the limiting resistor, R1801, and fuse F1802. Operation of filament power relay K1801 energizes the primaries of the filament transformers, T1802 and T1803, the primary of the keying relay power supply transformer, T1806, and the motor of the motor-generator set, through the fuse, F1802, the "C" contacts of filament power relay K1801, the primaries of T1802, T1803, T1806 and B1801, the coil of time delay relay K1804, and fuse F1801. The rectifier filaments, the transmitter filaments, the coil of the interlock relay K1805, and the keying supply will now be energized. As soon as the time delay relay K1804, has operated, the circuit through the coil of the interlock relay K1805 will be completed. The circuit for completing the plate power circuit is through the fuse, F1801, the primaries of transformers T1804 and T1805, the contacts of plate power control relay K1806 and the contacts of the interlock relay, K1805; however, the coil of the plate power control relay, K1806, is controlled by the power control circuit in the transmitter proper, the explanation of which will be given in the second section of this operational description, Paragraph 2.3.

With the LOCAL-REMOTE switch 2.1.6. S1801 in the REMOTE position, the EMER-GENCY switch, S1803, in the NORMAL position, the LOCAL power switch, S1802 in the OFF position, the 4 wire-6 wire selection switch, S1804, in the 6 wire position and a 6 wire control system connected to the terminals provided, the circuit for energizing the filament power relay, K1801A, would be through fuse F1801, the B contacts of LOCAL-REMOTE switch, S1801, the START contacts of the remote power control buttons. the C contacts of LOCAL-REMOTE switch. S1801, the contacts of the EMERGENCY switch, S1803, the coil of the filament control relay, K1801, the limiting resistor, R1801, and fuse F1802. A hold-in circuit for the filament power relay K1801 is necessary when the 6 wire system for control is used which is as follows: Through fuse F1801, the B contacts of the filament control relay, K1801,

the contacts of the 4 wire-6 wire selector switch S1804, the A and C contacts of LOCAL-REMOTE switch S1801, the contacts of EMERGENCY switch S1803, the coil of the filament power relay, K1801, the limiting resistor, R1801, and the fuse, F1802. Indicator lamp I1801 is effectively in shunt with the coil of filament power relay K1801, and lights when the filament circuits are energized.

2.1.7. After the filament power relay, K1801, has operated, the filament transformer primaries, the motor B1801, the keying relay power supply transformer, and the time delay relay K1804, will be energized and the plate transformers can be excited by completion of the plate power circuit by the closing of the contacts on the interlock relay, K1805, and the plate power control relay, K1806. The energizing of the coil of the plate power control relay, K1806, is accomplished by circuits in the transmitter unit and will be discussed in the second section of this operational description. See Paragraph 2.3.

2.1.8. The circuit for removing the primary power from the power components by the 6 wire system starts at one set of contacts on the STOP button and goes through the C contacts of LOCAL-REMOTE switch S1801, the contacts of EMERGENCY switch S1803 and to one side of the coil of the filament power relay, K1801. The other set of contacts on the STOP button connects to the other side of the coil of relay K1801 through the E contacts on the LOCAL-REMOTE switch, S1801, thereby shorting the K1801 relay coil when the STOP button is depressed. The energy normally in the coil of the filament power relay, K1801, is then dissipated in the limiting resistor, R1801, and the contacts of this relay, K1801, opens and removes the power from filament transformer primaries, motor winding and keying supply transformer and from the plate transformers


primaries by virtue of the interlock relay, K1805.

2.1.9. An indicator lamp incorporated in the 6 wire control system will be turned on when the filaments of the tubes are turned on in the power unit, providing LOCAL-REMOTE switch S1801 is in the REMOTE position. This lamp is energized from the power source by the "C" and "D" contacts of filament power relay K1801 through "B" and "F" contacts of LOCAL-REMOTE switch S1801.

2.1.10. With 110 volt 60 cps power applied to the Power unit input terminals, the LOCAL-REMOTE switch, S1801, in the RE-MOTE position, the EMERGENCY switch S1803 in the NORMAL position, the LOCAL POWER switch S1802 in the OFF position, and the 4 WIRE-6 WIRE selector switch S1804 in the 4 wire position, the filament power relay, K1801A will be energized through the fuse F1801, the B contacts of LOCAL-REMOTE switch S1801, the contacts of the 4 wire-6 wire selector switch, S1804, the contacts of the START-STOP switch of the 4 wire Remote Control system, the C contacts of LOCAL-REMOTE switch S1801, the contacts of EMERGENCY switch S1803, the coil of filament power relay K1801, the limiting resistor R1801, and the fuse F1802. As there is no hold-in circuit involved other than the contacts of the 4 wire control system START-STOP switch, the power can be removed from the power circuits simply by opening the START-STOP switch.

2.1.11. Note that incorporated in the 4 wire control system is an indicator lamp which gets its excitation from the power source through the fuse, F1801, the B contacts on LOCAL-REMOTE switch S1801, the 4 wire contacts of S1804, the START-STOP switch in the REMOTE Control system, the indicator lamp, the F contacts of the LOCAL-REMOTE switch, S1801, the D and C contacts of the filament control relay, K1801, and the fuse F1802.

#### FUNCTIONAL CHARACTERISTICS



(Dwg. No. 500 1457 00B)

#### 2.2. POWER CONTROL CIRCUITS FOR D-C SUPPLY

2.2.1. The power control circuits for the TCZ transmitting equipments employing the d.c. power unit are much the same as those for the a.c. power unit. The principal difference being the absence of the time delay relay and the interlock relay in the plate supply circuit. The interlocking effect is taken care of automatically by the absence of relay power when the filament dynamotor is not rotating. As a result, it is impossible to apply power to the H.V. Dynamotor when the tube filaments are not energized.

Operation of filament power relay 2.2.2. K1901 completes the circuits necessary for application of power to the filament and relay-power dynamotor. See Figure 10. Assuming correct power input to the d.c. power bay, the EMERGENCY switch S1903, placed in the NORMAL position, the LOCAL POW-ER switch, S1902, in the ON position, the LOCAL-REMOTE switch in the LOCAL position, the filament power relay K1901, will be energized through power line fuse F1901, the contacts of LOCAL POWER switch S1902, the "C" contacts of LOCAL-REMOTE switch S1901, the contacts of EMERGENCY switch S1903, the coil of filament power relay K1901, the limiting resistor, R1901, and the fuse F1902.

2.2.3. Operation of the filament power relay K1901 will make filament power available for the transmitter tubes and relay current available for the transmitter relays including the plate power relay K1904, which, when energized by closing of control circuits in the transmitter proper, will start the plate power dynamotor, D1902. The circuit for operating the filament and relay power dynamotor is through fuse F1901, the primary windings of dynamotor D1901, the C contacts of filament control relay K1901 and fuse F1902. The circuit for operating the High Voltage plate dynamotor D1902 is through fuse F1901, the windings of high voltage dynamotor D1902, the C contacts of plate

power relay K1904 and the fuse F1902. Operation of the plate power relay K1904, is accomplished by the transmitter power control circuits which are described in paragraph 2.3. Operation of filament power relay K1901 is indicated by indicator lamp I1901 which is in parallel with the coil of relay K1901.

2.2.4. For operation of the power bay by remote control using the 6 wire control system, the LOCAL-REMOTE switch, S1901, will be in the REMOTE position, the LOCAL POWER switch will be in the OFF position, the EMERGENCY switch S1903 will be in the NORMAL position, the 4 WIRE-6 WIRE selector switch will be in the 6 WIRE position, and a standard 6 wire remote control system will be attached to the terminals provided. The circuit for energizing the filament power relay K1901, is through power line fuse F1901, "A" contacts on LOCAL-REMOTE switch. S1901, the START contacts of the Remote Control push button, the "B" contacts on LOCAL-REMOTE switch S1901, the contacts of EMERGENCY switch S1903, the coil of the filament power relay, K1901, the limiting resistor, R1901, and the fuse, F1902. A hold-in circuit formed by contacts "A" and "F" of LOCAL-REMOTE switch S1901, the contacts of the 4 wire-6 wire change-over switch, the "B" contacts of the filament power relay, K1901, the contacts of the EMERGENCY switch, S1903, the coil of the filament power relay, K1901, the limiting resistor, R1901, and the line fuses F1901 and F1902 prevents the filament power relay, K1901, from releasing when the remote control power push-button is released.

2.2.5. Pressing the stop button of the 6 wire remote control system will short circuit the coil of the filament control relay, K1901, and the power circuits will open. The power used in energizing the coil of filament power relay K1901 will be dissipated in the limiting resistor, R1901, when the stop button is depressed.

#### FUNCTIONAL CHARACTERISTICS

2.2.6. With the 4 wire power control system attached to the power unit, the LOCAL-REMOTE switch, S1901, in the REMOTE position, the EMERGENCY switch, S1903 in the NORMAL position, the LOCAL POWER switch in the OFF position, the 4 WIRE-6 WIRE selector switch in the 4 WIRE position, the filament power relay K1901 will be energized through fuse F1901, the A contacts of LOCAL-REMOTE switch S1901, the 4 WIRE control START-STOP switch, the B contacts of the LOCAL-REMOTE switch S1901, the contacts of the EMERGENCY switch S1903, the coil of the filament power relay K1901, the limiting resistor R1901, and the fuse F1902. No hold-in circuit is necessary for the 4 wire control system.

2.2.7. Operation of the filament power relay K1901, makes power available for the plate power control relay K1904 in the primary circuit of dynamotor D1902 and, with the closing of the plate-power relay K1904, high voltage will be available for the plates of the transmitter tubes.

2.2.8. In the 6 wire control system, the circuit for the remote indicator lamp is from fuse F1901 through the "A" contacts on LOCAL-REMOTE switch S1901, the remote indicator lamp, the "E" contacts on LOCAL-REMOTE switch S1901, the "D" and "C" contacts on the filament power relay K1901, and fuse F1902.

2.2.9. In the 4 wire system the circuit for the remote indicator lamp is from fuse F1901 through the "A" contacts on LOCAL-RE-MOTE switch S1901, the contacts of the remote START-STOP switch, the indicator lamp, the "E" contacts on LOCAL-REMOTE switch S1901, the "D" and "C" contacts on filament power relay K1901, and the fuse F1902.

#### 2.3. TRANSMITTER POWER CONTROL CIRCUITS

2.3.1. The following paragraphs describe the operation of the control circuits in the Type COL-52286 transmitter.

2.3.2. Closing these circuits energizes the plate supply primary relay K1806/K1904 which applies plate power to all of the transmitting tubes providing the power unit control circuits are in operation as explained in the preceding paragraphs.

2.3.3. Primary power for application to the transformers, motors and dynamotors is controlled by contactors located in the power units.

2.3.4. All relays in the transmitter proper are energized by the 28 volt output of the power unit.

2.3.5. Figure 13 shows a simplified schematic of the transmitter power control circuits.

With the LOCAL-REMOTE switch, 2.3.6. S107, in the LOCAL position, the EMISSION selector switch, S110, in the VOICE position, the circuit necessary for the operation of the "voice" relay, K104 is completed through the coil of "voice" relay K104A, the contacts of EMISSION selection switch, S110, and the contacts of LOCAL-REMOTE switch S107. If power level switch, S106, is in either the TUNE or OPERATE position, it is necessary to operate the TEST switch, S104, or to complete the circuit through the throttle switch jack, J101, the circuit through the MICRO-PHONE jack, J102, or the circuit through the KEY jack, J103, before the power contactor, K1806/K1904, will operate.

2.3.7. If the EMISSION selector switch, S110, is operated to the CW position, the circuit necessary for the operation of the plate power contactor, K1806/K1904, is completed and power is applied to the primary circuit of the plate supply. Operating the EMISSION selector switch, S110, to the CW position completes the circuit necessary for the operation of CW relay K103 through the contacts of LOCAL-REMOTE switch, S107, the contacts of EMISSION selector switch, S110, and the coil of CW relay, K103. When CW relay K103 has operated, the coil of plate

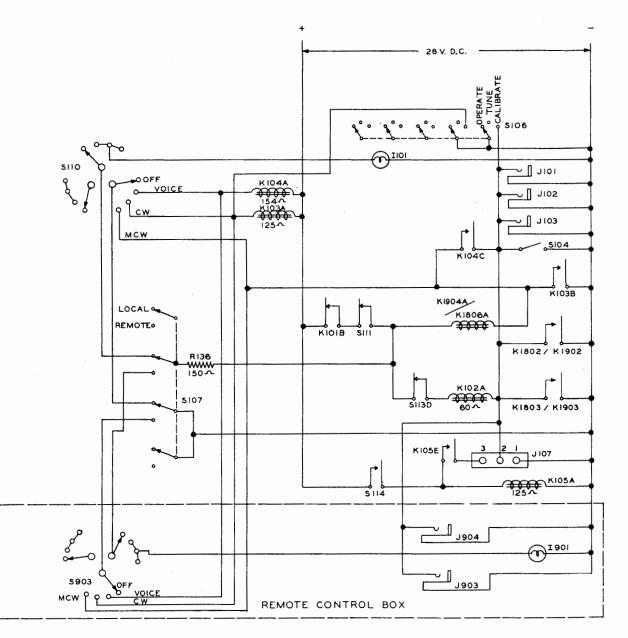



Fig. 13 Simplified Transmitter Power Control Circuits (Dwg. No. 500 1459 00C)

power contactor K1806/K1904 is energized through the "B" contacts of CW relay K103, the coil of plate power contactor K1806/ K1904, the contacts of the Autotune limit switch, S111, and the "B" contacts of the Autotune motor control relay, K101.

2.3.8. If the EMISSION selector switch, S110, is operated to the MCW position, plate power contactor K1806/K1904 is energized by the circuit through the "B" contacts of Autotune motor control relay K101, the contacts of the Autotune limit switch, S111, the coil of plate power contactor K1806/K1904, the contacts of EMISSION selector switch S110, and the contacts of LOCAL-REMOTE switch S107. Operation of the plate power contactor K1806/K1904 applies primary power to the plate supply.

2.3.9. If the power level switch S106 is operated to the CALIBRATE position, CW relay K103 is operated through the coil of CW relay K103 and the contacts of power level switch S106. The plate power contactor, K1806/K1904 will be operated by the circuit through the "B" contacts of Autotune motor control relay K101B, the contacts of the Autotune limit switch, S111, the coil of plate power contactor K1806/K1904, and the "B" contacts of CW relay K103.

2.3.10. The transmitter panel pilot lamp, I101, will be energized when the EMISSION selector switch, S110, is in any position other than the OFF position. The pilot lamp will be energized through the "B" contacts of Autotune motor control relay K101, the contacts of the Autotune limit switch S111, the resistor R136, the contacts of LOCAL-REMOTE switch S107, the contacts of EMIS-SION selector switch S110, and the pilot lamp I101.

2.3.11. When the LOCAL-REMOTE switch S107 is placed in the REMOTE position control of all power circuits is transferred from the transmitter panel controls to the controls located on the remote control unit.

2.3.12. To complete the circuit necessary for operation of plate power contactor K1806/ K1904, when the EMISSION switch S903 is placed in the VOICE position, the telegraph key must be operated or the microphone jack J903, circuit must be completed. The "voice" relay K104 is operated by the circuit through the coil of "voice" relay K104, the contacts of EMISSION selector switch S903, and the contacts of LOCAL-REMOTE switch S107. The power contactor K1806/K1904 is operated by the circuit through the "B" contacts of Autotune motor control relay K101, the contacts of Autotune limit switch, S111, the coil of plate power contactor K1806/K1904, the "C" contacts of "voice" relay K104 and the telegraph key or the microphone jack, J903.

If the EMISSION selector switch 2.3.13. S903 is operated to the CW position, the CW relay K103 is operated by the circuit through the coil of K103, the contacts of EMISSION selector switch S903 and the contacts of LOCAL-REMOTE switch S107. The operation of CW relay K103 completes the circuit necessary for the operation of the primary power contactor, K1806/K1904. Power contactor K1806/K1904 is operated by the circuit through "B" contacts of Autotune motor control relay K101, the contacts of Autotune limit switch S111, the coil of plate power contactor K1806/K1904, and the "B" contacts of CW relay K103. The operation of power contactor K1806/K1904 applies power to the primary circuits of the plate supply.

2.3.14. If the EMISSION selector switch S903 is operated to the MCW position, plate power contactor K1806/K1904 is energized through the "B" contacts of Autotune motor control relay K101, the contacts of Autotune limit switch S111, the coil of plate power contactor K1806/K1904, the contacts of EMISSION control switch S903 and the contacts of LOCAL-REMOTE switch S107.

2.3.15. The pilot lamp I901 is energized when the EMISSION switch S903 is in any position other than the OFF position. 2.3.16. The pilot lamp I901 is energized by the circuit through the "B" contacts of Autotune motor control relay K101, the contacts of Autotune limit switch S111, resistor R136, the contacts of EMISSION selector switch S903 and the pilot lamp I901.

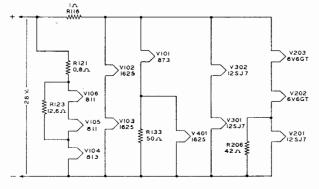



Fig. 14 Filament Circuits (Dwg. No. 500 1454 00A)

#### 2.4. FILAMENT CIRCUITS

2.4.1. The filament power circuits of the transmitter are a combination of series and parallel connections. The filaments are supplied with power from the 28 volt d-c source. Figure 14 shows the filament connections in simplified form. Filament power is applied to the h-f oscillator tube, V101, the frequency

multiplier tubes, V102 and V103, the audio amplifier tube, V201, the audio driver tube, V202, the sidetone amplifier tube, V203, the calibration frequency oscillator tube, V301, the MCW oscillator tube, V302, the l-f oscillator tube, V401, the power amplifier tube, V104, and the modulator tubes, V105 and V106, when the filament power relay K1801/ K1901 is operated. The overload fuse, F1805/ F1905 breaks the filament circuits when an overload occurs in the filament or associated circuits.

#### 2.5. EMISSION SELECTION AND CARRIER CONTROL

2.5.1. See Figure 15. The switch S110 is a combination transmitter ON-OFF switch and EMISSION selector switch. Selecting VOICE emission by the operation of S110 operates relay K104. Relay contacts K104B disconnect the output of the MCW oscillator, V302, from the input to the speech amplifier. Relay contacts K104C connect the coil of relay K1806/K1904 to the emission control circuits of J101, J102, J103, the TEST switch, S104, and the remote circuits, J903, J904, K1803B/K1903B and K1802C/K1902C. Selecting CW emission completes the circuit necessary for

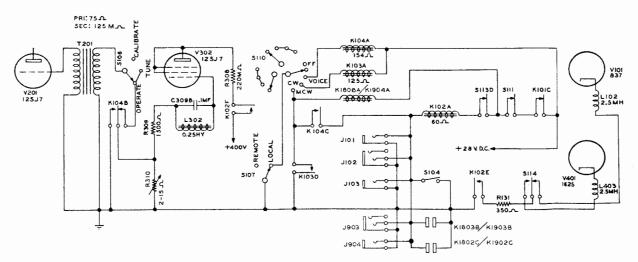



Fig. 15 Emission Selection and Carrier Control Circuits (Dwg. No. 500 1456 00B)

the operation of relay K103. Relay contacts K103D complete the circuit necessary for the operation of K1806/K1904 which, in turn, applies primary power to the plate supply. Selecting MCW emission operates relay K1806/K1904, the primary power contactor.

2.5.2. The r-f carrier is controlled by opening the cathode circuit of the oscillator and removing the screen voltage from the power amplifier. The carrier control relay, K102, has six sets of contacts. Relay contacts K102E complete the oscillator cathode circuit by grounding resistor R131. Relay contacts K102E and resistor R131 serve as a cathode return for both the h-f oscillator, V101, and the l-f oscillator, V401. The desired oscillator circuit is selected by the operation of switch S114. Switch S114 operates in conjunction with Control A. The MCW oscillator, V302, is in operation whenever relay K102 is in the The voltage developed operated position. across the resistor, R310, is applied to the input of the speech amplifier through the relay contacts K104B, the power level switch, S106, and the input transformer T201. Relay contacts K102F apply plate voltage to V302. During periods of CW transmission the output of the MCW oscillator is fed through the speech amplifier to the sidetone amplifier and the keying may be monitored by listening to the output of the sidetone amplifier. When switch, S106, is in the CALIBRATE position, the circuit from the output of the MCW oscillator to the input of the speech amplifier is broken. The carrier control relay K102 may be operated by closing the circuits of the Throttle Switch jack, J101, the MICROPHONE jack J102, the KEY jack J103, the TEST switch S104, the remote microphone jack J903, the remote key jack J904, or by operation of relays K1803B/ K1903B and K1802C/K1902C. Switch S113D is operated in conjunction with the output network switch, S113, and breaks the energizing circuit to the coil of relay K102 whenever S113 is operated, thus removing excitation from the r-f circuits to prevent arcing at the switch contacts. The Autotune limit switch, S111, and the Autotune motor relay contacts K101C are also connected in series with relay coil K102A so that when S111 or K101 operates, the holding circuit for K102 will be broken and arcing at all switch contacts will be prevented.

#### 2.6. APPLICABLE REMOTE CONTROL CIRCUITS

2.6.1. Terminals 1 to 12 on J1805/J1905 in the power units are intended for use with external or remote carrier control and microphone circuits. See Figure 94. Terminals 1 to 5 inclusive are used for primary power control of the power bays while terminals 5 to 12 are used for carrier control and microphone circuits.

2.6.2. Operation of relays K1803/K1903 and K1802/K1902 completes the circuits necessary to operate the carrier control relay The keying relay K1803/K1903 is K102. energized by closing the circuit between terminals 5 and 6 of J1805/J1905. Keying relay K1803 in the A.C. Power bay gets energizing current from rectifier CR1801, while keying relay K1903 in the D.C. Power bay gets energizing current directly from the power mains. For phone operation utilizing the remote circuits connected to J1805/J1905, the carrier control relay, K102, is operated by the closing of contacts K1802C/K1902C. The coil of K1802/K1902 is energized by a connection from terminal No. 8 to terminal No. 11 which is made through suitable relays controlled by push-buttons on handsets or chestset microphones. Contacts on carrier relay K1802/K1902 also connect the microphone circuit from the transmitter proper to terminals 9 and 10 of terminal board J1805/ J1905 through transformer T1801/T1901. Carrier relay K1802/K1902 gets energizing current from a special winding on G1801/ D1901 which supplies 12 to 14 volts at 1.2 amps. of filtered d.c. for this purpose. This winding also furnishes button current for remote carbon button microphones and current for other control relays that may be involved.

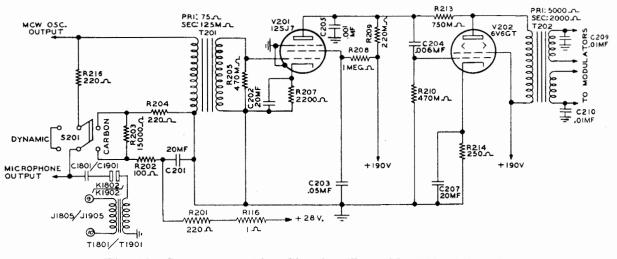



Fig. 16 Speech Amplifier Circuits (Dwg. No. 500 1453 00A)

#### 2.7. AUDIO CIRCUITS

2.7.1. The audio system consists of a two stage speech amplifier, push-pull modulators, a sidetone amplifier, and an MCW audio tone oscillator.

#### 2.7.2. Speech Amplifier

2.7.2.1. Refer to Figure 16. Either of two types of microphones may be used with this equipment. The input to the speech amplifier has been designed so that by operating a switch, proper connections are made to the MICROPHONE jack, J102, (Fig. 28) to match the output of either a carbon or dynamic type of microphone. The microphone circuit selector switch, S201, is located beneath the tuning chart on the front panel of the transmitter. If S201 is placed in the CARBON position, limiting resistors R201 and R202 are connected between the positive terminal of the 28 v d-c power source and the MICROPHONE jack, J102, to provide the voltage necessary for the operation of the carbon type of microphone. The operation of S201 also connects resistor R203 between J102 and the input circuit of the speech amplifier to reduce the level of the output of the carbon microphone to the level of the output of a dynamic microphone. Thus, no audio gain control has been provided because the level of the input to the speech amplifier is the same when using a dynamic microphone as it is when using a carbon microphone. If S201 is placed in the DYNAMIC position the voltage is removed from the input circuit and the MICROPHONE jack, J102, is connected in series with resistor R216 and the primary of the input transformer, T201. The two stage speech amplifier employs a Type 12SJ7 tube, V201, as first amplifier, and a Type 6V6GT tube, V202, as second amplifier. The output of the microphone is coupled by the input transformer, T201, to the grid of V201. The output of V201 is coupled to the grid of V202 by the capacitor C204. The output of the audio driver tube, V202, is coupled to the grids of the modulator tubes V105 and V106 by transformer T202.

## FUNCTIONAL CHARACTERISTICS

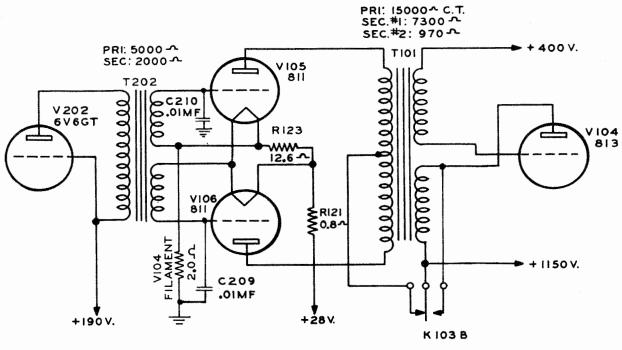



Fig. 17 Modulator Circuits (Dwg. No. 500 0223 00A)

### 2.7.3. Modulator

2.7.3.1. The modulator employs two Type 811 high mu triodes connected in push-pull, and operating Class B. Refer to Figure 17. The modulators are capable of modulating the carrier (100 watts nominal) at least 90%with full voltage applied to the power amplifier. While the 811 is essentially a zero bias tube when used with plate voltages as high as 1150 volts d.c., it becomes necessary to apply some bias to the grid of the tube to keep the static plate current at a safe value. In this application the bias is obtained from the 28 volt d-c supply by utilizing the average voltage drop through the filaments of the tubes to obtain equal voltage for application to the grids of both modulator tubes. The output of the modulators is coupled to the r-f circuits by modulation transformer T101. Both the screen and plate of the power amplifier tube, V104, are modulated. The full output voltage of 1150 volts d.c., is applied to the plates of the modulator tubes, V105 and V106. Relay contacts K103B remove plate voltage from the modulators when CW emission is selected.

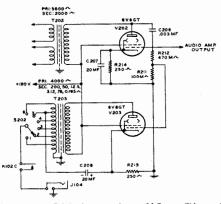



Fig. 18 Sidetone Amplifier Circuit (Dwg. No. 500 0226 00A)

#### 2.7.4. Sidetone Amplifier

2.7.4.1. A sidetone amplifier, Figure 18, is incorporated in the same unit as the two stage speech amplifier. The amplifier employs a Type 6V6GT beam pentode tube V203. The output of the audio driver V202 in addition to being applied to the primary of coupling transformer T202, is applied to a voltage dividing system consisting of C206, R211 and The grid of the sidetone amplifier R212. V203 is coupled to the junction of R211 and R212 and the voltage developed across resistor R211 drives the grid of V203 to provide sufficient output from the sidetone amplifier to operate headphones or speaker. The output of V203 is coupled to the SIDETONE jack, J104, by the transformer T203 through the switch S202 and relay contacts K102C. The turns-ratio of transformer T203 may be varied by operating the sidetone OUTPUT switch S202. The output of the sidetone amplifier is keyed by the operation of the carrier control relay K102. The SIDETONE jack, J105, may be connected in parallel with J104 by connecting a jumper between terminals 26 and 27 of cable connector J106. The necessary plate and screen voltages for the sidetone amplifier are obtained by tapping the bleeder system of the low voltage output of the power unit.

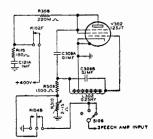



Fig. 19 MCW Oscillator Circuit (Dwg. No. 500 0219 00A)

### 2.7.5. MCW Oscillator

2.7.5.1. The MCW audio tone oscillator, Figure 19, utilizes a Type 12SJ7, V302, triple grid tube connected as a triode. The oscillator is in operation whenever the carrier control relay, K102, is operated. Relay contacts K102F apply voltage to the plate and screen of V302 when K102 is operated. The audio frequency of the output of the tone oscillator is fixed. The voltage developed across resistor R310 is coupled to the input of the speech amplifier through relay contacts K104B and the power level switch, S106. When VOICE emission has been selected, relay contacts K104B disconnect the output of the MCW oscillator, V302, from the input circuit of the speech amplifier. During periods of CW transmission the MCW oscillator is keyed and the output is fed to the input of the speech amplifier and the input of the sidetone amplifier to provide a means of monitoring the keying.

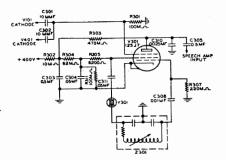



Fig. 20 CFI Oscillator Circuit (Dwg. No. 500 0221 00A)

## 2.8. CFI OSCILLATOR CIRCUIT

2.8.1. The calibration oscillator, Figure 20, employs a Type 12SJ7 tube V301, and is located in the same unit as the MCW tone oscillator. A 200 kc quartz crystal unit is mounted in a sealed holder and plugs into an eight terminal socket on top of the chassis. The grid tank circuit, Z301, is built into a shield can with the inductor tuning screw protruding through the side of the can. The output frequency of this oscillator may be varied slightly by adjusting the tuning screw. Screen and plate voltages are applied to the tube when the power level switch S106 is operated to the CALIBRATE position. Operating S106 to either the TUNE or OPER-ATE position removes high voltage from V301 thus disabling the oscillator circuit. A portion of the output of the h-f oscillator V101 is coupled to the suppressor grid of V301 by the capacitor, C301. A portion of the output of the l-f oscillator V401 is coupled to the suppressor by capacitor C302. The screen and plate voltages for V301 are ob-

### FUNCTIONAL CHARACTERISTICS

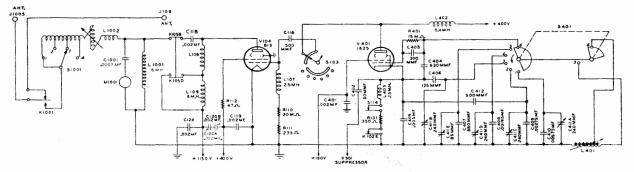



Fig. 21 Low Frequency R-F Circuits (Dwg. No. 500 1460 00C)

tained from the low voltage section of the power unit. The beat note developed between the output of the h-f or l-f oscillator and the 200 kc signal generated within V301 is coupled to the input of the speech amplifier by capacitor C305. The circuit from the output of V301 to the input of the speech amplifier is completed when the power level switch, S106, is operated to the CALIBRATE position.

#### 2.9. RADIO-FREQUENCY CIRCUITS

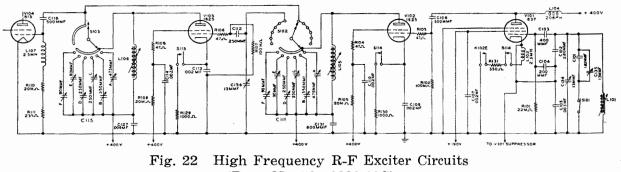
2.9.1. The Type -52286 Transmitter employs two r-f systems. One system covers the frequency range 300 kc to 600 kc and the other system the frequency range 2000 kc to 18,100 kc. Separate oscillator tubes are employed for each frequency range. The same power amplifier tube serves both systems.

### 2.9.1.1. Low-Frequency Circuits

Refer to Figure 21. The l-f oscillator V401 employs a Type 1625 beam pentode tube. This oscillator operates in the frequency range 200 kc to 1500 kc. This frequency range is covered in six bands. Refer to the oscillator calibration curves, Sect. VI, for the frequency coverage of the individual bands. A combination of capacitive and inductive grid tuning is employed. The COARSE tuning switch S401 varies the grid circuit capacity by increasing the number of padding capacitors

23

connected in the circuit as S401 is rotated toward the lowest frequency position. Switch S401 also changes the tap on the grid inductor L401 to vary the inductance in the grid circuit. Trimmer capacitors have been connected in parallel with the padding capacitors to provide means of fine adjustment of grid circuit capacity. These trimming capacitors are of the ceramic type and the capacity of each may be varied by rotating one plate with respect to the other. In spite of the small physical size, this type of capacitor provides a means of varying the capacity over a wide range. With the end-points of the frequency band set and the trimmer capacitors adjusted to give some overlap in each position of switch S401, all fine frequency adjustments within the frequency range of each switch position are made by varying the inductance of the inductor L401. The inductance of L401 is altered by adjusting the position of the core, which is actuated by the tuning screw that is accessible through the coil shield. The position of the tuning core within the inductor is determined by Control G. When l-f operation is desired and the L.F. position (13) of control "A" has been selected, the cathode circuit of the oscillator V401 is coupled through the contacts of switch S114 and resistor R131 to relay contacts K102E of the carrier control relay Operation of K102 completes the K102. cathode circuit to ground. Screen voltage for V401 is obtained by tapping the low voltage output bleeder. The output of the oscillator V401 is coupled to the grid of the power


amplifier tube V104 by S103 when Control "A" is operated to the L.F. position. Selecting l-f operation operates relay K105 which connects the plate circuit of V104 to the external loading coil. The h-f output network is completely removed from the circuit by the operation of K105. Relay contacts K105D remove the shorting connection across the plate choke, L109. Screen voltage for V104 is obtained from the low voltage output of the power unit. The full voltage of the high voltage section of the power bay is applied to the plate of V104. The external loading coil in addition to being an antenna loading coil is also the power amplifier plate tank circuit. A tapped inductor and variometer provide means of adjusting the loading and the power amplifier plate tank tuning.

2.9.1.2. Antenna keying relay K1001 in the low frequency load coil unit is connected to the keying circuit and is operated in synchronism with carrier relay K102 when the telegraph key, test key, or microphone switch is operated.

## 2.9.1.3. High-Frequency Exciter Circuits

The h-f oscillator, Figure 22, employs a beam pentode Type 837 tube, V101, in a variable frequency oscillator circuit. The oscillator operates within the frequency range 1000 kc to 1510 kc. This frequency range is covered in two bands, 1000 kc to 1225 kc, and 1225 kc to 1510 kc. The band of frequencies within which output is obtained, is dependent on the position of h-f oscillator range switch

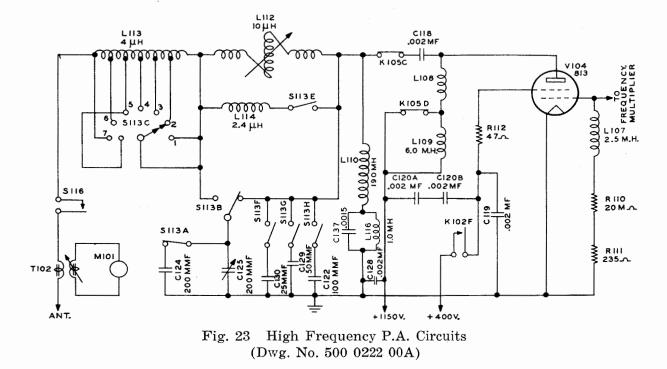
S101. Capacitors C101 and C135 are connected in the grid circuit of the h-f oscillator tube, V101, by h-f oscillator range switch S101 which is operated by Control "A". Alternate positions of Control "A" add or remove the padding capacitors C101 and C135. With Control "A" in the 2.0 mc to 2.4 mc position h-f oscillator range switch S101 is closed, giving the maximum grid circuit capacitance and consequently the lowest frequency output. Therefore, when Control "A" is in the 2.0 mc to 2.4 mc position, oscillator output is obtained in the frequency range 1000 kc to 1225 kc. When Control "A" is rotated to the 2.4 mc to 3.0 mc position, h-f oscillator range switch S101 is opened, removing capacitors C101 and C135 from the circuit, and oscillator output is obtained in the frequency range 1225 kc to 1510 kc. When Control "A" is operated to the 3.0 mc to 3.6 mc position, h-f oscillator range switch S101 is again operated to the closed position and oscillator output is obtained in the frequency range 1000 kc to 1225 kc. In the remaining nine h-f positions of Control "A", h-f oscillator range switch S101 is alternately opened and closed to give oscillator output as indicated above. Trimming capacitors C134 and C135 have been provided to aid in setting the end-points of the two frequency bands. When setting the h-f end of the 1000 kc to 1225 kc band, the grid capacity is trimmed using variable capacitor C135. When the h-f end of the 1225 kc to 1500 kc band is set, the grid tuning capacity is trimmed by using variable capacitor C134. Fine frequency adjustment within each band is made by vary-



(Dwg. No. 500 0229 00C)

ing the inductance of grid tuning inductor L101. The inductance of L101 is varied by adjusting the position of the tuning slug within the coil. The position of the tuning slug is determined by Control "B". Approximately 20 revolutions of Control "B" will cover the entire frequency range of the band upon which the oscillator is operating, with some overlap on both ends of the band. A portion of the output of the h-f oscillator V101 is fed to the suppressor grid of the CFI oscillator tube, V301, to permit the calibration of h-f oscillator tube V101 against the crystal oscillator circuit of CFI oscillator tube V301. When h-f operation has been selected, rotating Control "A" to any one of the twelve h-f positions will close the cathode circuit of h-f oscillator tube V101 through cathode choke L102, the contacts of oscillator selecting switch S114 and the cathode resistor R131, to keying relay contacts K102E. The operation of keying relay K102 completes the cathode circuit to ground. Screen voltage for h-f oscillator tube V101 is obtained by tapping the bleeder across the low voltage output of the power bay. The full voltage of the low voltage section of the power unit is applied to the plate of h-f oscillator tube V101.

2.9.1.4. To obtain r-f output in the frequency range 2000 kc to 18,100 kc, the output of the h-f oscillator must be multiplied from two to twelve times. The frequency multiplier tubes, V102 and V103, are inoperative when l-f operation has been selected. The frequency multiplier stages employ Type 1625 beam pentode tubes. The first multiplier tube may operate as a frequency doubler, tripler, or quadrupler. The number of times that the frequency of the output of the h-f oscillator tube, V101, is multiplied is dependent upon the position of first multiplier range switch S102. The position of first multiplier range switch S102 is determined by Control "A". Twelve h-f positions and one l-f position of Control "A" are available. The twelve h-f positions permit the selection of any output frequency within the frequency range 2000 kc to 18,100 kc.


The 13 positions of Control "A" and the frequency range covered by each are tabulated below:

HIGH FREQUENCY TUNING-COARSE

| Control Position "A" | Frequency Range  |  |  |
|----------------------|------------------|--|--|
| 1                    | 2.0 to 2.4 mc    |  |  |
| 2                    | 2.4 to 3.0 mc    |  |  |
| 3                    | 3.0 to 3.6 mc    |  |  |
| 4                    | 3.6 to 4.0 mc    |  |  |
| 5                    | 4.0 to 4.8 mc    |  |  |
| 6                    | 4.8 to 6.0 mc    |  |  |
| 7                    | 6.0 to 7.2 mc    |  |  |
| 8                    | 7.2 to 9.0 mc    |  |  |
| 9                    | 9.0 to 10.8 mc   |  |  |
| 10                   | 10.8 to 12.0 mc  |  |  |
| 11                   | 12.0 to 14.4 mc  |  |  |
| 12                   | 14.4 to 18.1 mc  |  |  |
| 13                   | 300 kc to 600 kc |  |  |

In the first six positions of Control "A", only the first frequency multiplier tube, V102, is in operation. First multiplier range switch S102 connects the output circuit of the first frequency multiplier tube V102 to the input circuit of the final amplifier tube V104. With Control "A" in Position 1 or 2, first multiplier tube V102 is operating as a frequency doubler. With Control "A" in Position 3 or 4, first multiplier tube V102 is operating as a frequency tripler. With Control "A" in Position 5 or 6, first multiplier tube V102 is operating as a frequency quadrupler. First multiplier range switch S102 is a twelve-position switch and connects padding capacitors across the first multiplier tube V102 plate tuning inductor L105. The capacity of the tank circuit is reduced as Control "A" is rotated in a clockwise direction, thus increasing the frequency of the output of first multiplier tube V102 as Control "A" is rotated through Positions 1 through 6. When Control "A" is rotated to Position 7, the second multiplier tube, V103 is placed in operation. First multiplier range switch S102 acts to connect the output circuit of first multiplier tube V102 to the grid circuit of second multiplier tube V103 and breaks the circuit from

### FUNCTIONAL CHARACTERISTICS



the first multiplier tube V102 output circuit to the grid circuit of final amplifier tube V104. The second multiplier tube V103 operates only as a frequency tripler. Control "A", when in Positions 7 to 12 inclusive, also operates second multiplier operating switch S115 to connect the cathode of second multiplier tube V103 through bias resistor R129 to ground. The first multiplier tube, V102, operates as a frequency doubler when Control "A" is in Position 7 or 8, as a frequency tripler when Control "A" is in Position 9 or 10, and as a frequency quadrupler when Control "A" is in Position 11 or 12. Second multiplier range switch section S103 connects the sections of padding capacitor C115 across the second multiplier tube V103 plate inductor. L106. Capacitors C111 and C115 are of the ceramic type and the capacity of each section may be adjusted by rotating one plate in respect to the other. The frequency multiplier stages are aligned by adjusting the capacity of C111 and C115 and the inductance of the plate tank inductors L105 and L106. The tuning slugs within inductors L105 and L106 are ganged with the tuning slug of

5

L101, but may be adjusted in respect to each other and with respect to the tuning slug of L101, to obtain proper tracking within each frequency band. Plate and screen voltages for the frequency multiplier tubes, V102 and V103, are furnished by the low voltage section of the power bay. The voltage for application to the tube screens is dropped from the 400 volt output of the power unit to approximately 270 volts by dropping resistors R105 and R109.

### 2.9.1.5. Power Amplifier and Output Network

The power amplifier stage, Figure 23, employs a Type 813 beam pentode tube and operates as a straight amplifier at all frequencies. When the transmitter is operating in the frequency range 300 kc to 600 kc, the output of the l-f oscillator is capacitively coupled to the grid of the power amplifier. When the transmitter is operating in the frequency range 2.0 mc to 6.0 mc the output of the first frequency multiplier tube, V102, is coupled to the grid of the power amplifier tube through first multiplier range switch S102

When the contacts and capacitor C116. transmitter is operating in the frequency range 6.0 mc to 18.1 mc the output of the second frequency multiplier tube, V103 is coupled to the grid of the final amplifier tube, V104, through second multiplier range switch S103 contacts and capacitor C116. When l-f operation has been selected, output circuit selecting relay K105 operates to connect the plate circuit of the final amplifier tube, V104, to external loading coil terminal J117. With output circuit selecting relay K105 in the normal unoperated position, the plate circuit of final amplifier tube V104 is connected to the output network that is incorporated in the transmitter proper. Screen voltage for the power amplifier is supplied by the low voltage section of the power unit. Screen voltage is applied to final amplifier tube V104 when the keying relay K102 is operated through relay contacts K102F. The operation of output circuit selecting relay K105 performs four functions, namely, (1) connects the output of the power amplifier to external loading coil terminal J117, (2) disconnects the antenna tuning and power amplifier plate tank circuit, (3) adds an addi-

tional r-f choke, L109, in series with the power amplifier feed choke L108, and (4) connects the positive 28 volt d-c lead to external relay connector J107. When output circuit selecting relay K105 is in the normal or unoperated position, the output of the power amplifier tube is coupled to the plate tank and antenna coupling network in the transmitter proper through the capacitor C118 and the r-f choke, L109, is shorted out. The full output voltage of the high voltage section of the power unit is applied to the plate of final amplifier tube V104.

2.9.1.6. The output network is designed to operate as either a pi or L section. The multisection output network switch S113 connects the capacitors and inductors in the proper positions to permit matching the power amplifier plate circuit to most aircraft antennas at any frequency within the frequency range 2000 kc to 18,100 kc.

2.9.1.7. The following table will help the operator to better understand the operation of the output network switch S113:

| Control "C" |                      |       |       |        |        |        |        |
|-------------|----------------------|-------|-------|--------|--------|--------|--------|
| Position    | S113A                | S113B | S113C | S113E  | S113F  | S113G  | S113H  |
| . 1         | in 5.                | 1     | 1     | OPEN   | OPEN   | OPEN   | OPEN   |
| - 2         | 21                   | 1     | 2     | OPEN   | OPEN   | OPEN   | OPEN   |
| 3           | of C1<br>reads       | 1     | 3     | OPEN   | OPEN   | OPEN   | OPEN   |
| 4           |                      | 1     | 4     | OPEN   | OPEN   | OPEN   | OPEN   |
| 5           | rotation<br>dial E   | 1     | 5     | OPEN   | OPEN   | OPEN   | OPEN   |
| 6           | otat<br>dial         | 1     | 6     | OPEN   | OPEN   | OPEN   | OPEN   |
| 7           |                      | 1     | 7     | OPEN   | OPEN   | OPEN   | OPEN   |
| 8           | y the<br>when<br>?.) | 2     | 7     | OPEN   | CLOSED | CLOSED | CLOSED |
| 9           | by t<br>l wł<br>ge.) | 2     | 7     | OPEN   | OPEN   | OPEN   | CLOSED |
| 10          | ·0 🔤                 | 2     | 7     | OPEN   | OPEN   | CLOSED | OPEN   |
| 11          | אמי                  | 2     | 7     | OPEN   | CLOSED | OPEN   | OPEN   |
| 12          | era<br>per           | 2     | 7     | OPEN   | OPEN   | OPEN   | OPEN   |
| 13          | 90 <u>0</u> 1-       | 2     | 7     | CLOSED | OPEN   | CLOSED | OPEN   |

2.9.1.8. The variometer, L112, is operated by Control "D". The variable capacitor C125 is operated by Control "E". The above controls are connected to the Autotune system, but may be manually operated without disturbing the positions of the Autotune stop rings if the CHANNEL selector switch S108 is placed in the MANUAL position and the Autotune system allowed to operate. The network will tune and deliver rated power to antennas 17 feet to 60 feet in length throughout the frequency range 3000 kc to 18,100 kc. If operation in the range 2000 kc to 3000 kc is desired, it may be necessary to connect the Type -481628 Antenna Shunt Capacitor (Figure 9) across the network output.

## 2.10. AUTOTUNE SYSTEM

2.10.1. The Collins Autotune System is an electrically controlled means of mechanically repositioning adjustable elements such as tap switches, variable inductors, variable capacitors, etc. Any combination of these items such as are used in transmitting equipment can be tuned to any one of eleven preselected frequencies in a period of twenty-five seconds at normal room temperature and with a normal supply voltage, by the use of the Autotune system. Provisions have also been made to permit manual tuning of the radio equipment.

2.10.2. The Autotune assembly consists of a group of positioning mechanisms, one of which is applied to each tuning element to perform the same function as a manual tuning knob. Each positioning mechanism provides precise angular setting of the tuning control to any one of eleven angular positions, each of which is readily adjustable. The settings for each frequency and for each control are entirely independent.

2.10.3. The positioning accuracy of the Autotune mechanism is of a very high order. Each setting is inherently independent of wear, backlash, alignment, supply voltage, etc. The accuracy of the settings is comparable to that of vernier manual controls. The parts are machined within close limits and although operation is most precise, there are no delicate adjustments or fragile mechanisms. Permanently lubricated bearings are used in many places and the assembly is enclosed and protected from dust and corrosion.

## 2.10.3.1. Mechanical Details

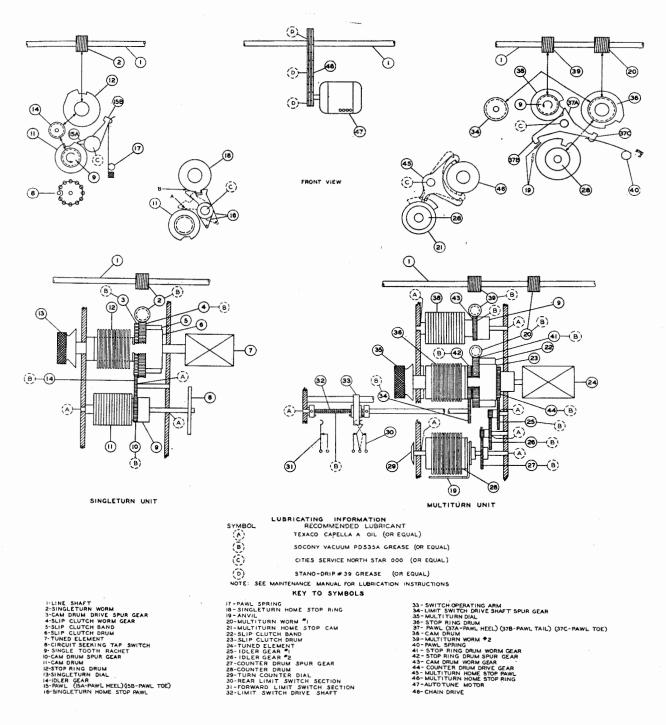
Refer to Figure 24.

1. LINE SHAFT. The line shaft extends the entire length of the Autotune casting and drives all the Autotune units. Power is applied to the shaft from the motor (47) by means of a chain drive (48).

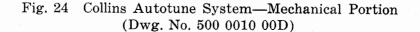
2. SINGLETURN WORM. The singleturn unit is driven by one worm on the line shaft (1).

3. CAM DRUM DRIVE SPUR GEAR. This gear is fastened directly to the slip clutch worm gear (4) and drives the cam drum spur gear (10) through the idler gear (14).

4. SLIP CLUTCH WORM GEAR. This gear is fastened to the cam drum drive spur gear (3) and drives the stop ring drum (12) through the slip clutch (6). This gear is driven by the singleturn worm (2).


5. SLIP CLUTCH BAND. This band is driven directly from the slip clutch worm gear (4) and presses against the slip clutch drum (6).

6. SLIP CLUTCH DRUM. This slip clutch drum, driven by the slip clutch band (5), is fastened to the stop ring drum shaft.


7. TUNED ELEMENT. The tuned element, such as a tap switch, a variable capacitor, or a variometer, is driven directly from the stop ring drum shaft.

8. CIRCUIT SEEKING TAP SWITCH. This switch is driven by the cam drum shaft and is phased so that the contacts are in synchronization with the cams of the cam drums (11) and (38).

# FUNCTIONAL CHARACTERISTICS



COLLINS AUTOTUNE SYSTEM MECHANICAL DETAILS



3

9. SINGLE TOOTH RATCHET. The single tooth ratchet, when engaged, drives the cam drum. These ratchets keep the cam drums of the various units synchronized.

10. CAM DRUM SPUR GEAR. The cam drum spur gear is driven from the line shaft through gears (2), (3), and (14). The spur gear drives the cam drum (11) through the single tooth ratchet (9).

11. CAM DRUM. The cam drum consists of twelve cams mounted on a shaft with adjacent cam slots staggered 30 degrees. These cams are rigidly fastened to the drum. The single tooth ratchet (9) mounts on the shaft behind the drum and drives the drum.

12. STOP RING DRUM. The stop ring drum assembly consists of twelve stop rings mounted on a shaft with spacers between the rings. The stop rings are free to rotate but the spacers are keyed to the shaft such that as one stop ring is rotated, movement of the ring will not affect the adjacent rings which may have been previously adjusted. A locking bar, on the dial, locks the stop rings when adjustment has been completed. The locking mechanism consists of a bar that drives a screw to apply pressure to the stack of stop rings and spacers, thereby, in effect, locking them.

13. SINGLETURN DIAL. The singleturn dial is fastened to the stop ring drum (12) and enables the operator to adjust the tuned element (7). The locking bar is located on the front of the dial.

14. IDLER GEAR. The idler gear transmits power from the cam drum drive spur gear (3) to the cam drum spur gear (10).

15A. PAWL HEEL. The pawl heel is held against the cam drum (11) by the pawl spring (17).

15B. PAWL TOE. The pawl toe serves to position the tuned element (7) by dropping into the stop ring slot and stopping the stop ring drum (12) after the motor (47) reverses and the pawl heel (15A) is in a cam drum slot.

16. SINGLETURN HOME STOP PAWL. This pawl limits the rotation of the singleturn unit to one revolution. The pawl is located on the same shaft as the pawl (15)and is engaged by the singleturn home stop ring (18). Referring to the mechanical portion of the Autotune, the pawl as shown in solid lines limits the rotation of the stop ring drum (12) in the counterclockwise direction. The pawl cannot pivot further because it bears against the stop ring drum (12) at point "B". The pawl as shown in dotted lines limits the rotation of the cam drum (12) in a clockwise direction. The pawl cannot pivot further in this position because it bears on the cam drum (11) at point "A".

17. PAWL SPRING. The pawl spring presses the pawl heel (15A) against the cam drum (11) and when the pawl heel (15A) drops into the cam drum slot, the pawl spring presses the pawl toe (15B) against the stop ring drum (12).

18. SINGLETURN HOME STOP RING. This ring, mounted with the other stop rings on the stop ring drum (12), is rigidly fastened to the drum. The home stop pawl (16) engages with this ring to limit the rotation of the stop ring drum (12) to one revolution.

19. ANVIL. The anvil prevents the multiturn pawl tails (37B) from becoming engaged in the counter drum (28) ring slots until after the motor (47) reverses.

20. MULTITURN WORM #1. This worm drives the stop ring drum worm gear (41).

21. MULTITURN HOME STOP CAM. This cam is mounted with the other cams on the counter drum (28). This cam actuates the home stop pawl (45) to limit the rotation of the stop ring drum (36) to twenty revolutions.

22. SLIP CLUTCH BAND. This band, driven by the worm gear (41), drives the stop ring drum (36) through the slip clutch drum (23).

23. SLIP CLUTCH. This clutch, similar to (6), is driven by the slip clutch band (22) and is fastened to the stop ring drum shaft.

24. TUNED ELEMENT. This frequency determining element is coupled directly to the stop ring drum (36).

25. IDLER GEAR #1. This gear and gear (26) link the counter drum (28) to the slip clutch spur gear (44) which is fastened to the stop ring drum (36).

26. IDLER GEAR #2. This gear and idler gear #1 (25) link the counter drum (28) to the slip clutch spur gear (44).

27. COUNTER DRUM SPUR GEAR. This gear drives the counter drum (28).

28. COUNTER DRUM. This drum consists of eleven cams with spacers between them. Like the stop ring drums (12) and (36), the spacers are keyed to the shaft so that movement of one cam will not disturb adjacent cams. A spring on the rear of the counter drum loads the stack of cams axially so that the rings will not turn too easily.

29. TURN COUNTER DIAL. This dial, numbered from 0 to 20, indicates the number of turns the Multiturn unit has made.

30. REAR LIMIT SWITCH SECTION. This switch, actuated by the operating arm (33), is operated when the Autotune is in the Home position. During the first part of the Autotune cycle, this switch opens, disabling the keying relay. As the Autotune cycle nears completion, the operating arm (33) recloses the switch, turning off the motor (47) and restoring the coil circuit of the keying relay.

31. FORWARD LIMIT SWITCH SEC-TION. This switch, normally closed, provides a holding circuit for the motor control relay. When the operating arm (33) opens the switch, the circuit seeking tap switch reverses the motor, thereby returning the Autotune to the home position, completing the cycle.

32. LIMIT SWITCH DRIVE SHAFT. This shaft is driven by the gear (34) from the line shaft (1). The screw thread on the shaft moves the switch operating arm forward or backward between the limit switch sections (30) and (31). On either end of the screw are cams which limit the travel of the switch operating arm (33).

33. SWITCH OPERATING ARM. This arm is driven by the threaded drive shaft (32) and controls limit switches (30) and (31).

34. LIMIT SWITCH DRIVE SHAFT SPUR GEAR. This gear, driven by the stop ring drum spur gear (42) drives the limit switch drive shaft (32).

35. MULTITURN DIAL. This dial with locking bar enables the operator to adjust the stop ring drum (36) to any desired operating frequency within the range of the equipment.

36. STOP RING DRUM. See (12).

37A. PAWL HEEL. The pawl heel is held against the cam drum (38) by the pawl spring (40).

37B. PAWL TAIL. The pawl tail, when allowed to engage the counter drum (28) ring slot by the movement of the anvil (19) selects the revolution in which the tuned element (24) will be positioned.

37C. PAWL TOE. The pawl toe serves to position the tuned element (24) by dropping into the stop ring slot and stopping the stop ring drum (36).

38. CAM DRUM. See (11).

39. MULTITURN WORM #2. This worm drives the cam drum (38) through the single-tooth ratchet (9).

40. PAWL SPRING. This spring is similar to (17).

41. STOP RING DRUM WORM GEAR. This gear, powered from the line shaft (1) by the worm (20), drives the stop ring drum (36) through the slip clutch (23).

42. STOP RING DRUM SPUR GEAR. This gear is fastened to the stop ring drum worm gear (41) and drives the limit switch drive shaft (32) through the gear (34). 43. CAM DRUM WORM GEAR. This gear, powered from the line shaft (1) by the worm (39), drives the cam drum (38) through the single tooth ratchet (9).

44. COUNTER DRUM DRIVE GEAR. This gear, fastened to the slip clutch drum (23) drives the counter drum (28) through the idler gears (25) and (26) and gear (27).

45. MULTITURN HOME STOP PAWL. This pawl, actuated to either position shown by the home stop cam (21), engages the projection on the home stop ring (46) to limit the rotation of the stop ring drum (36) to 20 revolutions. This pawl is mounted on the same shaft as the pawl (37).

46. MULTITURN HOME STOP RING. This ring is engaged by the pawl (45) and is mounted on the stop ring drum (36). The dotted outlines of the home stop ring (46) and pawl (45) show the stop ring drum (36) in the limit of rotation in the counterclockwise direction. The other position shows limit in the clockwise direction.

47. AUTOTUNE MOTOR. The Autotune motor is a d-c shunt wound reversible type and applies power to the line shaft (1) through the chain drive (48).

48. CHAIN DRIVE. The chain drive transmits the power from the Autotune motor (47) to the line shaft (1) and consists of a driving pinion coupled to a driven sprocket by a chain.

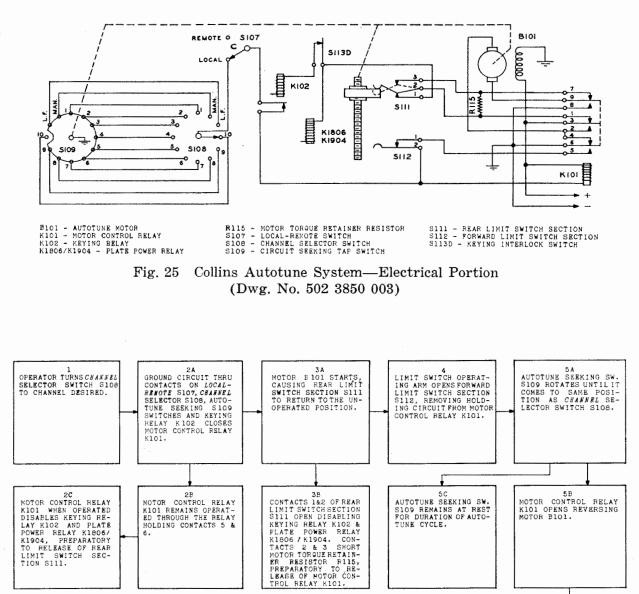
#### 2.10.3.2. Electrical Details

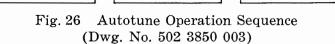
Refer to Figure 25.

B101 AUTOTUNE MOTOR. The Autotune motor operates from the 28 volt direct current power source and is controlled by the limit switch S111 and S112, and motor control relay, K101.

K101 MOTOR CONTROL RELAY. K101 is energized through the contacts of the keying relay, K102, the LOCAL-REMOTE switch, S107, the channel selector switch, S108, and the circuit seeking tap switch, S109, to ground. The holding circuit for the relay is through contacts 5 and 6 of motor control relay K101 and the front limit switch section, S112.

K102 KEYING RELAY. K102, when operated during periods of transmission, prevents false operation of the Autotune system. The energizing circuit is through the emission control circuits, that is, the TEST switch, S104, the Throttle Switch jack, J101, the MICROPHONE jack, J102, or the KEY jack, J103.


S107 LOCAL-REMOTE SWITCH. S107 permits the selection of either the panel channel selecting circuit or the remote channel selecting circuit. The switch is located on the transmitter panel and is designed for manual operation only.


S108 CHANNEL SELECTING SWITCH. S108 permits the selection of any one of ten high-frequency Autotune channels, one lowfrequency channel and "MANUAL" tuning of the transmitter. The selection of a new channel energizes motor control relay, K101, by the circuit through CHANNEL selecting switch, S108, and circuit seeking tap switch, S109, to ground.

S109 CIRCUIT SEEKING TAP SWITCH. S109 is driven by the Autotune motor, B101, through a worm and spur gear arrangement. The circuit seeking tap switch, S109, completes the circuit necessary for the operation of the motor control relay, K101. Of the twelve circuits connected to the circuit seeking tap switch, S109, eleven are grounded at all times. The switch seeks the open position and when this position is located, the operating circuit for the motor control relay is broken. Thus the motor control relay, K101, may release upon the operation of the front limit switch section S112.

S111 REAR LIMIT SWITCH SECTION. S111 is normally held in the operated position to complete the circuit necessary for the operation of the keying relay, K102. When released to the normal position by the limit switch operating arm, contacts 2 and 3 of the

# FUNCTIONAL CHARACTERISTICS





8 REAR LIMIT SWITCH SECTION SILLIS OPER+ ATED PLACING MOTOR TORQUE RETAINER RE-SISTOR RILS IN CIR-

CUIT BY OPENING CON-TACTS 2 & 3 CAUSING MOTOR B101 TO STOP.

ALL TUNING BLEMENTS ARE POSITIONED AS SWITCH OPERATING ARM MOVES TOWARD REAR LIMIT SWITCH SECTION

\$111.

6 FORWARD LIMIT SWITCH SECTION SIL2 RECLOSES AS SWITCH OPERATING ARM MOVES TOWARD REAR LIMIT SWITCH SECTION

S111.

10 AUTOTUNE CYCLE IS NOW COMPLETE. NOTOR TORQUE RETAINER RE-SISTOR R115 ALLOWS JUST ENCUGH CURRENT TO FLOW IN MOTOR E101 TO FROVIDE A POSITION RETAINING TORQUE TO THE AUTO-TUNE UNITS.

9 CONTACTS 1& 20F REAR LIMIT SWITCH SECTION S111 CLOSE INTERLOCK CIRCUIT OF KEYING RE-LAY KLO2 & PLATE POW-

ER RELAY K1806/K1904.

33

rear limit switch section, S111, complete the circuit from the power source through the contacts of the motor control relay, K101 to the Autotune motor, B101.

S112 FRONT LIMIT SWITCH SECTION. The normally closed contacts of S112 complete the holding circuit for motor control relay K101 through contacts 1 and 2 of K101. When the front limit switch section, S112, is operated by the switch operating arm, motor control relay K101 is released and the direction of rotation of the Autotune motor, B101, is reversed.

S113D KEYING INTERLOCK SWITCH. S113D is operated by the "ANTENNA TUN-ING—COARSE", Control "C", and prevents the operation of the keying relay K102, when the keying interlock switch S113D is open.

### 2.10.3.3. Autotune Operation

The Autotune system consists of one Multiturn unit and four Singleturn units (refer to Figures 24, 34, 35, 36, and 37) which are driven by a reversible motor through a line shaft. The Multiturn unit may be set up to select any dial setting in a continuous range of 7200 angular degrees (twenty turns or revolutions) of dial rotation. Note: One revolution of the dial is equal to 360 angular degrees of rotation. The Singleturn units may be set up to select any dial setting from 0 to 360 degrees of rotation (a single turn or revolution).

The drawings of the electrical and mechanical portions of the Autotune, Figures 24, 25, and 26, should be referred to in connection with the description of the operational sequence. The drawings show the Autotune in the home position.

The following sequence of operations, listed in order, represents the complete Autotune cycle:

1. The operator turns the CHANNEL selector switch, S108, to the channel desired. 2. This places a ground on the motor control relay, K101, through the circuit seeking tap switch, S109, the CHANNEL selector switch, S108, the LOCAL-REMOTE switch, S107, and the contacts of the keying relay, K102. With the keying relay, K102, in the normal or unoperated position, the motor control relay, K101, will operate and energize the Autotune motor, B101. The motor control relay, K101, is then kept energized by the circuit through contacts 5 and 6 and the limit switch section, S112. The operation of motor control relay K101 disables the keying relay, K102.

3. The motor, B101, drives the line shaft (1) in a forward direction causing all the cam drums and stop ring drums to rotate in a counterclockwise direction and the counter drum to rotate in a clockwise direction.

4. The switch operating arm (33) moves out from the rear limit switch section, S111, and moves toward the forward limit switch section, S112. Contacts #1 and #2 of the rear limit switch section, S111, open, keeping the keying relay K102 disabled when the motor control relay K101 opens.

5. The forward limit switch section S112 opens and the motor continues to run until the open segment of the circuit seeking tap switch S109 is positioned opposite the contact upon which the channel selector switch has been set by the operator.

6. As the open segment of the seeking tap switch S109 comes to the contact of the channel selected, all the cam drums are synchronized and are at the position where the pawl heels (15A) (37A) of the channel selected drop into their respective slots at the moment the cam drums are reversed.

7. Since the holding circuit has been removed, the motor control relay, K101, opens, causing the polarity of the voltage on the armature to be reversed. The motor reverses direction of rotation.

8. After the motor reverses, allowing the cam drums to engage their respective pawl

heels, the switch operating arm moves toward the rear, allowing the forward limit switch section, S112, to reclose.

9. As the motor continues to run in a reverse direction, the stop ring drum (12) of the singleturn unit rotates and when the slot on the stop ring of the channel selected is adjacent to pawl toe (15B) the pawl toe drops into the slot. The pawl toe stops the tuned element (7) at the predetermined position and the clutch slips until the Autotune cycle has been completed.

10. The counter drum (28) of the multiturn unit also rotates as the motor reverses, and when the slot of the cam on the counter drum, of the channel selected, is adjacent to the pawl tail (37B), the pawl tail drops into the slot and selects the revolution in which the tuned element (24) will be positioned.

11. As soon as the slot in the proper stop ring in this stop ring drum (36) is adjacent to the pawl toe (37C) the pawl toe drops into the slot. This stops the tuned element (24) at the preselected position and the clutch (23) slips until the Autotune cycle has been completed.

12. As the motor continues in the reverse direction, the switch operating arm moves back against the rear limit switch section, S111, stopping the motor by opening the armature circuit through contacts #2 and #3 of S111.

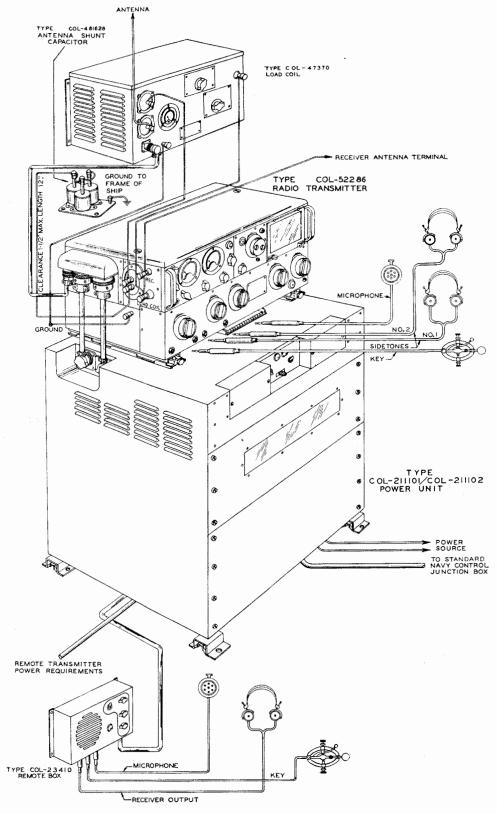
13. Contacts #2 and #3 of the rear limit switch section upon opening remove the short across the motor torque retainer resistor, R115, allowing just enough current to flow through the armature of motor, B101, to provide a position retaining torque to the Autotune units.

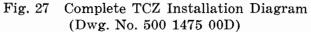
14. The contacts #1 and #2 of the rear limit switch section, S111, close, permitting the carrier to be turned on. The Autotune cycle is now complete. The carrier control circuits and Autotune control circuits are interlocked so that the Autotune will not operate when the carrier is on and the carrier cannot be turned on while the Autotune system is in operation.

### 2.11. UNIT FUNCTION

2.11.1. The order of the Autotune units from left to right is as follows: E, C, D, A, and B.

2.11.2. Proceeding in the order of unit function: The choice of oscillator, the high frequency oscillator range, the multiplier range and the Autotune seeking switch, S109, are controlled by Autotune unit "A"; the high frequency oscillator tuning by Autotune unit "B"; the coarse selection of inductance and capacity in connection with a given antenna by Autotune unit "C"; the variometer, providing a fine control of inductance, serving as tuning resonator by Autotune unit "D"; and the large variable condenser, providing a fine control of capacitance, serving as a loading control, by Autotune unit "E".


2.11.3. The high frequency oscillator, which is the unit at the extreme right of the transmitter is controlled by Autotune unit "B". At the back of the casting the multiplier coil forms are mounted, the slugs of which are attached to the same shaft as that controlling the oscillator slug. Also in the high frequency oscillator casting is mounted the switch, actuated by a star cam in the adjacent multiplier chassis, which changes the frequency range of the high frequency oscillator.


2.11.4. The multiplier chassis, the operation of which is controlled by Autotune unit "A", contains the star cam mentioned above plus a cam operated multi-contact switch which controls the high and the low frequency oscillators. The wafer switch nearest the Autotune unit controls the range of the first multiplier stage, the wafer switch farthest from the Autotune unit controls the range of the second multiplier stage and the remaining cam operates a switch that closes the cathode circuit of the second multiplier stage at the correct moment. Autotune unit "D" controls the variometer.

2.11.5. The network switch controlled by Autotune unit "C" varies the tap on the load-

ing inductance and the capacity in the circuit. In the first position all of the inductance is in the circuit and in the seventh position this inductance is completely shorted out. Between ranges seven and eight a switch operates to cut in the ceramic padding condensers, various combinations of which are used from ranges eight to thirteen. In addition, a small inductance is connected across the variometer on range thirteen by the operation of one of the switch arms. A star cam on the same network switch shaft operates a switch that incapacitates the R-F portion of the complete transmitter by preventing the operation of the keying relay, K102, between the network switch settings.

2.11.6. Autotune unit "E" controls the setting of the large variable loading capacitor, plus the operation of a switch in the network switch assembly controlled by a cam attached to the variable capacitor rotor. This switch extends the range of the large variable loading capacitor by connecting three ceramic capacitors located in the network switch assembly as padders. **III INSTALLATION** 





## INSTALLATION

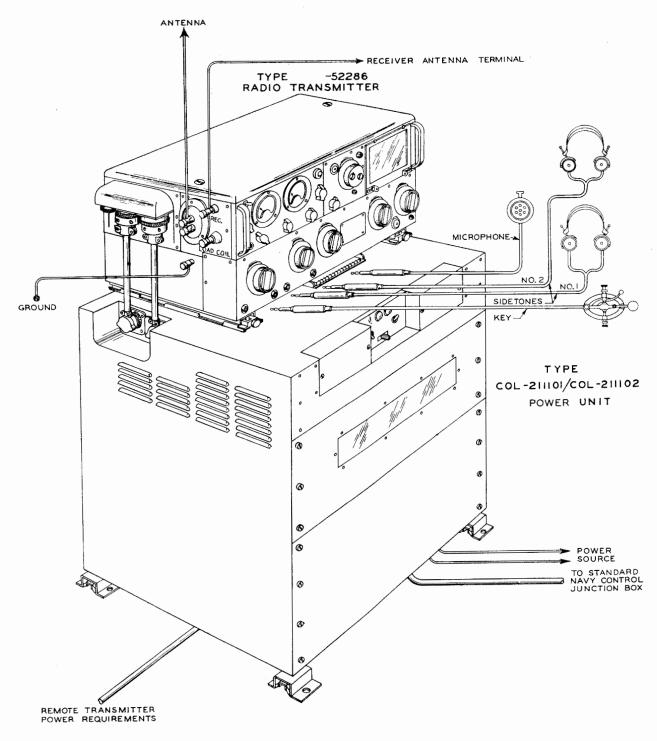



Fig. 28 Simplified TCZ Installation Diagram (Dwg. No. 500 1474 00D)

## INSTALLATION

### 3.1. UNCRATING

3.1.1. Open packing crates with care. When crates are marked with arrows to indicate upright position, remove crate covers only and lift units out carefully. Search all packing material for small packages. Inspect cables and wiring and be sure that all terminal connections are tight. Inspect each unit for loose screws and bolts. Be sure that all controls such as switches, dials, etc., work properly. All claims for damage should be filed promptly with the transportation company. If a claim for damage is to be filed, the original packing case and packing material must be preserved. with transmitter control from either the transmitter panel or from a remote position. If the fixed antenna has sufficient capacity, the Type -481628 Antenna Shunt Capacitor Unit may be omitted from the installation.

the frequency range of the transmitter and

3.2.2. The first step in preparing the transmitter for installation is to check the vacuum tubes and calibration crystal for placement in the proper sockets. The transmitting tubes and the crystal unit can be installed from the top of the transmitter unit. To remove the transmitter cabinet cover, loosen the cover hold-down screws and lift the cover upward. To remove the shield cover from the lowfrequency oscillator unit remove the six screws and lift the cover off.

#### 3.2. GENERAL

3.2.1. Figure 27 shows a complete TCZ installation with all the accessories necessary for transmission on any frequency within 3.2.3. The rectifier tubes used in the A.C. power unit are installed from the front of the power unit.

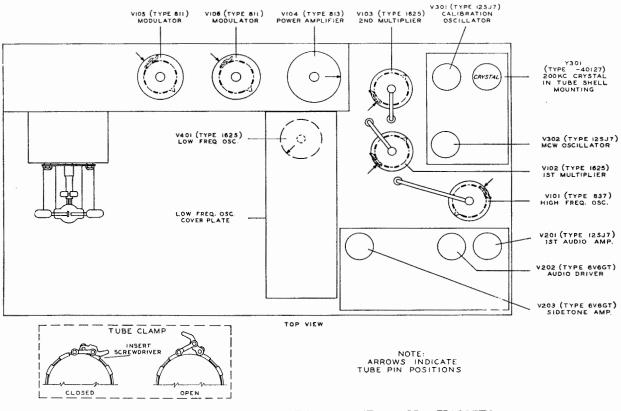



Fig. 29 Tube Placement Diagram (Dwg. No. K1627B)

### 3.3. TUBES

3.3.1. The tube placement diagram, Figure 29, consists of an outline drawing of the top view of the transmitter unit with cover removed. This drawing shows the proper location of the transmitting tubes and illustrates the operation of the tube clamps. Also refer to Figure 42.

**3.3.2.** Place all plate lead connectors firmly on the plate caps of 811, 813, 837, and 1625 tubes and lock tube clamps before replacing the oscillator shield.

Fasten the oscillator shield cover securely in position with the securing bolts.

### 3.4. CRYSTALS

3.4.1. The quartz crystal has been carefully calibrated, checked and sealed in the holder at the factory.

3.4.2. The Type -40127 Crystal Unit is designed to mount in a standard eight terminal octal tube socket.

3.4.3. Plug the crystal unit into the eight prong octal socket in the extreme rear righthand corner of the transmitter as illustrated in Figure 29.

3.4.4. Replace the cabinet cover and fasten securely in position with the clamping bolts.

### 3.5. OPERATIONAL CHECK

3.5.1. It is recommended that the complete equipment be given an operational check before installing the units in the ship. Considerable time and labor may be saved if all units are in working order before installation. Where numerous installations are to be made, it is recommended that a test bench be set up so that each equipment may be given a careful electrical check prior to installation for operation. 3.5.2. In addition to the regular units supplied with the TCZ Series Equipment, it will be necessary to have available the correct source of power for the type power unit concerned, a set of test cables with plugs and cabling of the same type as supplied with the equipment, a set of earphones (500 ohm impedance), a single button carbon or dynamic microphone similar to the microphone that is to be used in actual operation of the equipment, a telegraph key and a dummy antenna load consisting of from 3 to 5 ohms of resistance in series with approximately 100 mmf of capacity. (Note: Make certain that the microphone circuit switch, S201, is in the correct position for the type of microphone that is being used.)

3.5.3. Using the above mentioned accessories, carefully check the operation of the transmitter unit, the power unit, and the remote control unit. Check the equipment with all types of emission and both remote and panel control. Refer to Section IV for operating instructions. If any trouble is found, it will be much less difficult on the work bench than after the installation has been completed. When the equipment has been carefully checked, the installation on shipboard may be made.

#### 3.6. MOUNTING OF UNITS

#### 3.6.1. Type -52286 Transmitter Unit

3.6.1.1. The transmitter proper is equipped with detachable sliding mounting tracks. Rubber shock mounts incorporated in the mounting tracks reduce the effect of the vibration and shock encountered in normal service to a minimum.

3.6.1.2. When the power unit is securely bolted in position, the transmitter may be slid into position. The unit may be slid into position from the front of the track slide or may be lowered into the slots and then slid backward approximately two inches. When the unit has been placed, the locking knob on the front edge of the track should be rotated in a clockwise direction to the locked position.

### 3.6.2. Power Unit

3.6.2.1. The overall dimensions for the power unit with the mounting feet positioned as furnished are:  $29\frac{1}{8}$ " high,  $23\frac{1}{8}$ " wide, and  $20\frac{1}{8}$ " deep. Note that the height is  $39\frac{7}{8}$ " for the power unit and transmitter combined. The dimensions change slightly if the mounting feet are rotated 90 degrees. Refer to Figure 81 for mounting layout and dimensions. Each mounting foot has 2 holes, which are  $1\frac{3}{32}$ " in diameter, for bolting the unit to the deck.  $\frac{3}{8}$ " bolts may be used for this purpose.

3.6.2.2. Sufficient space should be left between the sides of the cabinet and surrounding objects to permit free circulation of air around and through the cabinet.

3.6.2.3. The external cable connections are made through the bottom of the power unit, near the front edge, to a terminal board that is made accessible by removing the bottom front panel.

#### 3.6.3. Rotating Machinery

3.6.3.1. The motor-generator of the AC Power Unit is mounted on a removable chassis. All power connections are made to plugs at the rear of the chassis which engage socket terminals as the chassis is inserted into the power unit. The chassis must be inserted left end first with the right end swinging into position as the unit is moved further into the cabinet. After the connectors have been completely engaged, the securing bolt may be inserted into the top of the chassis and the two thumb-nuts inserted into the front of the chassis.

3.6.3.2. The dynamotors of the DC Power Unit are mounted on removable chassis which have plug connectors that engage socket terminals in the power unit. The chassis should be shoved straight into their respective positions with the high voltage dynamotor in the right-hand position, viewed from the front, and the low voltage dynamotor in the left-hand position. The thumbnut locks should be rotated as far as they will go in the counterclockwise direction and then rotated in the clockwise direction until they secure the units into place.

# 3.6.4. Panels

3.6.4.1. The removable panels and covers on the power unit are equipped with thumb-nuts that may be secured in position by a locking wire. In installations where severe vibration is encountered, locking wires should be inserted through the thumb-nuts and through the tabs on the panels and the ends of the wires twisted.

# 3.6.5. Antenna Loading Coil

3.6.5.1. Installation drawing, Figure 83, shows the outline dimensions and the distances between centers of the mounting holes for the Antenna Loading Coil.

3.6.5.2. The loading coil may be mounted using universal mounting brackets on either the bottom or rear of the cabinet. The unit should be mounted within easy reach of the transmitter unit to facilitate the adjustment of the controls on the panel when making tuning adjustments for low-frequency operation.

3.6.5.3. The mounting centers are  $18'' \times 4.125''/4.125''$  on the bottom and rear. All mounting holes are drilled for #10 screws.

### 3.6.6. Remote Control Unit

3.6.6.1. The Type COL-23410 Control Unit should be mounted in a position convenient to the operator. Figure 82 shows the outline dimensions and mounting details of the unit.

## 3.6.7. Antenna Capacitor

3.6.7.1. If operation in the frequency range of 2000 kc to 3000 kc is contemplated and the antenna does not have sufficient capacity to permit the tuning of the output circuit within this frequency range, the Type -481628 Antenna Shunt Capacitor should be connected between the COND. terminal, just below the ANT. terminal on the left-hand end of the transmitter, and ground.

3.6.7.2. Figure 84 shows the outline dimensions and mounting details of the Type -481628 Antenna Shunt Capacitor.

3.6.7.3. The capacitor should be mounted as close as possible to the left end of the transmitter cabinet so that the lead between the COND. terminal and the capacitor unit will be as short as possible. The length of lead must not exceed 12 inches.

## 3.7. CABLES

3.7.1. The external cables used with this equipment are furnished completely assembled. The construction of the 65X-7 and 65X-8 cables is shown in Figures 85 and 86 respectively while the construction of the 65X-9 cable which furnishes relay power to the load box is shown in Figure 87. Refer to Figure 88 for details of the 65X-10 remote control cable. The cables should be installed allowing sufficient length for free action of the shock mounts. Bends in the cables should be made with a radius of not less than eight inches.

# 3.8. CONNECTIONS

After all units have been mounted, the installation may be completed by making the power, inter-unit and antenna connections. Refer to the installation diagrams, Figure 27 and Figure 28.

#### 3.8.1. Power Connections

**3.8.1.1.** Connections from the power unit to the power source should be made using two heavy cables.

**3.8.1.2.** Connections to the terminals provided in the base of the power unit should be clean and firm as there is considerable power drawn from the power source.

## 3.8.2. Inter-Unit Connections

3.8.2.1. Connections from the transmitter to the power unit are made by pre-assembled cables, see Figures 85 and 86. The 65X-7 Cable is a 27 wire cable used to transfer the control circuits from the transmitter to the base terminals of the power unit for use with the remote control box. The 65X-8 cable is a 10 wire cable used to convey the filament and plate power from the power unit to the transmitter. Each of the above cables is approximately  $10\frac{1}{2}$ " long including the connectors.

**3.8.2.2.** The 65X-7 and 65X-8 cable connectors should be inserted in their respective sockets and the locking rings tightened.

3.8.2.3. After the two-conductor cable, Figure 87, is cut to length, the two 3-terminal plugs may be fitted on the ends. The wires should be connected to pins number 2 and 3. Note that the shield is grounded on the transmitter end only. The right-angle connector is then inserted in P1001 on the load box and the straight connector in J107 on the transmitter. Tighten the locking rings on the connectors.

3.8.2.4. The 27 conductor cable should be cut to length and the 27 terminal plug fitted on one end. The other end of the cable is made up to fit the group of 27 terminals on the terminal board in the base of the power unit, these being connected straight through to J1801/J1901 thence to the 65X-7 interconnecting cable and transmitter. The 27 terminal plug should be inserted in P901 in the remote control box and the locking rings tightened.

3.8.2.5. Note: Safety wires should be inserted in the locking rings to prevent them from loosening under conditions of vibration.

## 3.8.3. Antenna Connections

**3.8.3.1.** Five terminals on the left-hand end of the transmitter cabinet provide terminals for connecting the antenna shunt capacitor, the load coil, the receiver antenna terminal and a ground to the output circuit and the contacts of the keying relay, K102.

**3.8.3.2.** A connection should be made from J1002 on the load box to the LOADING COIL terminal J117 on the transmitter and a good ground from the frame of the ship should be made to GROUND terminal J1003 on the load box. Connect terminal J1004 on the load box to FIXED ANTENNA terminal J109 on the transmitter. The Antenna is connected to ANTENNA terminal J1005 on the load coil box. Heavy stranded conductors should be used for all connections where possible and the leads should be kept short and direct.

3.8.3.3. The Type -486128 Antenna Shunt Capacitor should be connected between the lower terminal of this pair, J118, engraved COND., and ground. A heavy, stranded conductor should be used to make the connections and the lead between J118 and the capacitor should be formed to clear all metal objects by at least an inch and a half.

**3.8.3.4.** A good ground connection to the frame of the ship should be made to the terminal designated as GROUND, J113, using heavy bus or a heavy stranded conductor and keeping the lead as short as practicable.

3.8.3.5. To complete the installation connections, connect a jumper between the antenna terminal on the receiver and the RECEIVER terminal, J110, on the transmitter. 3.8.3.6. A connection for individual keying of double sidetone, utilizing auxiliary jack J105 in connection with SIDETONE jack J104, can be made by connecting jumper wires from terminals number 23 to 27 and 25 to 26 of remote jack J106.

3.8.3.7. The connection for single keyed sidetone plus a receiving disabling circuit, utilizing auxiliary jack J105 in connection with SIDETONE jack J104, can be made by connecting a jumper wire between terminal number 26 and terminal number 27 of remote jack J106. Terminal number 23 of remote jack J106 is connected to an arm of keying relay K102, terminal number 24 is connected to a normally closed contact with the arm and terminal number 25 is connected to a normally open contact with the arm. Terminals 23, 24, and 25 can be used for the receiver disabling circuit, connected as desired.

3.8.3.8. Connection for the purposes described can be made in a dummy plug used in remote jack J106 if REMOTE control of the transmitter is not desired. In case REMOTE control of the transmitter is desired it will be necessary to use a junction box with the remote cable, loosen the cable connector plug cover to bring out separate connections from the remote plug, and "jumper" the proper terminals together or splice the cable.

## 3.9. FUSES

3.9.1. All fuses for the TCZ equipment are located on either side of the power bay control panel. The fuses are protected by covers which may be removed by loosening the four thumb-nuts.

3.9.2. The fuses should be examined and their ratings checked against the table provided. It is good practice to insert each fuse as required during the initial adjustment procedure in order that any faults which may be due to errors in the interconnecting of the bays or unintentional groundings of terto check and clear each individual circuit in the proper sequence. The fuses used in this

minals may be quickly determined and also equipment with the Item Number of the fuses and the unit in which these are located are tabulated below:

| Item No. Rating Amps. Circuit |              | Circuit                  | Unit Type  |
|-------------------------------|--------------|--------------------------|------------|
| F1801                         | 30           | Power Line               | }          |
| F1802                         | 30           | Power Line               |            |
| F1803                         | 1.0          | Primary of Keying Supply |            |
| F1804                         | 15           | Motor B1801              |            |
| F1805                         | 15           | 28 v Output              | COL-211101 |
| F1806                         | 3            | 14 v Output              |            |
| F1807                         | 3            | Low Voltage Primary      |            |
| F1808                         | 15           | High Voltage Primary     | J          |
| F1901                         | 30           | Power Line               | ]          |
| F1902                         | 30           | Power Line               |            |
| F1903                         | 15           | Primary D1901            |            |
| F1904                         | 15           | Primary D1902            |            |
| F1905                         | 15           | 28 v Output              | COL-211102 |
| F1906                         | 3            | 14 v Output              |            |
| F1907                         | 1.0 (1000 v) | Low Voltage Output       |            |
| F1908                         | 1.0 (2500 v) | High Voltage Output      | J          |

4.1. OPERATION OF THIS EQUIPMENT INVOLVES THE USE OF HIGH VOLT-AGES WHICH ARE DANGEROUS TO LIFE. OPERATING PERSONNEL MUST AT ALL TIMES OBSERVE ALL SAFETY REGULATIONS. (See Page x.)

# 4.2. GENERAL

4.2.1. The TCZ Equipment may be controlled from either the panel or a remote position. However, all tuning and Autotune adjustment must be made with the LOCAL-RE-MOTE switch, S107, in the LOCAL or panel control position, the LOCAL - REMOTE switch S1801/S1901 in the LOCAL position, and the LOCAL-POWER switch, S1802/ S1902 in the ON position. Manual operation of all dials is possible without disturbing the position of the Autotune stop rings if the CHANNEL selector switch, S108, is operated to the MANUAL position and the Autotune system allowed to operate.

4.2.2. The frequency determining and tuning controls on the transmitter front panel have been assigned letter designations to aid in identifying the various dials. Reading from left to right, these controls are designated as follows: "E", "C", "D", "A", and "B".

4.2.3. The following paragraphs list the control designations together with the function of each:

## 4.2.4. Control "A"—"HIGH-FREQUENCY TUNING—COARSE"

4.2.4.1. Control "A" operates the high frequency oscillator range change switch, S101, the first multiplier range change switch, S102, the second multiplier range change switch, S103, the oscillator selector switch, S114, and the second multiplier operating switch, S115. Twelve positions of the control have been assigned to the high-frequency range, with the dial calibrated in megacycles. Position 13 transfers frequency control from the high-frequency oscillator tube, V101, to the low-frequency oscillator tube, V401.

# 4.2.5. Control "B"—"HIGH-FREQUENCY TUNING—FINE"

4.2.5.1. Control "B" determines the position of the core in the variable inductor, L101; the high-frequency oscillator grid tuning inductor. The dial is calibrated from zero to one hundred. The dial may be rotated a maximum of 20 revolutions, to give a total of 2000 dial divisions for each position of Control "A". The revolution counter, the small dial near Control "B", records the whole revolutions and the fraction of a revolution is indicated by the dial calibration. The indicating mark of dial "B" may be moved approximately forty dial divisions providing a ready means of recalibration on the high frequencies.

# 4.2.6. Control "C"—"ANTENNA TUNING— COARSE"

4.2.6.1. Control "C" operates the switch S113; the multi-circuit output network switch. Thirteen positions of the control are available. The setting of the dial for any frequency is largely dependent upon the antenna being used. In general, the frequency at which the antenna loading network will tune increases as the dial "C" reading is increased. The setting of this control is critical. If the dial is not set accurately the carrier control relay cannot be operated. An interlock switch, S113D, operated by Control "C", breaks the coil circuit of keying relay K102 during the operation of network switch S113 to prevent the burning of switch contacts. If control "C" is not set properly, the keying relay K102 will not function and the transmitter will not transmit. The network switch varies the tap on the loading inductance L113 and the capacity in the circuit. In the first position all of the inductance is in the circuit and in the seventh position this inductance is completely shorted out. Between ranges

seven and eight a switch operates to cut in the ceramic padding condensers, various combinations of which are used from ranges eight to thirteen. In addition, a small inductance is connected across the variometer on range thirteen by the operation of one of the switch arms.

# 4.2.7. Control "D"—"ANTENNA TUNING— FINE"

4.2.7.1. Control "D" operates the variometer section of the output network. As in the case of the other controls, increasing the dial reading increases the frequency at which the network will tune, that is the inductance is a maximum at zero and a minimum at 100.

### 4.2.8. Control "E"-""ANTENNA LOADING"

4.2.8.1. Control "E" operates the large variable loading capacitor C125 and the associated switch S113A. The dial has two scales, one graduated from 0 to 100 and the other from 100 to 200. When the control is in the range 0 to 100 the switch S113A is in the operated position and connects the padding capacitor C124 in parallel with C125. When the dial is in the range 100 to 200, switch S113A is open, removing the padding capacitor from the circuit. A continuous extended range of capacity is obtained by this means. Maximum capacity is at 0, minimum capacity is at 200.

## 4.2.9. Control "F"—"LOW-FREQUENCY TUNING—COARSE"

4.2.9.1. Control "F" operates S401 to control the capacity introduced into the grid circuit of V401 and controls the position of the grid inductor tap of the low-frequency oscillator tube, V401. Six positions of this control are available.

## 4.2.10. Control "G"—"LOW-FREQUENCY TUNING—FINE"

4.2.10.1. Control "G" adjusts the position of the slug in the low-frequency oscillator grid inductor. The dial is similar to Control "B". The dial is divided into 100 divisions and may be rotated twenty revolutions, giving a total of 2000 dial divisions for each setting of Control "F". A small dial, the revolution counter, shows the number of whole revolutions that the dial makes. The indicator mark may be moved approximately 40 dial divisions by operating the CORRECTOR knob.

4.2.10.2. Because only one Autotune channel position has been assigned to the frequency range 300 kc to 600 kc, the LOW-FRE-QUENCY TUNING controls are independent of the Autotune. After the oscillator frequency within the above range has been set, Control "G" should be locked in position.

4.2.10.3. The frequency determining control "G" has been provided with a movable indicating mark to permit the adjustment of the zero setting of the dial to compensate for the slight variation in oscillator circuit components and the consequent difference in calibration.

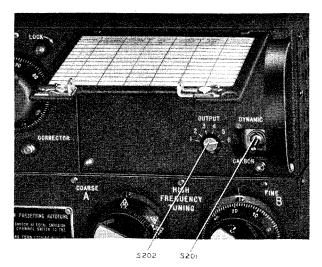



Fig. 30 Microphone Switch and Sidetone Amp. Gain Control

4.2.10.4. The microphone circuit selector switch, S201, is located beneath the tuning chart on the transmitter front panel. Before making any tuning adjustments release the chart holder clips and swing the holder upward to reveal the microphone circuit switch and the sidetone OUTPUT level control. Operate S201 to the CARBON or DYNAMIC position depending on the type of microphone to be used with the equipment.

#### 4.3. AUTOTUNE SYSTEM

4.3.1. Before proceeding with the adjustment of the r-f and audio circuits of the transmitter, Control "A", HIGH-FREQUENCY TUN-ING—COARSE, should be set to the correct position for each channel. Any combination of channels and frequencies may be set up within the limits of the high frequency bands.

4.3.2. While checking the Autotune operation and setting, the EMISSION selector switch, S110, should be placed in the VOICE position. With S110 in the VOICE position, the Autotune system may be operated without applying primary power to the plate supply primaries. Placing S110 in the VOICE position operates the voice relay, K104.

4.3.3. The following procedure is recommended for the setting of the HIGH FRE-QUENCY TUNING—COARSE control (Control "A"):

4.3.3.1. Make certain that the MICRO-PHONE, KEY and throttle Switch jack circuits are open.

4.3.3.2. Rotate the CHANNEL selector switch, S108, to Position 1.

4.3.3.3. Operate the EMISSION selector switch, S110, to the VOICE position.

**Note:** If the Autotune system begins to run, allow it to complete the cycle of operation before proceeding.

4.3.3.4. Turn the locking bar on Control "A" one-quarter revolution in the counterclockwise direction or until the two red spots appear completely on the dial.

4.3.3.5. Select the lowest frequency of the ten operating frequencies in the range 2.0 mc to 18.1 mc.

4.3.3.6. Rotate Control "A" in a counterclockwise direction 20 to 30 degrees past the contemplated setting. Note: To prevent displacement of the Autotune stop rings, and to take out all slack in the mechanism, the controls should be rotated until the desired readings are obtained and the readings noted; then the controls should be rotated 20 or 30 degrees in a counterclockwise direction before being returned to the original settings.

4.3.3.7. Twelve high frequency positions of Control "A" are available. Rotate the dial in a clockwise direction to the frequency range position that includes the frequency that has been selected for Channel 1.

4.3.3.8. Lock the Autotune stop rings in position by holding the dial in the correct position and by turning the locking bar in a clockwise direction until the red spots on the dial are covered. When the dial has been locked, check the switch position by operating Control "A" in a clockwise direction until the stop ring prevents any further rotation of the control. Check the position of the control against the indicator mark on the transmitter panel. The setting of this control is critical. The transmitter will not operate if Control "A" is not set properly.

4.3.3.9. Rotate the CHANNEL selector switch, S108, to Position 2.

4.3.3.10. When the Autotune positioning cycle has been completed, repeat Step 4.3.3.4.

4.3.3.11. Repeat Step 4.3.3.6.

4.3.3.12. Advance Control "A" to the fre-

quency range position that includes the frequency that has been selected for Channel 2.

4.3.3.13. Repeat Step 4.3.3.8.

4.3.3.14. Repeat the above procedure for the remaining eight high-frequency channel positions.

4.3.3.15. To complete the adjustment of frequency range switches, place the CHANNEL selector switch, S108, in the "L. FREQ." position.

4.3.3.16. When the Autotune cycle has been completed, repeat Step 4.3.3.4.

4.3.3.17. Repeat Step 4.3.3.6.

4.3.3.18. Rotate Control "A" in a clockwise direction to Position 13.

4.3.3.19. Repeat Step 4.3.3.8.

4.3.3.20. Upon operation of the Autotune system, Control "A" will reposition to channel selected by the CHANNEL selector switch, S108.

### 4.4. CFI ADJUSTMENT

4.4.1. Operate the power level switch, S106, to the CALIBRATE position. (Apply 1150 volts d.c. to plates of V104, V105 and V106.)

4.4.2. Insert an earphones cord plug into the SIDETONE jack, J104.

4.4.3. Operate the LOCAL-REMOTE switch. S107, to the LOCAL position.

4.4.4. Operate the EMISSION selector switch, S110 to the VOICE position.

4.4.5. While listening to the output of the earphones rotate the calibration oscillator tank, Z301, inductor tuning core until the "hiss" of the oscillator is heard, indicating that CFI oscillator tube V301 is oscillating.

4.4.6. Maximum output at the earphones may be obtained by adjustment of the tank inductor, Z301, tuning core.

## 4.5. R-F CIRCUIT ADJUSTMENT

**4.5.1.** After Control "A" has been set for the ten high-frequency channels and the low-frequency channel, the r-f circuits may be adjusted.

**Note:** Under no circumstances should the transmitter be actually operating (key down or microphone push-button closed) when the EMISSION selector switch, S110, is being operated. Such operation can cause an arc to occur and sustain between the contacts of CW relay K103.

4.5.2. The high-frequency oscillator grid inductor, the 1st multiplier plate inductor and the 2nd multiplier plate inductor tuning screws are "ganged" and are operated by Control "B", the HIGH-FREQUENCY TUN-ING—FINE control.

## 4.5.3. Oscillator Calibration

4.5.3.1. The low-frequency and high-frequency oscillators are electron coupled with no provision made for crystal control of the frequency of either oscillator. Therefore, a crystal controlled frequency standard has been incorporated in the equipment to be used for the calibration of the variable frequency oscillators.

4.5.3.2. Detailed Oscillator Calibration Tables (Tables I and II) are included in the DATA Section of this book. Calibrating frequency "check points" have been indicated in the calibration tables by printing them in heavy black type. The check points are frequencies at which audio beat notes between the output of the low-frequency oscillator or the output of the high-frequency oscillator and the harmonics of the 200 kc crystal may be heard. These "beat notes" are used for setting the dial and the movable indicator mark in adjusting for proper calibration of the oscillator. The frequency in the tables is given in kilocycles with the control positions in columns opposite the frequency. To obtain the settings given in the columns under B and G (B and G represent both dial designations and calibration table column headings), operate the control until the revolution counter indicates the proper number of full revolutions and the dial indicates the fraction of a revolution. For example: Opposite 250 kc the reading under "G" in the To obtain this setting of table is 1738. Control "G" rotate the dial until the revolution counter indicates that the control has been rotated 17 full revolutions from the zero setting and to complete the setting, rotate the control until 38 on the dial appears opposite the indicator mark.

4.5.3.3. The Calibration Tables give control settings at 2 kc intervals in the frequency range 200 kc to 500 kc, 5 kc intervals in the frequency range 500 kc to 8000 kc, and 10 kc intervals in the frequency range 8000 kc to 18,100 kc. The transmitter can also be set to frequencies between those given in the table by the following simplified method:

- 1. Find the difference between the desired frequency and the next lower frequency given in the table.
- 2. Multiply this difference by the number given in parenthesis at the right of the column of figures containing the next lower frequency.
- 3. Add the product thus obtained to the dial setting given in the table for the next lower frequency. The result is the dial setting for the desired frequency.
- Example: It is desired to work on 9653 kilocycles. The next lower frequency given in the table is 9650, and the difference is 3. The number in parenthesis at the right of the column is 0.8. Multiplying 3 by 0.8 gives 2.4. Adding 2.4 to 636, which is the dial setting for the next lower frequency, gives 638.4 as the dial setting for 9653 kilocycles.

4.5.3.4. Oscillator Calibration Curves for all frequency bands in both the low-frequency and the high-frequency ranges are included in the DATA Section of this book.

### 4.5.4. Low-Frequency Oscillator Calibrations

**4.5.4.1.** The following procedure is recommended for the calibration of the low-frequency oscillator:

1. Having chosen an operating frequency, refer to TABLE I and locate the check point that is nearest the chosen frequency in the FREQUENCY column.

2. Operate Control "F" to the position that is given in the column under F, opposite the check point that has been chosen.

3. Rotate Control "G" to the position indicated in TABLE I in the column under G.

4. Insert an earphones cord plug into the SIDETONE jack, J104.

5. Operate the LOCAL-REMOTE switch, S107, to the LOCAL position.

6. Select the L. FREQ. Channel with the CHANNEL selector switch, S108.

7. Rotate the EMISSION selector switch, S110, to the VOICE position.

8. When the Autotune positioning cycle has been completed, check the position of Control "A". The control should stop in Position 13.

9. If Control "A" stops in a position other than Position 13, unlock the Autotune stop rings on Control "A" by rotating the locking bar in a counterclockwise direction and operate the control to Position 13.

10. Operate the power level switch, S106, to the CALIBRATE position. (Applies 1150 volts d.c. to plates of V104, V105, and V106.)

11. While listening in the earphones, ro-

tate Control "G" about the point at which it has been set and adjust the control until zero beat is obtained between the two signals, that is, zero beat between the output of the low-frequency oscillator and the output of the calibration oscillator.

12. With Control "G" set to exact zero beat, and referring to TABLE I, adjust the indicator mark by operating the CORREC-TOR knob until the dial reading corresponds to the check point reading given in the Column under "G".

13. Turn Control "G" to the dial setting given in the table for the desired frequency. Tighten the dial lock. If the operating frequency desired is between those given in the table, refer to paragraph 4.5.3.3. for instructions to obtain the correct dial setting.

14. After the calibration has been checked as described above, the dial setting for the desired operating frequency may be obtained from the calibration curves in the DATA Section. However, please note: The accuracy of the dial settings obtained from the Tuning Curves is largely dependent upon the operating frequency chosen. The readings obtained at the lower frequencies will be much more accurate than those obtained for the higher frequencies.

Having completed the calibration and adjustment of the oscillator circuit, the r-f circuit adjustment may be completed by following the procedure outlined below.

4.5.5. Low-Frequency Output Tuning

4.5.5.1. When operating in the frequency range 300 kc to 600 kc the output circuit of the low-frequency oscillator is coupled directly to the power amplifier grid. Neither of the frequency multiplier stages is used. The high frequency output network, used as a combination of power amplifier plate tank and antenna coupling circuits, is also inoperative during periods of low-frequency operation. The output circuit selecting relay, K105, operates to disconnect the power amplifier plate from the network, to connect an additional choke, L109, in the power amplifier plate feed lead, to connect the power amplifier plate to the LOAD COIL terminal, J117, on the transmitter, and to connect 28 v. d.c. to the keying relay, K1001, in the L-F Load Coil Unit. Thus the antenna loading coil serves as the power amplifier plate tank and antenna coupling circuit, to replace the combination "L" and "pi" section in the transmitter proper, when output is desired in the frequency range 300 kc to 600 kc.

4.5.5.2. It is important that range 8 on Control "C" be selected when the transmitter is to be operated in the range 300 kc to 600 kc, since this setting provides the least reaction of the transmitter network to operation within these frequencies. It is possible to choose a position that dissipates power in the static drain choke, L110, when certain low frequencies are being used.

#### 1. Frequency Range 300 Kc to 600 Kc

With the antenna connected to the AN-TENNA terminal on the Type COL-47370 Antenna Loading Coil and a ground connected to the GROUND terminal, the following adjustment procedure is recommended when output is desired in the frequency range 300 kc to 600 kc:

(a) Set the range switch, S1001, operated by Control "M" on the panel of the Type COL-47370 Antenna Loading Coil Unit, to the position indicated as covering the frequency upon which operation is desired. Note: In order to prevent doubling of frequency in the output circuit the resonant point lowest in frequency should be found. The frequency at which the circuit will tune increases as the range control is rotated in a clockwise direction.

(b) Place the metered circuit selector switch, S105, in the P.A. PLATE position.

(c) Place the power level switch, S106, in the TUNE position.

(d) Rotate the CHANNEL selector switch, S108, to the L. FREQ. position and the EMIS-SION selector switch, S110, to the CW position.

(e) Operate the TEST switch, S104, to the "on" position. (Applies 1150 volts d.c. plate potential.)

(f) Immediately attempt to resonate the power amplifier plate tank circuit by rotating Control "M" for minimum P.A. PLATE meter reading dip as indicated by meter M102 on the transmitter panel. Note: This meter registers only relative values and not actual values. A percentage scale 0-200 is provided for convenience.

(g) Try several positions of Control "M", repeating Step (f), until the position is found that gives the maximum P.A. PLATE meter reading, provided the reading obtained is not beyond the CW area on the meter scale with power level switch S106 in the OPERATE position. Resonance is indicated as in Step (f) and the output frequency indicates fundamental tuning of the output circuit.

(h) Release the TEST switch, S104, and place the power level switch, S106, in the OPERATE position.

(i) Place the metered circuit selector switch, S105, in the P.A. GRID position.

(j) Return the TEST switch, S104, to the "on" position and check the P.A. GRID meter reading. (Applies 1150 volts d.c. plate potential.)

The meter, M102, should indicate within the yellow shaded portion of the meter scale under P.A. GRID.

(k) Assuming that normal grid current is flowing, operate the metered circuit selector switch, S105, to the P.A. PLATE position.

(1) Check to make certain that the power amplifier plate tank circuit is tuned to the point that gives the minimum P.A. PLATE current by rotating Control "N" about the original setting.

(m) Note: The actual value of P.A. Plate meter reading is of little importance, and will vary considerably with frequency. **Do not** detune any of the dials to make the meter read in the CW area on the meter scale. The transmitter is operated below maximum loading on some low frequencies in order to reduce flashover troubles in the loading coil.

(n) When the proper positions of the controls have been established, lock the variometer, L1002, Control "N" in the position to prevent detuning of the circuit by vibration or shock.

#### 4.5.6. High-Frequency Oscillator Calibration

The following procedure is recommended for the calibration of the high-frequency oscillator:

1. Having chosen an operating frequency, refer to TABLE II in the DATA Section, and obtain the control settings for the check point that is nearest the chosen frequency.

2. Operate Control "A" to the position that is given in the column under "A" opposite the check point.

3. Insert an earphones cord plug into the SIDETONE output jack, J104.

4. Operate the LOCAL-REMOTE switch on the transmitter panel to the LOCAL position.

5. Operate the CHANNEL selector switch to the channel position that has been selected for the particular operating frequency.

6. Rotate the EMISSION selector switch, S110, to the VOICE position.

7. When the Autotune positioning cycle has been completed, check the position of Control "A" to make certain that the control is in the correct position for the operating frequency that has been chosen.

8. Refer to TABLE II and obtain the dial

setting of the nearest check point for Control "B" under the column headed "B".

9. Operate Control "B" to the setting obtained from the table.

10. Rotate the power level switch, S106, to the CALIBRATE position. (Applies 1150 volts d.c. to plates of V104, V105 and V106.)

11. While listening in the earphones, rotate Control "B" about the check point setting. Set the control so that zero beat is obtained between the output of the high frequency oscillator and a harmonic of the crystal calibration oscillator.

12. With Control "B" set as described above, adjust the CORRECTOR knob so that the setting of the control corresponds to the dial setting given in TABLE II for the check point that was chosen.

13. Refer to TABLE II and obtain the correct setting of Control "B" for the desired operating frequency. If the operating frequency desired is between those given in the table, refer to paragraph 4.5.3.3. for instructions to obtain the correct dial setting.

14. Set Control "B" to the reading obtained in 13 above by approaching the setting in a clockwise direction. Lock the Autotune stop rings by rotating the dials 20 or 30 degrees counterclockwise from the correct setting, approach clockwise to the correct setting and operate the locking bar. Now rotate Control "B" in a clockwise direction until the stop ring prevents further rotation. Check the dial reading with the setting previously obtained.

15. The dial setting for the desired operating frequency may also be obtained from the calibration curves in the DATA Section. However, please note; The accuracy of the dial setting obtained from the Tuning Curves is largely dependent upon the operating frequency chosen. The readings obtained at the lower frequencies will be more accurate than those obtained for the higher frequencies.

#### 4.5.7. High-Frequency Output Tuning

The following procedure is recommended for the adjustment of the output network and power amplifier plate tank circuit for operation in the frequency range 2.0 mc to 18.1 mc:

1. Place the power level switch, S106, in the TUNE position.

2. Rotate the CHANNEL selector switch, S108, to Position 1.

3. Rotate the EMISSION selector switch, S110, to the CW position. (Applies 1150 volts d.c. plate potential.)

4. When the Autotune cycle has been completed, loosen the Autotune locking bars on Controls "C", "D", and "E", the ANTEN-NA TUNING and ANTENNA LOADING controls.

5. From Table III in the DATA Section of this manual find the approximate setting of Control "C" for a given antenna and operating frequency.

Control "C" decreases output network inductance in steps from position 1 to 7 inclusive. In these positions the network is connected as an "L" section.

Control "C" decreases output network capacity in steps from positions 8 to 12 inclusive. In these positions the network is connected as a "pi" section.

6. Place the metered circuit selector switch, S105, in the P.A. PLATE position.

7. Operate the TEST switch, S104, to the "on" position. (Applies 1150 volts d.c. plate potential.)

8. For practical purposes, Control "E", which operates variable capacitor C125, may be considered the fine ANTENNA LOAD-ING control throughout the range of the output network. The approximate setting of Control "E" may be found, on a given setting of Control "C" in the positions 1 to 7 inclusive, by rotating it until a sharp drop in the reading of P.A. PLATE meter M102 is noted indicating resonance.

9. The approximate setting of Control "E", on a given setting of Control "C" in the positions 8 to 12 inclusive, may be found by rotating "D", the ANTENNA TUNING — FINE control which operates variometer L112, throughout its range on quarter-turn settings of Control "E" until a sharp drop in the reading of P.A. PLATE meter M102 is noted indicating resonance.

10. When resonance has been established, release the TEST switch, S104.

11. Place the metered circuit selector switch, S105, in the P.A. GRID position.

12. Place the power level switch, S106, in the OPERATE position.

13. Operate the TEST switch, S104, to the "on" position.

14. Check the P.A. GRID meter reading as indicated on meter M102.

The meter should indicate within the yellow shaded portion of the meter scale under P.A. GRID.

If the power amplifier grid current is much below the above value, some adjustment of the 1st frequency multiplier plate tank inductor padding condenser or tuning slug will be necessary. The alignment procedure is explained in detail in the MAINTENANCE Section.

15. Assuming that the meter indicates sufficient power amplifier grid drive, return the metered circuit selector switch, S105, to the P.A. PLATE position.

16. Using Control "E", load the power amplifier until the P.A. PLATE meter reading is within the range designated as CW on the scale of meter M102 maintaining resonance of the circuit by rotating tuning Control "D". To increase loading, decrease the reading of Control "E" on ranges 1 to 7 inclusive of Control "C" and increase the read-

ing of Control "E" on ranges 8 to 12 inclusive of Control "C".

It should always be kept in mind that the final result should be the maximum antenna current with rated P.A. PLATE meter reading at resonance.

Note: In order to prevent doubling of frequency in the output circuit the resonant point lowest in frequency should be found.

The frequency at which the circuit will tune increases as Control "C" is rotated to progressively higher dial readings.

17. When the above adjustments have been completed release the TEST switch and lock Controls "C", "D", and "E". Note: Care should be exercised when locking Controls "D" and "E" to prevent displacement of the Autotune stop rings. To set the stop rings, rotate Controls "D" and "E" until the desired meter readings are obtained, note the dial readings, release the TEST switch, rotate the controls 20 or 30 degrees in a counterclockwise direction and return the controls to the original settings before tightening the locking bars.

18. Having completed all the circuit adjustments necessary for operation on Channel 1, operate the CHANNEL selector switch, S108, to Position 2.

19. When the Autotune cycle has been completed, release the Autotune stop rings by rotating the locking bars on Controls "C", "D", and "E", one-fourth turn in a counter-clockwise direction.

20. Proceed with the adjustment, repeating the procedure outlined under Steps 5 through 17 in the above discussion.

The r-f circuit adjustment should be continued for the remaining eight high-frequency channels, following the procedure as outlined for Channels 1 and 2 and keeping in mind that the final result should be the maximum antenna current with the rated P.A. PLATE meter reading at resonance.

### 4.6. R-F AMMETER

4.6.1. The r-f ammeter, M101, is calibrated on 2000 kc at the factory using a "dummy" antenna load comprising 10 ohms and 100 micromicrofarads. The calibration will hold approximately throughout the range of the transmitter. However, since the reading of this meter is dependent upon the impedance of the antenna being used and the operating frequency, the reading will be high when the antenna presents a low impedance and low when the antenna presents a high impedance.

## 4.7. AUDIO ADJUSTMENT

4.7.1. When the adjustment of the r-f circuits has been completed the transmitter is ready for operation with VOICE, CW, or MCW emission. All r-f circuit adjustments should be made with the EMISSION selector switch, S110, in the CW position. With adjustments made to give a P.A. PLATE reading within the CW portion of the meter scale, no further adjustments should be made when using the transmitter for voice or MCW emission. The value of power amplifier plate current may deviate considerably from the original CW condition but will stay well within the rating of the power amplifier tube.

#### 4.7.2. Sidetone Amplifier Adjustment

**4.7.2.1.** The only adjustment available in the audio system is the adjustment of the power output of the sidetone amplifier. The control, S202, is located beneath the tuning chart on the transmitter front panel. The chart holder is hinged and may be swung upward if the clamps on the lower edge of the holder are released.

4.7.2.2. Six positions of the OUTPUT control, S202, permit the adjustment of the output available at the SIDETONE jack, J104 from 0.5 volt measured across 125 ohms in Position 1, to 9.0 volts measured across 125 ohms in Position 5, or 18.0 volts measured across 2000 ohms in Position 6.

| 4.7.2.3.  | $\mathbf{The}$ | appr  | oxim | ate | output   | voltages | 5 |
|-----------|----------------|-------|------|-----|----------|----------|---|
| available | with           | the   | vari | ous | position | s of the | ė |
| OUTPUT    | [ swit         | ch, S | 202, | are | tabulate | d below: | : |

| Switch<br>Position | Output<br>Voltage | Load<br>Impedance<br>(Test) | Maximum<br>Source<br>Impedance |
|--------------------|-------------------|-----------------------------|--------------------------------|
| 1                  | 0.5  volt         | 125  ohms                   | 5  ohms                        |
| 2                  | 1.0  volt         | 125  ohms                   | 5  ohms                        |
| 3                  | 2.0  volts        | 125  ohms                   | 5  ohms                        |
| 4                  | 4.0  volts        | 125  ohms                   | 15  ohms                       |
| 5                  | 9.0  volts        | 125  ohms                   | $25~\mathrm{ohms}$             |
| 6                  | 18.0  volts       | 2000  ohms                  | 100 ohms                       |

4.7.2.4. The following procedure is recommended for the adjustment of the sidetone amplifier output:

1. Insert the earphones cord plug into the SIDETONE jack, J104.

2. Place the sidetone amplifier OUTPUT control (beneath chart holder) in Position 1.

3. Place the LOCAL-REMOTE switch, S107, in the LOCAL position.

4. Rotate the EMISSION selector switch, S110, to the CW position. (Applies 1150 volts d.c. plate potential.)

5. Operate the TEST switch, S104, to the "on" position.

6. While listening to the sidetone in the earphones, advance the OUTPUT control one step at a time until the desired output signal level is obtained.

7. Release the TEST switch, S104.

To further check the operation and adjustment of the sidetone amplifier circuit, proceed as follows:

8. Rotate the EMISSION selector switch, S110, to the VOICE position.

9. Insert a microphone cord plug into the MICROPHONE jack, J102.

10. Place the microphone circuit selector switch, S201, (beneath chart holder) in the position that corresponds to the type of microphone being used. 11. Press the push-to-talk switch on the microphone, (applies 1150 volts d.c. plate potential) and with the earphones in place speak into the microphone at a normal level.

12. The level of the voice signal heard in the earphones should be enough above the level of the normal voice to allow the operator to check the operation of the speech amplifier.

13. If the gain of the amplifier is not high enough to permit the monitoring of the voice signal, the sidetone amplifier OUTPUT control should be advanced one step, or as many steps as are necessary to give satisfactory amplifier output.

14. Release the microphone push-to-talk switch.

## 4.7.3. MCW Oscillator Adjustment

4.7.3.1. The percentage of modulation of the r-f carrier when using MCW emission is proportional to the voltage that is developed across resistor R310. The percentage of modulation may be regulated by varying the resistance of R310. The rheostat has been carefully adjusted at the factory and should not be tampered with unless it has been proven that adjustment is necessary. Resistor R310 is properly adjusted when the r-f carrier is modulated 70%.

4.7.3.2. All adjustments should be made with full voltage on the plates of the power amplifier and modulator tubes. The following procedure is recommended for the adjustment of the rheostat, R310:

1. Remove the transmitter cabinet cover, the Autotune cover plate and the wraparound section of the right-hand end of the transmitter cabinet.

2. Remove the snap button from the side of the chassis of the MCW-CFI Unit.

3. Operate the EMISSION selector switch to the MCW position.

4. Operate the LOCAL-REMOTE switch to the LOCAL position.

5. Couple an oscilloscope to the output of the transmitter.

6. Assuming that all r-f adjustments have been completed, operate the TEST switch and adjust resistor R310 with a screwdriver until the picture on the oscilloscope screen indicates 70% modulation.

## 4.8. ROUTINE OPERATION PROCEDURE

#### 4.8.1. Voice Operation-Panel Control

4.8.1.1. Place LOCAL-REMOTE switch S1801/S1901 in the LOCAL position.

4.8.1.2. Place the EMERGENCY switch S1803/S1903 in the NORMAL position.

4.8.1.3. Place the LOCAL-POWER switch S1802/S1902 in the ON position.

4.8.1.4. Place LOCAL-REMOTE switch, S107, in the LOCAL position.

4.8.1.5. Insert the microphone cord plug into the MICROPHONE jack, J102.

4.8.1.6. Check microphone switch, S201, beneath tuning chart, to make sure that the circuit selected is correct for the type of microphone to be used (carbon or dynamic).

4.8.1.7. Select the Autotune channel, corresponding to the frequency upon which output is desired, with the CHANNEL selector switch, S108.

4.8.1.8. Place the EMISSION selector switch, S110, in the VOICE position.

4.8.1.9. Place the power level switch, S106, in the OPERATE position.

4.8.1.10. Check filament voltage by rotating the metered circuit selector switch, S105, to the BATTERY VOLTAGE position.

### OPERATION

4.8.1.11. Normal filament voltage is indicated when the needle of M102 deflects and comes to rest within the solid yellow portion of the scale under BATTERY.

4.8.1.12. Rotate the metered circuit selector switch, S105, to the P.A. PLATE position.

4.8.1.13. Press the push-to-talk button on the microphone. (Applies 1150 volts d.c. plate potential.)

4.8.1.14. Check the P.A. PLATE meter reading.

4.8.1.15. When S105 is in the P.A. PLATE position, the meter indicates the sum of the power amplifier plate and modulator static plate currents. Therefore the zero signal P.A. PLATE meter reading will be slightly higher than when operating with CW emission.

**4.8.1.16.** If the above readings appear to be normal the transmitter may be operated with voice emission, the carrier being controlled by the push-to-talk button on the microphone.

## 4.8.2. CW Operation-Panel Control

4.8.2.1. Place the LOCAL-REMOTE switch S1801/S1901 in the LOCAL position.

**4.8.2.2.** Place the EMERGENCY switch S1803/S1903 in the NORMAL position.

4.8.2.3. Place the LOCAL-POWER switch S1802/S1902 in the ON position.

4.8.2.4. Place the LOCAL-REMOTE switch, S107, in the LOCAL position.

4.8.2.5. Insert the telegraph key cord plug in the KEY jack, J103.

**4.8.2.6.** Select the Autotune channel corresponding to the frequency upon which transmission is desired, using the CHANNEL selector switch, S108.

**4.8.2.7.** Place the EMISSION selector switch, S110, in the CW position. (Applies 1150 volts d.c. plate potential.)

4.8.2.8. Check the filament voltage by placing the metered circuit selector switch, S105, in the BATTERY VOLTAGE position.

4.8.2.9. Normal filament voltage is indicated if the meter needle comes to rest within the solid yellow portion of the meter scale under BATTERY.

4.8.2.10. Rotate S105 to the P.A. PLATE position.

4.8.2.11. Close the telegraph key and check the P.A. PLATE meter reading. The meter M102 should indicate within the range of the yellow shaded portion of the scale designated as CW.

4.8.2.12. If the meter indicates normal operating conditions, operation with CW emission may be continued.

## 4.8.3. MCW Operation-Panel Control

4.8.3.1. Place the LOCAL-REMOTE switch S1801/S1901 in the LOCAL position.

4.8.3.2. Place the EMERGENCY switch S1803/S1903 in the NORMAL position.

4.8.3.3. Place the LOCAL-POWER switch S1802/S1902 in the ON position.

4.8.3.4. Place the LOCAL-REMOTE switch, S107, in the LOCAL position.

4.8.3.5. Insert the telegraph key cord plug into the KEY jack, J103.

4.8.3.6. Using the CHANNEL selector switch, S108, select the Autotune channel corresponding to the frequency upon which transmission is desired.

4.8.3.7. Place the EMISSION selector switch, S110, in the MCW position. (Applies 1150 volts d.c. plate potential.)

#### OPERATION

4.8.3.8. Check the filament voltage by rotating the metered circuit selector switch, S105, to the BATTERY VOLTAGE position.

4.8.3.9. Normal filament voltage is indicated when the needle of meter, M102, comes to rest within the solid yellow portion of the meter scale under BATTERY.

**4.8.3.10.** Rotate S105 to the P.A. PLATE position.

4.8.3.11. Close the telegraph key and check the P.A. PLATE meter reading.

4.8.3.12. When operating with MCW emission the meter, M102, indicates both power amplifier and modulator plate current. Therefore the meter reading will be considerably greater than for CW emission. A normal reading is indicated when the meter needle comes to rest within the solid yellow portion of the meter scale designated as MCW.

4.8.3.13. If meter readings appear to be normal, operation may be continued.

#### 4.8.4. Operation—Remote Control Using the Type COL-23410 Control Unit

4.8.4.1. Place LOCAL-REMOTE switch S1801/S1901 in the LOCAL position.

4.8.4.2. Place the EMERGENCY switch S1803/S1903 in the NORMAL position.

4.8.4.3. Place the LOCAL-POWER switch S1802/S1902 in the ON position.

4.8.4.4. Place the LOCAL-REMOTE switch,

S107, on the transmitter front panel, in the REMOTE position.

4.8.4.5. If voice operation is contemplated insert the microphone cord plug into the microphone jack, J903, located near the control cable connector plug on the side of the Type COL-23410 Remote Control Unit.

4.8.4.6. Select the Autotune channel corresponding to the frequency upon which transmission is desired, using the CHANNEL selector switch, S902.

4.8.4.7. Select the type of emission desired with the emission selector switch, S903. (If CW or MCW emission is selected, operating S903 will apply 1150 volts d.c. plate potential.)

**4.8.4.8.** Operate the push-to-talk button on the microphone (applies 1150 volts d.c. plate potential) if voice emission has been selected and the key if CW or MCW emission has been selected.

#### 4.8.5. Operation—Remote Control Using Navy Radiophone Control Circuits

4.8.5.1. Place LOCAL-REMOTE switch S1801/S1901 in the REMOTE position.

4.8.5.2. Place the EMERGENCY switch S1803/S1903 in the NORMAL position.

4.8.5.3. Place the LOCAL-POWER switch S1802/S1902 in the OFF position.

4.8.5.4. Power and emission can now be controlled from remote positions by Navy Radiophone Circuits.

#### V MAINTENANCE

5.1. This radio equipment has been constructed of materials considered to be the best obtainable for the purpose and has been carefully inspected and adjusted at the factory to reduce maintenance to a minimum. However, a certain amount of checking and servicing will be necessary to maintain efficient and dependable operation.

5.2. The following sections have been compiled to aid in the checking and servicing of the equipment.

#### 5.3. OPERATIONAL CHECK

5.3.1. The following operational checks will indicate whether or not the transmitter is operating normally.

5.3.1.1. Rotate the EMISSION selector switch, S110, to the CW position (applies 1150 volts d.c. plate potential) and after allowing the tubes sufficient time to warm up, operate the TEST switch, S104, to the "on" position.

5.3.1.2. Check the P.A. PLATE meter reading.

5.3.1.3. Release the TEST switch and operate S110 to the VOICE position.

5.3.1.4. Insert a microphone cord plug into the MICROPHONE jack, J102, press the push-to-talk switch (applies 1150 volts plate potential) and while speaking into the microphone observe the P.A. PLATE meter needle "kick." Check the position of the microphone switch, S201, to make certain that it corresponds with the type of microphone used.

5.3.1.5. Check the keying on CW and MCW by listening to the output of the sidetone amplifier and to the keyed signal on an adjacent receiver.

5.3.1.6. Check the keying using LOCAL control and an external key. Also check keying with REMOTE control.

5.3.2. If the above checks indicate normal transmitter operation, no further tests will be necessary.

5.3.3. If transmitter operation does not appear to be normal, check the (1) position of the power level switch, S106, (2) position of the EMISSION selector switch, S110, (3) position of the LOCAL-REMOTE switch, S107, (4) position of the metered circuit selector switch, S105, (5) fuses, (6) power bay operation, (7) filament voltage, (8) cable connector plugs, and (9) antenna and ground connections.

5.3.4. If the above checks fail to reveal the cause of erratic operation or transmitter failure, further trouble shooting will be necessary. The trouble shooting procedure together with the symptoms of and cures for some of the more common causes of erratic operation or transmitter failure is outlined in this section of this book under SERVIC-ING.

#### 5.4. ROUTINE CHECK

5.4.1. To assure efficient and dependable service, periodic operational checks should be made. The inspection and check should be made at intervals of approximately one month.

**5.4.2.** The following routine checks are recommended, others may suggest themselves to the maintenance personnel.

#### 5.4.2.1. Equipment Inspection

1. Check all interconnecting cables and wires. If necessary hand-tighten all cable plug locking rings. Inspect cables for breaks and loose wires at the plugs.

2. Check the connections to the receiver, antenna, ground and loading coil, making certain that the spring connector terminals are making good contact with the wires.

3. Remove the end bells from the motor generators or dynamotors and, using com-

pressed air, blow out all carbon and copper dust from the commutator and surrounding surfaces. Inspect the brushes for wear and replace them if the carbons are shorter than 1/4 inch. No lubrication of the dynamotor bearings is necessary. The bearings are sealed for the life of the unit.

4. All relays should be carefully checked at regular intervals. Check the contacts for proper alignment, pitting and corrosion. Use a burnishing tool to clean the contacts never use sandpaper or emery cloth.

#### 5.4.2.2. Operational Checks

To check the operation of the Autotune system, proceed as follows:

1. Place the power level switch, S106, in the TUNE position and the EMISSION selector switch, S110, in the VOICE position.

2. Beginning with Channel 1 operate the CHANNEL selector switch, S108, to each of the ten high-frequency channels. As each Autotune cycle is completed, check the position of the controls against their original settings.

3. Having checked the positioning of the ten high-frequency channels, operate CHAN-NEL selector switch S108 to the L. FREQ. position.

4. When the Autotune cycle has been completed Control "A" should come to rest in Position 13.

5. Assuming that the Autotune positions correctly for the eleven channel positions, operate S108 to the MANUAL position.

6. When the Autotune cycle has been completed, check the operation of all controls. Each control should move freely to permit transmitter tuning without disturbing the positions of the Autotune stop rings.

To check the operation of the power control, r-f and audio circuits, proceed as follows: 7. Operate the LOCAL-REMOTE switch S107 to the LOCAL position and the EMIS-SION selector switch, S110, to the CW position. (Applies 1150 volts d.c. plate potential.)

8. Rotate the metered circuit selector switch, S105, to the P.A. PLATE position.

9. Operate the TEST switch, S104, to the "on" position.

10. Check the power amplifier plate current on meter M102. The meter should indicate current within the CW portion of the meter scale.

If M102 does not indicate a P.A. PLATE meter reading within the CW portion of the scale some adjustment of the output loading may be necessary. Before attempting to readjust the output circuit for proper loading for the particular channel upon which the transmitter is operating, check the operation on the other Autotune channels by operating the CHANNEL selector switch S108.

11. If all meter readings are off in the same direction, that is, if all readings are too high or if all readings are too low, check the supply voltage.

If the supply voltage is much higher or lower than the voltage was at the time that the tuning adjustments were made and the Autotune stop rings locked, the power amplifier plate meter reading will be somewhat different than the original reading. No adjustment of the output tuning controls should be attempted if the tuning adjustments were originally made with normal supply voltage.

12. Release the TEST switch and insert a key cord plug into the KEY jack, J103. Check the keying by operating the telegraph key and listening to the keyed signal in a receiver. The transmitter should key cleanly and without noticeable chirp at speeds up to thirty words per minute.

13. Release the telegraph key and operate the EMISSION selector switch, S110, to the MCW position. (Applies 1150 volts d.c. plate potential.) 14. Operate the TEST switch, S104, to the "on" position.

15. Check the P.A. PLATE meter reading on meter M102. The meter should indicate current within the MCW portion of the meter scale.

(Note: When operating with MCW emission the meter M102 indicates both power amplifier plate and modulator plate currents.)

16. Release the TEST switch and insert the earphones cord plug into the SIDETONE jack, J104.

17. Insert the key cord plug into the KEY jack, J103.

18. With the earphones in position, operate the telegraph key and check the keying by listening first in the earphones and then in an adjacent receiver. The keying should be clean-cut and with little distortion of character at keying speeds up to thirty words per minute.

19. Release the telegraph key and operate the EMISSION selector switch, S110, to the VOICE position.

20. Insert the microphone cord plug into the MICROPHONE jack, J102.

21. Press the push-to-talk button on the microphone (applies 1150 volts d.c. plate potential) and check the P.A. PLATE meter reading.

22. Check the modulation by pressing the push-to-talk button on the microphone (applies 1150 volts d.c. plate potential) and speaking into the microphone at normal voice level and checking the swing of the needle of meter M102. The needle should swing up to the MCW portion of the meter scale, or slightly beyond, on voice peaks.

23. Check the operation of the speech amplifier by listening to the sidetone amplifier output while having someone speak into the microphone.

When operation from the LOCAL position has been checked, the procedure outlined below should be followed to check remote operation:

24. Operate the LOCAL-REMOTE switch, S107, to the REMOTE position.

25. Operate the emission selector switch, S903 in the Remote Control Box, to the VOICE position.

26. Following the procedure outlined for checking the Autotune system from the transmitter panel, check the operation and positioning of the dials when using the CHANNEL selector switch, S902. The position of the controls for a given Autotune channel selected with S902 should correspond to the position of the controls when the Autotune channel is selected with the panel switch S108.

27. Insert a microphone cord plug into MICROPHONE jack J903 and check the transmitter control by operating the pushto-talk button on the microphone (applies 1150 volts d.c. plate potential). Also check the condition of the audio lines from the Control Unit to the transmitter by speaking into the microphone and checking the kick of the needle of meter M102. Voice peak readings should correspond to readings obtained when checking the modulation with panel or LOCAL transmitter control.

28. Operate S903 to the CW position (applies 1150 volts d.c. plate potential) and operate the telegraph key. Check the keying by listening to the signal on a receiver.

29. Operate S903 to the MCW position (applies 1150 volts d.c. plate potential) and check P.A. PLATE by observing M102. Check the keying by listening to the keyed signal on a receiver.

#### 5.5. SERVICING

5.5.1. If the above checks reveal erratic or abnormal operation, the tubes should be carefully checked. Tube failure is probably the most common cause of transmitter failure. The most dependable method of checking the tubes and finding the defective tube is to replace the tubes one at a time, with tubes known to be in good condition.

5.5.1.1. In order to gain access to the tubes and other components the transmitter cover must be removed. This can be done by inserting a coin or a screwdriver in the holddown screws, making a half turn counterclockwise and lifting off the cover.

#### 5.5.2. Tube Replacement

5.5.2.1. After having made certain that the KEY, MICROPHONE and Throttle Switch circuits are open remove the transmitter cabinet cover.

The tube clamps used in this equipment are designed to prevent the tube from coming out of the socket under vibration incident to normal service. Refer to the tube placement diagram, Fig. 29, for the exact location of the various tube clamps. The clamp on tube V101 is readily accessible through the side cover plate. The clamps on V105 and V106 are accessible through the rear cover plate. The clamps on V102 and V103 can best be reached from the top of the transmitter.

It is a simple operation to open or close a clamp in removing or replacing tubes. Insert a screwdriver where indicated in the lower left corner illustration of Fig. 29. Gently press the clamp open or closed as required. No undue exertion is necessary in operating this type of clamp. The 813 power amplifier tube, V104, removal is facilitated by inserting a screwdriver through a ventilating hole in the rear cover plate so that the screwdriver may be used as a lever between the tube base and the socket.

The 813 tube should be inserted by orienting the base pin with the slot in the hole above the socket and pressing down firmly until the tube snaps solidly in the socket.

5.5.2.2. Some of the more common symptoms of tube failure together with the tubes that

may need replacement are given in the paragraphs that follow:

# 1. No R-F Output in the Frequency Range 2.0 Mc to 6.0 Mc

Three r-f tubes are in use when the transmitter is operating in the frequency range 2.0 mc to 6.0 mc, namely V101, V102, and V104. To find the particular tube that is defective replace each tube with another tube of the same type that is known to be in good condition, that is, replace one tube at a time. After each tube replacement check transmitter operation. If, after having replaced all three tubes the transmitter is still inoperative or low in output, further trouble shooting will be necessary.

# 2. No R-F Output in the Frequency Range 6.0 Mc to 18.1 Mc

When operating in the frequency range 6.0 mc to 18.1 mc a fourth r-f tube, V103, is brought into operation. If after having found satisfactory transmitter operation in the frequency range 2.0 mc to 6.0 mc, the output is discovered to be low or nil in the frequency range 6.0 mc to 18.1 mc, the trouble is likely in the 2nd multiplier stage. Replace the type 1625 tube, V103, with a tube of the same type known to be in good condition and check the operation. If the transmitter is still inoperative or the output low, the trouble is something other than a defective tube.

#### No R-F Output L. FREQ. Channel (300 Kc to 600 Kc)

When the transmitter is operating in the low-frequency range only two r-f tubes are used, the L-F Oscillator tube, V401, and the P.A. tube, V104. If output in the frequency range 2.0 mc to 18.1 mc is satisfactory but no output is obtained when the low-frequency channel is selected, the trouble is probably in the low-frequency oscillator stage. Replace V401 with a tube of the same type known to be in good condition and check transmitter operation. If the stage is still inoperative further tests will be necessary.

#### 4. Satisfactory VOICE Operation-No Modulation On MCW

The same audio amplifier and modulator stages are employed for both VOICE and MCW operation, therefore, if no modulation is obtained on MCW, the MCW Oscillator tube, V302, must be inoperative. Replace V302 and while listening to the output of the sidetone amplifier or to the signal in a receiver, operate the TEST key and check the modulation. If the signal is still unmodulated it will be necessary to check the oscillator circuit.

#### 5. Satisfactory R-F Output and Sidetone Amplifier Output — No Modulation on Either VOICE or MCW

The output of the audio driver tube, V202, is coupled to the input of the sidetone amplifier. Therefore, satisfactory output from the sidetone amplifier indicates that the audio amplifier and audio driver stages are operating satisfactorily. The output of the audio driver is also coupled through a transformer to the grids of the modulator tubes, V105 and V106. Replace the modulator tubes with tubes known to be in good condition, one at a time, and check the transmitter output for modulation. If the R-F signal is still unmodulated the trouble is other than defective tubes and further trouble shooting will be necessary.

#### 6. Satisfactory R-F Output—No Modulation VOICE or MCW—No Output from Sidetone Amplifier

There being no output from the sidetone amplifier, it is evident that one or more of the following three stages is inoperative, audio amplifier (V201), audio driver (V202), or the sidetone amplifier (V203). Replace V201, V202, and V203 with a tube of the proper type that is known to be in good condition, one at a time, and while listening to the SIDETONE output, operate the TEST switch after each tube is replaced.

 Satisfactory R-F Output — Satisfactory VOICE and MCW Operation When Operating in CALIBRATE Position—No Beat Note Obtainable Between R-F Oscillator Output and Calibration Oscillator Output

Satisfactory VOICE and MCW operation indicates that the r-f audio and MCW oscillator stages are operating properly, therefore, the trouble must be in the calibration oscillator circuit. Remove the calibration oscillator tube, V301, and replace with another tube that is known to be in good condition. If it is still impossible to obtain a beat note between the two signals, the trouble is still likely in the calibration oscillator circuit but is something other than a defective tube.

#### 8. Low R-F Output

If the grid meter reading is satisfactory and the transmitter is otherwise apparently operating satisfactorily, note the extent to which the P.A. PLATE meter reading soars off resonance with power level switch S106 in the OPERATE position. Failure of the P.A. PLATE meter reading to soar more than 10% usually indicates low emission of the 813 final amplifier tube, V104. Normal off resonance P.A. PLATE meter reading will be found to be about 200. If it appears that the off resonance reading is considerably more than 200 the 813 tube will usually be found to be "soft" or "gassy."

#### 9. High Distortion on VOICE

Replace the 813 tube if after checking the speech amplifier tubes, the audio unit itself and the modulator tubes, V105 and V106, high distortion exists at full modulation. Since both the screen and the plate of the tube have separate modulation transformer windings it is possible for a condition to exist where the proportion of current drawn by the 813 screen and plate is not normal which can cause a mismatch to occur in the modulation transformer at high audio levels.

#### 5.5.3. Trouble Shooting

If replacing vacuum tubes has failed to remedy the trouble and the transmitter is still inoperative or not operating properly, further trouble shooting will be necessary.

A few tools and an indicating instrument are absolutely essential. In addition to the tools ordinarily available (screwdriver, pliers, soldering iron, etc.) a volt-ohmmeter capable of measuring d-c voltages up to 1500 volts is necessary. Any voltmeter having high internal resistance (1000 ohms per volt) will suffice but a meter of the vacuum tube type is recommended. High voltage circuits should not be checked with a voltmeter unless other means cannot be used. This practice is advocated in the interest of safety.

#### 1. Remote Control Unit

To gain access to the components in the Remote Control Unit, remove the mounting plate by removing the four thumb nuts on the front panel. The contacts on the ganged switch sections may require cleaning or if the unit has been exposed to an extreme shock the switch pies may require replacement.

#### 2. Dynamotors

IN MEASURING VOLTAGES WHEN THE H.V. DYNAMOTOR IS IN OPERA-TION, EXTREME CARE SHOULD BE EXERCISED TO PREVENT PERSONAL INJURY. WHEN OPERATED UNDER NORMAL CONDITIONS THE POSITIVE OUTPUT CIRCUIT OF THE DYNAMOTOR IS AT A POTENTIAL OF 1150 VOLTS ABOVE GROUND.

There are three sets of brushes in each dynamotor. If a dynamotor fails to start when the primary circuit is closed the 115 volt brushes should be inspected for wear and if the brushes show signs of considerable wear, replacement should be made. If a dynamotor rotates but fails to give the required voltage, remove both end bells from the dynamotor and inspect the output commutator brushes. The brushes may need replacement or copper dust may have accumulated between commutator bars causing short circuiting of some of the segments of the armature. To remove the copper dust use a stream of compressed air. If the brushes are worn down to one-quarter inch or less in length the brushes should be replaced.

The above statements concerning cleaning the commutator, and inspection and replacing the brushes apply also to the motorgenerator in the A-C power unit.

#### 3. Power Control Relays

Failure of the power units to operate properly may be traced to inoperative power control relays. The relay coil circuit may not be closing due to defective switch contacts or the relay contacts may be corroded, pitted, or out of adjustment. Failure of the rectifier filaments to light or the filament motor generator to rotate may be traced to K1801/ K1901 while plate power failure for all tubes may be traced to K1806/K1904.

To clean the contacts of these relays, always use a burnishing tool—never use sandpaper or emery cloth.

#### 4. Antenna Loading Coils

The antenna loading coils should require very little maintenance but components such as switches, capacitors and inductors may require adjustment or replacement if the equipment has been subject to overload or extreme mechanical shock. To gain access to the components in the Antenna Loading Coil Unit, remove the screws in the top that hold the cover on and remove the cover. The switch contacts may become corroded and require cleaning. The static drain choke or the capacitor may become defective and cause failure or erratic operation when operating in the frequency range 300 kc to 600 kc. The static drain choke may become open circuited or the capacitor may become shorted. All components are exposed when the cover is removed and may be checked with standard test equipment.

#### 5. Transmitter Unit

Three of the sub-units in the Type -52286 Transmitter Unit, the L-F Oscillator Unit, the MCW-CFI Unit and the Audio Amplifier Unit, may be readily removed for checking and the replacement of parts. The three units have been equipped with multi-terminal connector plugs to permit the removal of the sub-units from the transmitter without the use of a soldering iron.

The following procedure is recommended for the removal of the above named units:

#### (a) L-F Oscillator Unit

(1) Remove the connector wire from the right-hand side of the unit.

(2) Remove the seven screws that hold the low-frequency panel in place.

(3) Loosen all screws along the top edge of the Autotune front cover plate.

(4) Remove the plate lead from the 813 power amplifier tube, V104, and remove the tube from the socket by inserting a screwdriver through a ventilating hole in the back of the transmitter and using it as a lever between a tube base and the socket. Lift the tube out. (5) Insert a screwdriver through the ventilating holes at the back of the transmitter and remove the screws that hold the back of the unit.

(6) The unit is now free of all retaining screws and wires and may be removed from the transmitter by raising the rear edge of the oscillator unit to free the front panel from the Autotune cover plate and then raising the unit until the connector plug is free.

Note: Some l-f oscillator components are accessible from the top of the unit (cover removed). The wrap-around shield may be removed to permit the checking or replacement of the remaining components.

#### (b) MCW-CFI Unit

(1) Loosen the two large screws that hold the unit to the main transmitter chassis.

(2) Raise the unit until the connector plug is disengaged.

(3) Tip the unit toward the frequency multiplier tubes, V102 and V103, until the transformer clears the cabinet cover clamping bracket.

(4) All circuit components are accessible from the bottom of the unit.

#### (c) Audio Amplifier Unit

(1) Loosen the two large screws that hold the unit to the main transmitter chassis.

(2) Remove the plate cap from the high-frequency oscillator, V101, and remove the tube from the socket.

(3) Raise the unit until the multi-terminal plug becomes disengaged from the receptacle.

(4) Slide the unit backward until the cabinet studs are cleared and raise the audio amplifier unit upward.

#### (d) High-Frequency Oscillator

The frequency multiplier plate tank inductors are readily accessible if the cabinet wraparound plate is removed from the right-hand end of the transmitter cabinet. Four screws in the rear and ten screws on the side hold the plate in position. An additional shield covers the section of the casting that houses the high-frequency oscillator circuit components. If this inner shield is removed all oscillator circuit components will be exposed and available for checking and replacement. Do not remove this inner shield or make any adjustments of the h-f oscillator condensers or slug unless the calibration of this oscillator is thoroughly understood.

#### (e) Frequency Multiplier

Some of the frequency multiplier circuit components are accessible from the bottom of the transmitter if the bottom cover plate is removed. To gain access to the remaining frequency multiplier circuit components, the multiplier unit must be removed from the assembly.

The following procedure is recommended for the removal of the multiplier unit from the transmitter.

(1) Remove the plate caps from the frequency multiplier tubes, V102 and V103, unlock the tube base clamps and remove the tubes from the sockets. Disconnect the Low Frequency Oscillator Plate lead at the Oscillator end.

(2) Remove the transmitter bottom cover plate and the Autotune cover plate.

(3) Remove the Autotune Unit "A" in the following manner: Turn the dial locking bar to the unlocked position and loosen the two #10 bristo set screws in the dial. Turn the dial and locking bar counterclockwise together until the bar comes free. Remove both the dial and the locking bar. Remove the dial back plate, loosen the two long screws on the top end of the unit and the

short screw on the bottom end of the unit. Carefully lift the unit out.

Caution: Care must be exercised not to move any of the Autotune mechanisms from the time the unit is loosened until the unit is again securely in place, otherwise the unit may be thrown out of synchronization.

(4) When the Autotune Singleturn Unit has been removed, remove the screws holding the seeking switch, S109, to the Autotune casting and swing the switch out.

(5) Heat and remove the wires leading to the multiplier coils at the rear of the High Frequency Oscillator Unit. Heat and remove the bus wire connected to coupling capacitor C116.

(6) Remove the two screws just behind the second multiplier tube clamp shell and the two screws just in front of the first multiplier tube clamp shell.

(7) The multiplier unit can now be pulled out sufficiently to remove the nut holding the ground wire lug on the side of the unit adjacent to the fire wall assembly. Remove cable connector J115 from P101 in the multiplier unit.

(8) The multiplier unit may now be lifted out of the transmitter.

(9) In reassembling the transmitter it is essential that the shaft of seeking switch S109 be carefully centered with the cam drum shaft that drives it. This may be checked by referring to section 5.7.4., except that the position of the switch and not the driving arm should be adjusted.

#### (f) Oscillator Casting

The removal of the High-Frequency Oscillator is not recommended unless it is absolutely necessary.

The following procedure is recommended for the removal of the oscillator casting from the transmitter: (1) Remove the plate cap from the high-frequency oscillator tube, V101, unlock the tube base clamp and remove the tube from the socket.

(2) Remove the MCW-CFI and the Audio Units as outlined in the preceding section.

(3) Remove the two screws that hold J111, the MCW-CFI Unit Connector plug receptacle, to the standoffs and unsolder the single wire that connects the high frequency oscillator tube V101 cathode to terminal 1 on J111.

(4) Remove the Autotune cover plate and wrap-around section of the transmitter cabinet.

(5) Remove the locking bar and dial from Control "A" by turning the dial locking bar to the unlocked position, loosening the two #10 bristo set screws in the dial, and turning both locking bar and dial counterclockwise until free. Remove the dial back plate.

(6) The Autotune Singleturn Unit adjacent to the High-Frequency Oscillator Multiturn Unit must be removed so that the screws that hold the oscillator casting to the Autotune casting may be loosened. To remove this unit loosen the short screw that holds the lower edge of the unit to the Autotune casting and the two long screws that hold the upper edge of the unit to the casting and lift the unit carefully out of position.

Caution: Care must be exercised not to move any of the Autotune mechanisms from the time the unit is loosened until the unit is again securely in place, otherwise the unit may be thrown out of synchronization.

(7) When the Autotune Singleturn Unit has been removed, loosen the screws that hold the castings together in the front and top of the chassis.

(8) To complete disconnecting the h-f oscillator, move the casting slightly to the right and unsolder the connections to the terminal strip on the inner side of the casting and the wires leading to the frequency multiplier plate tank inductors. (9) The h-f oscillator casting assembly may now be removed from the transmitter.

All components not included in units that may not be removed from the main assembly of the transmitter have been mounted in positions so as to be as accessible as possible in the limited space available. The cabinet cover, bottom plate and Autotune cover plate are all removable from the main assembly. The location of the part to be checked or replaced will determine the section of the cabinet that is to be removed.

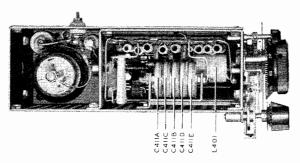



Fig. 31 Low Frequency Oscillator

#### 5.6. RADIO-FREQUENCY CIRCUIT ALIGNMENT

#### 5.6.1. Low-Frequency Oscillator Alignment

5.6.1.1. If low-frequency oscillator circuit components have been damaged or replaced, the grid circuit may require realignment. For realignment of the circuit the following procedure should be followed:

1. Operate Control "F" to Position 6 (1035 kc to 1500 kc).

2. Operate the EMISSION selector switch, S110, to the VOICE position.

3. Rotate the CHANNEL selector switch, S108, to the L. FREQ. position.

4. When the Autotune cycle has been completed check the position of Control "A".

The control should stop in Position 13. If the control stops in any position other than number 13, loosen the locking bar and manually operate Control "A" to Position 13.

5. Refer to TABLE I in the DATA Section of this book and select a dial setting under column G that is near the middle of the tuning range. If there is a dial setting listed on each side of the midpoint of the tuning range, select the dial setting on the high-frequency side.

For example, 1073 in the column under G is very near the midpoint of the tuning range of the control. (The exact midpoint is 1000.)

6. Rotate Control "G" to the dial setting that has been chosen from the calibration table.

7. Operate the power level switch, S106, to the CALIBRATE position. (Applies 1150 volts d.c. to plates of V104, V105, and V106.)

8. Insert an earphones cord plug into the SIDETONE output jack, J104.

9. While listening to the SIDETONE amplifier output, rotate Control "G" about the setting obtained from the calibration table until exact zero beat is obtained between the output of the low-frequency oscillator and the output of the calibration oscillator.

10. Check the dial setting and lock the dial.

11. Loosen the two set screws that hold the knob to the shaft of Control "G" and without detuning the circuit, rotate the knob on the shaft until the dial setting corresponds to the setting given in the calibration table and tighten the set screws.

Rotate Control "G" to home stop position near zero. Loosen the two set screws on the counter dial mechanism collar attached to the main oscillator shaft and holding the mechanism at zero, rotate Control "G" to zero. Tighten the set screws.

12. Operate Control "F" to Position 5.

13. As explained in steps 5 and 6, select a dial setting from TABLE I near the middle of the tuning range. 14. Note the numbered slots on the oscillator shield cover exposing the trimming capacitor, C411.

15. While listening to the SIDETONE output, adjust capacitor section E (5) of C411, with any narrow tool, until zero beat is obtained between the low-frequency oscillator output and the output of the calibration oscillator.

16. Operate Control "F" to Position 4 and repeat steps 13 and 15 adjusting section D (4) of C411 instead of section E.

17. Repeat steps 13 and 15, adjusting capacitor trimmer sections C (3), B (2) and A (1), for Control "F" Positions 3, 2, and 1, respectively.

18. Check the excitation over the entire range of each position of Control "F" by rotating Control "G" through twenty revolutions for each position of Control "F".

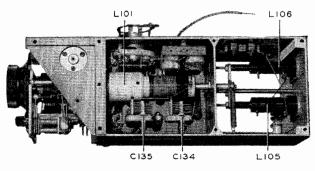



Fig. 32 High Frequency Oscillator

#### 5.6.2. High-Frequency Oscillator Alignment-(Using CFI)

5.6.2.1. If the high-frequency r-f circuits are to be realigned in the field, where no frequency measuring equipment is available, the calibration oscillator may be used to check the band end-point frequencies. However, if coils, transformer cores, capacitors, etc., in the oscillator circuit require replacement, an accurate means of measuring frequency must be used together with a portable wave meter to check the harmonic output of the frequency multiplier. **5.6.2.2.** For realignment when a frequency standard is not available, the following procedure should be followed:

1. With the EMISSION selector switch, S110, in the OFF position, remove the cover plate from the right-hand end of the transmitter cabinet. Remove the small plate on the bottom of the oscillator casting. This plate covers the holes provided for the adjustment of trimmer capacitors C134 and C135. The h-f oscillator grid trimmer capacitors, C134 and C135, the h-f oscillator grid inductor, L101, tuning slug adjustment and the frequency multiplier plate inductor, L105 and L106, tuning slug adjustments are thus exposed.

2. Rotate the CHANNEL selector switch, S108, to the MANUAL position.

3. Operate the EMISSION selector switch, S110, to the VOICE position.

4. When the Autotune cycle has been completed, operate Control "A" to Position 2.

5. Set the indicator mark, over Control "B", to mid-scale using the CORRECTOR knob.

6. Refer to TABLE II in the DATA section of this book and obtain the dial setting of Control "B" for output on 2400 kc with Control "A" in Position 2. (Oscillator output on 1200 kc.)

7. Rotate Control "B" to the setting obtained from the table. Approach the setting in a clockwise direction.

8. Loosen the nut on the rear of the lead screw that holds the multiplier tuning slug yoke to the screw.

9. Insert an earphones cord plug into the SIDETONE output jack, J104.

10. Operate the power level switch, S106, to the CALIBRATE position. (Applies 1150 volts d.c. to plates of V104, V105, and V106.)

11. While listening to the SIDETONE output in the earphones, and keeping Control "B" set at the position obtained from the

table, adjust the position of the h-f oscillator grid inductor tuning slug by rotating the tuning slug screw with pliers, the jaws of which have been padded to prevent marring the shaft, until zero beat is obtained between the output of the calibration oscillator and the output of the high-frequency oscillator. **Note:** Caution should be exercised in the adjustment of the position of the tuning slug when no frequency standard is available. A fraction of a revolution in one direction or the other should realign the circuit.

12. When zero beat has been obtained, carefully tighten the nut on the end of the slug screw to prevent further displacement of the tuning slug.

13. Refer to TABLE II in the DATA section and obtain the correct position of Control "B" for output on 3000 kc with Control "A" in Position 2. (Oscillator output on 1500 kc.)

14. Rotate Control "B" to the setting obtained from the table. Approach the setting in a clockwise direction.

15. Adjust trimming capacitor C134, until zero beat is obtained between the output of the h-f oscillator and the output of the calibration oscillator.

16. Check several points in the band by obtaining Control "B" settings from TABLE II and listening to the beat note output of the SIDETONE amplifier.

17. If the setting of Control "B" necessary to obtain exact zero beat deviates more than 4 or 5 dial divisions from the setting given in the calibration table, repeat steps 6 through 16 of the above procedure until the dial settings necessary to obtain a given frequency correspond very closely to those given in the calibration table.

18. When alignment adjustments have been completed with Control "A" in Position 2, operate the control to Position 1.

19. Refer to TABLE II opposite 2000 kc (Control "A" in Position 1) and obtain the

dial setting for Control "B". (Oscillator output on 1000 kc.)

20. While listening to the SIDETONE output, adjust trimming capacitor C135, until zero beat between the high-frequency oscillator output and the calibration oscillator output is obtained.

Note: Do not make any further adjustments of trimmer C134.

21. Check several points within the frequency range 2000 kc to 2400 kc by obtaining the dial setting of Control "B" from the table, listening to the SIDETONE output and operating Control "B" about the setting obtained from the Calibration Table. The settings should check with those given in the table within 4 or 5 dial divisions.

Note: No adjustment of the high-frequency oscillator grid inductor slug should be made with Control "A" in Position 1.

22. Return the EMISSION selector switch, S110, to the OFF position.

#### 5.6.3. High-Frequency Oscillator Alignment — (Using External Frequency Standard)

5.6.3.1. If oscillator circuit components have been replaced and an accurate frequency standard is available the following procedure should be followed for the alignment of the high-frequency oscillator circuit:

1. With the EMISSION selector switch, S110, in the OFF position remove the cover plates from the right-hand end and bottom of the transmitter cabinet. The h-f oscillator grid trimmer capacitors, C134 and C135, the h-f oscillator grid inductor, L101, tuning slug adjustment and the frequency multiplier plate inductor, L105 and L106, tuning slug adjustments are exposed.

2. Rotate the CHANNEL selector switch, S108, to the MANUAL position.

3. Operate the EMISSION selector switch, S110, to the VOICE position.

4. When the Autotune cycle has been completed, operate Control "A" to Position 2.

5. Set the indicator mark, over Control "B", to mid-scale using the CORRECTOR knob.

6. Refer to TABLE II and obtain the dial setting for an output frequency of 2400 kc with Control "A" in Position 2. (Oscillator output on 1200 kc.)

7. Rotate Control "B" to the setting obtained from the table.

8. Loosen the nut on the rear of the lead screw that holds the multiplier tuning slug yoke to the screw.

9. Operate the power level switch, S106, to the CALIBRATE position. (Applies 1150 volts d.c. to plates of V104, V105, and V106.)

10. Measure the output frequency of the oscillator and adjust the position of the tuning slug in L101 until the oscillator frequency is exactly 1200 kc.

11. When the correct position of the tuning slug has been found tighten the locking nut to prevent any further displacement of the slug.

12. Refer to TABLE II and obtain the setting of Control "B" necessary to obtain an output frequency of 3000 kc with Control "A" in Position 2. (Oscillator output on 1500 kc.)

13. Rotate Control "B" to the setting obtained from the table.

14. Measure the output frequency of the oscillator and adjust capacitor trimmer C134 until the frequency of the oscillator output is exactly 1500 kc.

15. Check several points within the band by obtaining dial settings from the calibration tables, rotating Control "B" to these settings and measuring the frequencies.

Note: Always keep in mind that with Control "A" in Positions 1 or 2 the frequencies given in the calibration tables are always twice the output frequency of the oscillator. With the power level switch in the CALI-BRATE position only the oscillator is operating, therefore, the output frequency to be measured will always be one-half the frequency that is given in the calibration table.

16. If the dial settings of Control "B" necessary to obtain output on a selected frequency deviates more than 4 or 5 dial divisions from the dial setting given in the calibration tables repeat steps 6 through 15 until the actual dial setting of Control "B" necessary to obtain a given output frequency corresponds very closely to the setting given in the table.

17. When alignment has been completed with Control "A" in Position 2, operate the control to Position 1.

18. Refer to TABLE II and obtain the dial setting of Control "B" to obtain an output frequency of 2000 kc with Control "A" in Position 1. (Oscillator output on 1000 kc.)

19. Adjust trimmer capacitor C135 (Fig. 47) until the oscillator output frequency is exactly 1200 kc.

Note: Do not make any adjustment of C134 or the core in inductor L101 with Control "A" in Position 1.

20. Check several points within the band by comparing the actual dial settings necessary to obtain a given frequency with the dial settings given in the calibration tables for the same frequency. The settings should check within 4 or 5 dial divisions.

21. Return the EMISSION selector switch, S110, to the OFF position.

#### 5.6.4. Frequency Multiplier Alignment

5.6.4.1. Having completed the alignment of the high-frequency oscillator circuit complete the r-f circuit alignment by following the procedure outlined below for the adjustment of the frequency multiplier circuits:

1. With the transmitter tipped up on the rear edge and bottom cover removed, the

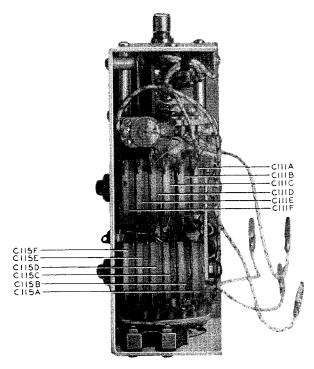



Fig. 33 Frequency Multiplier Bottom View

frequency multiplier plate tank capacitors are exposed.

The multiplier plate tank capacitors are located beneath the multiplier chassis. (Stacks of ceramic capacitor sections.) Capacitor section A of each capacitor, C111 and C115, is located nearest the right-hand side of the transmitter, as the transmitter is viewed from the bottom, with sections B, C, D, E, and F in order in the stack.

2. Operate Control "A" to Position 6.

3. Rotate the metered circuit selector switch, S105, to the P.A. GRID position.

4. Rotate Control "B" until the dial reading is 1100.

5. Operate the power level switch to the TUNE position.

6. Operate the EMISSION selector switch, S110, to the CW position. (Applies 1150 volts d.c. plate potential.)

CAUTION: USE AN INSULATED TOOL

#### TO ADJUST THE CAPACITORS. WHEN THE KEY IS OPERATED THE CAPAC-ITOR IS AT A POTENTIAL OF 400 VOLTS ABOVE GROUND.

7. Insert a shorted plug in KEY jack J103 and adjust section F (bottom of stack) of first multiplier padding capacitor C111 to the position that will give the maximum P.A. GRID meter reading on M102.

**Note:** To vary the capacity of sections of C111 or C115 rotate the metal lip that protrudes between capacitor sections.

8. Using a portable wavemeter check the output frequency of the first frequency multiplier stage to be sure that the plate circuit is tuned to the correct harmonic. The output should be on approximately 5400 kc with Control "A" in Position 6 and Control "B" tuned to a dial reading of 1100.

9. When it has been ascertained that the multiplier output is on the correct harmonic rotate Control "B" over the entire range and observe the grid reading on meter M102.

CAUTION: WHEN THE KEY IS OPER-ATED THE INDUCTORS L105 AND L106 ARE AT A POTENTIAL OF 400 VOLTS ABOVE GROUND.

10. Take out dips in the meter reading by adjusting section F of first multiplier padding capacitor C111 for an average reading of the meter.

CAUTION: WHEN THE KEY IS OPER-ATED THE INDUCTORS L105 AND L106 ARE AT A POTENTIAL OF 400 VOLTS ABOVE GROUND.

11. A drop at the extreme ends of the range is permissible but if the meter needle still dips sharply at the other point, rotate Control "B" to a dial reading of 1100, loosen the first multiplier inductance L105 tuning slug locking nut and change slightly the position of the tuning slug. Tighten the slug locking nut.

12. Rotate Control "B" over the entire range and check the P.A. GRID current.

Meter M102 should indicate a consistent value of grid current over the entire range. If the meter needle dips sharply at any point repeat steps 10 and 11.

13. Having completed the adjustment of the inductor slug and section F of C111, remove the key shorting plug and rotate Control "A" to Position 5.

14. Rotate Control "B" to a dial reading of 1100.

15. Replace the key shorting plug, adjust section E of capacitor C111 to give a maximum P.A. GRID meter reading and check with a wavemeter for the correct harmonic.

**Note:** Do not make any further adjustments of the position of the tuning slug in L105.

16. Rotate Control "B" through the entire range and check the excitation. If dips occur in the meter reading readjust padding capacitor C111E.

17. Remove the key shorting plug and operate Control "A" to Position 4.

18. Replace the key shorting plug and adjust section D of C111 for maximum P.A. GRID meter reading.

19. Check the excitation over the band by operating Control "B" over the entire range. If dips in the meter reading occur repeat step 10.

20. Repeat Steps 18 and 19, for Positions 4, 3, 2, and 1 of Control "A". Adjust capacitor sections D, C, B, and A, for Control "A" Positions 4, 3, 2, and 1 respectively.

21. Having completed the alignment of the 1st frequency multiplier stage, remove the key shorting plug and operate Control "A" to Position 12.

22. Rotate Control "B" to a dial reading of 1100.

23. Replace the key shorting plug and adjust section F of second multiplier padding capacitor C115 for maximum P.A. GRID meter reading.

24. Using an insulated screwdriver to reduce body capacity adjust trimmer capacitor C136 for maximum P.A. GRID meter reading.

25. Check the output frequency of the second multiplier with a wavemeter. With Control "A" in Position 12 and Control "B" tuned to a dial reading of 1100 the wavemeter should indicate approximately 16,430 kc. A materially different reading indicates that a wrong harmonic has been chosen necessitating a readjustment of padding capacitor C115F and trimmer capacitor C136.

26. Take out drops in the meter reading by adjusting section F of padding capacitor C115.

27. A drop at the extreme ends of the range is permissible but if the meter needle still dips sharply at any other point, rotate Control "B" to a dial reading of 1100, loosen the second multiplier inductance, L106, tuning slug locking nut and change slightly the position of the tuning slug. Tighten the slug locking nut.

28. Again rotate Control "B" over the entire range and check the excitation. If the meter dips sharply at any point repeat Steps 24 through 28.

29. Having completed the adjustment of the inductor slug and section F of C115, remove the key shorting plug and rotate Control "A" to Position 11.

30. Rotate Control "B" to a dial reading of 1100.

31. Replace the key shorting plug, adjust section E of capacitor C115 to the capacity which gives the maximum P.A. GRID meter reading and check with a wavemeter for the correct harmonic.

Note: Do not make any further adjustment of the tuning slug in L106 or trimmer capacitor C136.

32. Rotate Control "B" through the entire range and check the excitation. If dips occur in the meter reading readjust padding capacitor C115E. 33. Repeat Steps 31 and 32 with Control "A" in Positions 10, 9, 8, and 7. Adjust capacitor sections D, C, B, and A for Control "A" Positions 10, 9, 8, and 7 respectively.

The above procedure completes the alignment of the high-frequency r-f circuits of the transmitter.

#### 5.7. MAINTENANCE OF AUTOTUNE MECHANISM

#### 5.7.1. Lubrication

5.7.1.1. The Autotune mechanism will require thorough lubrication at least once every month for proper operation. The four types of lubricants which are required are: (1) Texaco Capella A lubricating oil manufactured by the Texas Company, 135 E. 42nd St., New York City, (2) Socony-Vacuum PD-535A, manufactured by Socony-Vacuum Oil Company, 26 Broadway, New York City, (3) Cities Service North Star 000 oil manufactured by The Cities Service Oil Co., 500 Roberts St., Saint Paul, Minn., and (4) Stano-Drip #39 manufactured by Standard Oil of Indiana, 910 S. Michigan Avenue, Chicago, Illinois. In locations where severe dust is encountered, it may be necessary to thoroughly clean all parts before application of any lubricants. A soft brush and a jet of compressed air will be suitable for cleaning the Autotune mechanism.

5.7.1.2. The Texaco Capella A oil is to be used for all lubrication points except the open gears and pawls. The points to be lubricated with this oil include:

- 1. All line shaft bearings.
- 2. Autotune motor bearings.
- 3. Front and rear cam drum bearings on each of the Autotune units.
- 4. All idler gear bearings.
- 5. Counter drum bearings.
- 6. Limit switch drive shaft bearings.

5.7.1.3. The Socony-Vacuum PD-535A grease should be used on all gears. These gears include:

- 7. All line shaft worms.
- 8. Worm gears on all Autotune units.
- 9. Spur and idler gears on all Autotune units.
- 10. The screw on the limit switch drive shaft.

5.7.1.4. The Stano-Drip #39 should be used on the motor sprocket and chain assembly.

5.7.1.5. Cities Service North Star 000 oil should be used for lubricating the pawl stacks on each of the Autotune units.

5.7.1.6. The drawing of the Collins Autotune System, Mechanical Portion, Fig. 22, shows the proper points for the application of each type of lubricant. The letters inside the dotted circles denote the type of lubricant to be used at each point. The letters A, B, C and D, are identified with the lubricants they represent at the bottom of Figure 24.

5.7.1.7. Each of the four lubricants may be applied with a camel's hair brush to the various lubrication points. Only very small amounts of oil or grease are required at most points. Be sure to remove any excess oil or grease after lubricating the Autotune system.

5.7.1.8. It will not be necessary to remove the individual Autotune units in order to lubricate the mechanism properly. The transmitter should be turned on the back and the Autotune front panel removed for maximum access to the lubrication points.

#### 5.7.2. Synchronization Check

5.7.2.1. In order for the Autotune system to function properly, the five individual units must be carefully synchronized. If there is any reason to doubt the accuracy of the

synchronization, it should be immediately checked. This may be done as follows:

5.7.2.2. Turn the equipment on the back so as to have maximum access to the units and remove the Autotune front panel.

**Note:** If the counter drum rings in the multiturn unit "B" have been moved for any reason so that a pawl cannot fall in the slot of a given ring within the range of the counter drum rotation, the ring must be moved manually a quarter turn in either direction.

5.7.2.3. Place the crank (which is included in the spare parts) on the right end of the Autotune line shaft, orient the crank hub in the slot and fasten it with a 4-40 x  $\frac{1}{2}$ " screw.

5.7.2.4. Turn the crank counterclockwise until all the cam drums are set in motion.

5.7.2.5. By means of the crank turn the line shaft counterclockwise until all the cam drums are being driven. Continue to turn the crank counterclockwise until the stop ring drum on the Multiturn unit has reached home stop and has ceased to turn.

5.7.2.6. After the stop-ring drum on the Multiturn unit has ceased to turn and only the cam drums are turning, pull the fork of the anvil (Fig. 24) in a counterclockwise direction away from under the tails of the pawls so that they are free to fall to the surface of the counter drum. If at any time the line shaft should be turned clockwise, it will first be necessary to turn the line shaft again in the counterclockwise direction far enough to reach home stop before pulling the anvil out from under the tails of the pawls; otherwise, as soon as the line shaft is turned counterclockwise, the anvil will be rotated up under the tails of the pawls.

5.7.2.7. Continue to rotate the crank slowly until the No. 5 pawl on one of the units, just drops into its cam slot. Note: Count from the front of the Autotune unit to the back, omitting the first or manual pawl, to arrive at pawl No. 5.

#### MAINTENANCE

5.7.2.8. Note the position of the crank arm by marking a line on the casting and then slowly turn the crank, noting the points at which the No. 5 pawls on all of the other units drop into the cam slots. All of the pawls should drop into place with a quarter turn ahead or behind the point where the No. 5 pawl on unit "A" engaged with its cam. All pawls should drop sharply with a "click."

5.7.2.9. Continue to rotate the crank counterclockwise until the No. 6 pawl on one of the units, just drops into its cam slot.

5.7.2.10. Note the position of the crank arm by marking a line on the casting and then slowly turn the crank, noting the points at which the No. 6 pawls on all of the other units drop into the cam slots and repeat the procedure outlined in Step 5.7.2.7.

**5.7.2.11.** Repeat Steps **5.2.1.9.** and **5.2.1.10.** checking the operation in turn of pawls No. 7, 8, 9, 10, 11, 12 (L.Freq.), manual, 1, 2, 3, and 4.

#### 5.7.3. Synchronization

5.7.3.1. If the Autotune system is found to be out of synchronization, the following procedure should be used to restore it:

5.7.3.2. Determine which units are not in synchronism with the multiturn unit by use of the foregoing procedure. No adjustment is possible on the multiturn unit, therefore all other units should be synchronized with this unit.

5.7.3.3. Repeat Steps 5.7.2.5. and 5.7.2.6.

5.7.3.4. If it has been found by means of the Synchronization Check that Autotune unit "A" is not synchronized with Autotune unit "B", it may be synchronized as follows:

(a) Turn the line shaft counterclockwise until pawl No. 5 on Unit "B" just drops into its slot in the cam drum. At this point the cam drum on unit "A" should be in a position so that the set screws in the collar below the gear are accessible. In case one of the set screws is inaccessible, tighten the accessible set screw with a No. 6 bristo wrench and continue to turn the line shaft counterclockwise until the inaccessible set screw can be reached and loosened with the No. 6 bristo wrench, after which it will be necessary to continue to turn the line shaft in a counterclockwise direction until pawl No. 5 on unit "B" again just drops into its slot in the cam drum. When this point is reached the remaining set screw in the collar on the cam drum shaft in unit "A" should be loosened. In case the above conditions cannot be met, it will be necessary to choose some other pawl that will allow these conditions.

(b) The cam drum in unit "A" is now free to be turned with the fingers until No. 5 pawl just drops into its slot in the cam drum.

(c) Insert a 0.005 inch feeler gauge between the cam drum washer, which is adjacent to the cam drum and the gear on the cam drum shaft in unit "A". Now insert a No. 6 wrench in the accessible set screw, force the collar tight against the gear and around clockwise so that all play is taken up before tightening the screw. Care must be used not to move the cam drum during this step.

(d) Turn the line shaft counterclockwise noting the sequence in which the pawls on unit "A" fall with respect to the corresponding pawls on unit "B". If all the corresponding pawls on the two units fall within onequarter turn of the line shaft, the two units are synchronized. The second set screw in the collar on unit "A" cam drum shaft should now be tightened.

5.7.3.5. It is entirely possible, due to slight irregularities in the structure of the cam drums, that one or more corresponding pairs of pawls on the two units will not fall within the prescribed one-quarter turn tolerance or that the synchronizing was not done with sufficient care, causing even No. 5 pawl on unit "A" to drop ahead or behind No. 5 pawl on unit "B" more than one-quarter turn.

(a) If it is found necessary to correct the synchronization, turn the line shaft counterclockwise noting the sequence in which the pawls fall. If some or all of the corresponding pawls fall farther apart from each other than the prescribed tolerance, pick out the pair that drops farthest apart and note which pawl drops first.

(b) If the pawl on unit "A" drops first, note what part of a revolution the line shaft must be turned through before the corresponding pawl on unit "B" falls. Continue to crank the line shaft counterclockwise until the two set screws on the collar below the cam drum on unit "A" are easily accessible. After loosening the set screws, turn the line shaft counterclockwise through the required part of a turn deemed necessary to correct the error and tighten the set screws. Repeat with more care if the pawls upon rechecking do not yet fall within the prescribed limits.

(c) If the pawl on unit "B" drops first, note what part of a revolution the line shaft must be turned through before the corresponding pawl on unit "A" falls. Continue to crank the line shaft counterclockwise until the two set screws on the collar below the cam drum on unit "A" are easily accessible. After loosening the set screws, rest the hand on the frame of the unit "A" and, placing the thumb firmly on the cam drum, rotate the cam drum slightly counterclockwise by the amount judged necessary to correct the error and tighten the set screws. Repeat with more care if the pawls upon rechecking do not yet fall within the prescribed limits.

(d) Check to make sure that both set screws in the collar on unit "A" cam drum shaft are tight.

5.7.3.6. If it has been found by means of the Synchronization Check that Autotune unit

"D", "C", or "E" is not synchronized with unit "A", causing corresponding pawls on units "A", "D", "C" and "E" to drop more than one-quarter turn of the line shaft apart, it will be necessary to re-synchronize the unit or units with unit "A" which are not within the one-quarter turn tolerance by the same procedure given for synchronizing unit "A" with unit "B" as outlined in Steps 5.7.3.4. and 5.7.3.5.

5.7.3.7. It should be noted that when the Autotune System has been synchronized correctly corresponding pawls on units "A" and "B" drop within one-quarter turn of each other and the corresponding pawls on units "C", "D" and "E" drop within one-quarter turn of those on unit "A".

#### 5.7.4. Autotune Positioning Mechanism

5.7.4.1. The Autotune positioning control mechanism consists of the Autotune seeking switch, S109, which is of the open segment type, driven by an arm attached to the shaft of the cam drum on the singleturn Autotune unit "A", and the CHANNEL selector switch, S108.

5.7.4.2. The seeking switch driving arm must be so adjusted that when, for instance position No. 5 is selected by the channel selector switch, S108, the No. 5 pawl will drop on all Autotune units and be in this position at the end of the Autotune cycle. In addition, the driving arm pin must engage the driven arm completely, but the pin must not touch the frame of the seeking switch, S109, at any point of the 360 degree rotation. Finally, a "back-up" distance of roughly from 5/64"  $\pm \frac{1}{64}$ " must be maintained between the pin of the driving arm and its place of contact on the driven arm after the cam drum, to which the driving arm is attached, is rotated by hand clockwise as far as it will go.

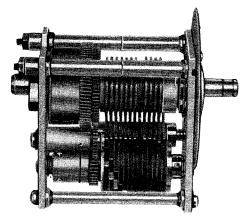



Fig. 34 96J Autotune Singleturn Unit Left Side View

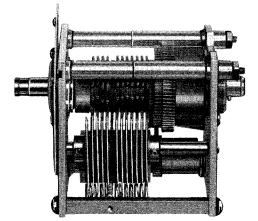



Fig. 35 96J Autotune Singleturn Unit Right Side View

5.7.4.3. If there is reason to believe that the seeking switch driving arm is out of adjustment, the following procedure should be followed to check it:

(a) Turn the CHANNEL selector switch, S108, to any position.

(b) Turn the EMISSION selector switch, S110, to the VOICE position. If the Autotune motor starts running allow it to run until the Autotune cycle is complete and the motor stops. Note: If the motor continues to run more than 30 seconds without coming to a stop, observe whether, due to misalignment of the seeking switch driving arm, the seeking switch, S109, is not being driven before turning the EMISSION selector switch, S110, to the OFF position. If the adjustment of the seeking switch driving arm appears to be correct, the trouble is probably misalignment of or foreign matter in the motor control relay, K101 or limit switch, S111 and S112. A short in the seeking switch itself can cause this trouble as can a short in the wiring.

(c) Turn the EMISSION selector switch, S110, to the OFF position.

(d) Connect a continuity check from the number 1 contact of remote cable jack J106 to the GND connector on the transmitter. Operate the LOCAL-REMOTE switch S107 to the REMOTE position.

(e) Repeat Steps 5.7.2.2. to 5.7.2.4. inclusive.

(f) Continue to rotate the crank slowly until the last pawl corresponding to the contact selected has just dropped into its cam slot.

(g) Note the position of the crank arm by marking a line on the casting and then slowly turn the crank until the continuity is broken.

(h) Observe the fraction of a revolution that the crank has turned. It should be within the limits of one-eighth to one full turn of the crank.

(i) If the continuity is not broken within the limits of one-eighth to one full turn of the crank, the seeking switch driving arm must be adjusted.

(j) Repeat Steps f, g, and h for each contact of remote cable jack J106 up to and including number 11.

5.7.4.4. If it is determined in checking the driving arm of the seeking switch, S109, by Step 5.7.4.3., that it is out of adjustment, it may be readjusted as follows:

(a) If the switch shaft is not centered exactly with the cam drum shaft in front of it or if the mounting screws are loose, correct these conditions by recentering the switch shaft and tightening the screws.

(b) Select a position by turning the line shaft crank counterclockwise that will place the set screws in the hub of the seeking switch driving arm in an accessible position. (c) Loosen the set screws with a No. 6 bristo wrench.

(d) Turn the seeking switch driving arm clockwise if the switch as checked in Step 5.7.4.3. opened early, and counterclockwise if it opened late. The amount to turn the arm must be determined by trial and error, but will be very slight unless it has become loose enough to cause an entirely different pawl number to drop on the Autotune units.

(e) Tighten the set screws, taking care that the pin completely engages the driven arm but does not come so close to the frame of the seeking switch as to permit it to touch at any point of the 360 degree rotation.

(f) Recheck as outlined in Steps 5.7.4.3. f, g, h, and repeat procedure until the Autotune seeking switch, S109, is correctly adjusted.

#### 5.7.5. Autotune Limit Switch

5.7.5.1. The limit switch is composed of a front section, S112, and a rear section, S111, and is located on the right side of the Multi-turn or "B" Autotune Unit.

5.7.5.2. The rear limit switch section, S111, should be adjusted so that it snaps between the limits of  $3\frac{1}{4}$  to  $9\frac{1}{4}$  turns of the line shaft crank counting clockwise from the time the switch snaps until the collar pin on the switch operating arm is engaged by the rear lead screw collar.

5.7.5.3. Add or remove shims from the rear end of the front switch section S112, insulator stack until the foregoing conditions (Step 5.7.5.2.) can be met. Note: Do not attempt to bend the arms of the rear switch sections as such a procedure may destroy the snap action of the switch.

5.7.5.4. The front limit switch section should be adjusted so that it closes between the limits of 3¼ to 9¼ turns of the line shaft crank counting clockwise from the point arrived at by turning the line shaft counterclockwise, which the collar pin on the switch operation arm is engaged by the front lead screw collar. A continuity checker connected across the switch contacts will facilitate noting the exact moment the switch makes contact.

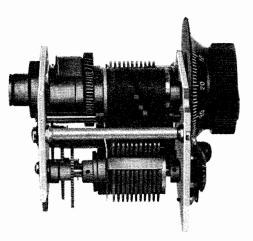



Fig. 36 96K Autotune Multiturn Unit Left Side View

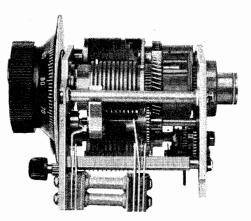



Fig. 37 96K Autotune Multiturn Unit Right Side View

5.7.5.5. The main arm of the front switch section should follow the short arm for slightly less than  $\frac{1}{32}$  inch as the short arm is bent back until contact is broken. This assures adequate contact pressure necessary for reliable operation of the switch.

5.7.5.6. Using an ordinary telephone relay spring bender, bend the head of the long switch contact arm and the heel end of the short contact leaf until the foregoing conditions (Steps 5.7.5.4. and 5.7.5.5.) are met.

5.7.5.7. Make sure that the leaves of the front and rear switch sections are in the clear and are not in danger of shorting on any part of the mechanism.

#### MAINTENANCE

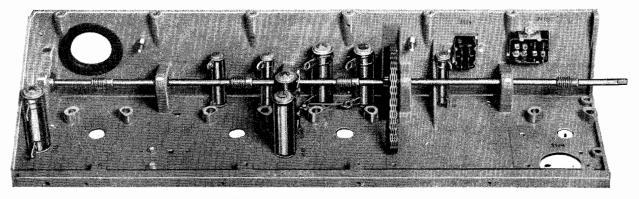



Fig. 38 Autotune Casting

#### 5.8. REPLACEMENT OF PARTS

5.8.1. The following Autotune parts may be replaced in the field if adequate shop facilities

are available. Since the Autotune mechanism is necessarily complicated, it is recommended that only skilled and experienced personnel be permitted to repair it.

Used With

Collins

|           |          |                                     | escu mitin     | Comms        |
|-----------|----------|-------------------------------------|----------------|--------------|
| Item      | Quan.    | Part Description                    | Item           | Part No.     |
| 1         | 1        | Multiturn Autotune Unit "B"         |                | 96K-1        |
| 2         | 1        | Singleturn Autotune Unit "A"        |                | 96J-4        |
| 3         | 1        | Singleturn Autotune Unit "C"        |                | 96J-2        |
| 4         | 1        | Singleturn Autotune Unit "D"        |                | 96J-1        |
| <b>5</b>  | 1        | Singleturn Autotune Unit "E"        |                | 96J-3        |
| 6         | 1        | Dial for Unit A                     | 2              | NY-1069B     |
| 7         | 1        | Dial for Unit B                     | 1              | X-5524       |
| 8         | 1        | Dial for Unit C                     | 3              | NY-1072B     |
| 9         | 1        | Dial for Unit D                     | 4              | NX-5586      |
| 10        | 1        | Dial for Unit E                     | 5              | NX-5796      |
| 11        | <b>5</b> | Dial Locking Bar                    | 6, 7, 8, 9, 10 | NX-5525      |
| 12        | <b>5</b> | Bar Stop Disc                       | 11             | X-5620       |
| 13        | 1        | Main Line Shaft                     | 17             | NX-5512      |
| 14        | 4        | Singleturn Worm                     | 13             | NX-5513      |
| 15        | 1        | Small Multiturn Worm                | 17             | Same as (14) |
| 16        | 1        | Large Multiturn Worm                | 17             | NX-5519      |
| 17        | 1        | Multiturn Line Shaft                | 13             | NX-5517      |
| 18        | 1        | Main Line Shaft Thrust Bearing      | 13             | 309N132      |
| 19        | 1        | Multiturn Line Shaft Thrust Bearing | 17             | 309N136      |
| 20        | 6        | Line Shaft Bearing                  | 13, 17         | NX-5724      |
| <b>21</b> | 1        | Line Shaft Crank                    | 17             | GA-1149A     |
| 22        | 1        | Counter Drum Dial                   | 1              | X-5527       |
| 23        | 1        | Positioning Switch Drive Arm        | 2              | 881A         |
| 24        | 1        | Chain Drive                         | 13, 25, 26     | NX-5603      |
| 25        | 1        | Motor Sprocket                      | 24             | NX-5602      |
| 26        | 1        | Line Shaft Sprocket                 | 13, 25, 26     | NX-5514      |
|           |          |                                     |                |              |

#### REPLACEABLE AUTOTUNE PARTS

#### 5.8.2. Removing Component Parts

**5.8.2.1.** Cover—remove 16 screws and lift off. (Cover must be removed before any other units or parts are removed.)

5.8.2.2. Motor—remove 3 mounting screws and unsolder four wires to motor. Pivot motor as it is lifted out so as to free it from chain drive.

5.8.2.3. Autotune unit "A"—turn dial locking bar to unlocked position and loosen the two #10 bristo set screws in the dial. Turn dial and locking bar counterclockwise together until bar comes free. Remove both dial and locking bar. Remove the dial back plate, loosen the two long screws on the top end of the unit and the short screw on the bottom of the rear plate. Lift the unit out.

5.8.2.4. Autotune unit "C", "D", or "E" remove 4 screws, one on each of Autotune units "C", "D" and "E" and one on the end of the jack strip. Pull the strip out as far as the wires will permit. Turn locking screw on Autotune unit "C", "D" or "E" to unlock position and loosen the two #10 bristo set screws in the dial. Remove dial, remove dial back plate, loosen the two long screws on the top end of the unit and the short screw on the bottom of the rear plate. Lift the unit out.

5.8.2.5. Autotune unit "B"—remove the right end cover plate and the dial and back plate from unit "A". Next remove the #10 nut on the back end of the main tuning slug leadscrew which is attached to the multiplier slug coupling yoke. Then remove the two mounting screws along the upper edge of the back plate of the multiturn unit; also remove the single screw along the lower edge. Remove the two screws which hold the limit switch and carefully pull the switch away from the assembly. Carefully pull the assembly out of the casting being very careful not to damage the tuning slug on the leadscrew. Note: If the leadscrew is turned even slightly the high frequency oscillator must be recalibrated and realigned.

5.8.2.6. Line Shaft - remove all Autotune

singleturn units and four screws of the thrust bearing on left end of shaft. Remove taper groove pins on worms for heads A, C, and D and on sprocket. Pull shaft assembly out left end of Autotune casting. Caution: Be very careful not to spring the line shaft when driving out the taper groove pins. Support the shaft adjacent to the gears when removing or replacing the taper groove pins. Keep the gears separate and in order so each may be replaced in the same location from which it was removed.

5.8.3. Servicing the Main Line Shaft Assembly

5.8.3.1. The following replaceable parts are associated with the main line shaft assembly:

| Item      | Description                    |
|-----------|--------------------------------|
| 13        | Main Line Shaft                |
| <b>14</b> | Singleturn Worm (4)            |
| 18        | Main Line Shaft Thrust Bearing |
| 20        | Line Shaft Bearing (4)         |
| <b>24</b> | Chain Drive                    |
| 25        | Line Shaft Sprocket            |

5.8.3.2. In order to replace these parts it will be necessary to remove the entire line shaft assembly. Care must be exercised to keep each gear in the proper order when disassembling the line shaft. None of the gears are interchangeable.

5.8.3.3. The following procedure is recommended for removing the line shaft assembly. CAUTION: When driving out the taper groove pins be very careful not to spring the line shaft.

(a) Remove all singleturn Autotune heads (heads A, C, D, and E).

(b) Remove the taper groove pin from each of the worms and the sprocket. Before driving out a taper groove pin, be sure that the line shaft is well supported adjacent to the taper groove pin.

(c) Remove the four screws from the thrust bearing retainer plate on the left end of the casting.

(d) Slowly work the shaft off the left end of the casting removing each worm or the sprocket as it nears the end of the shaft. Be sure each gear is properly identified so as to be replaced in its original position. These gears are not interchangeable because each gear is drilled while on the line shaft.

#### 5.8.4. Replacing a Singleturn Worm

5.8.4.1. The replacement singleturn worm is furnished undrilled. The following procedure is recommended for replacing a singleturn worm:

(a) Center-punch the sleeve of the worm in the spot corresponding to the center of the hole on the old worm.

(b) Using a  $\frac{1}{16''}$  drill, drill through one side of the worm sleeve.

(c) Slide the worm on the shaft with the sleeve end away from the thrust bearing assembly.

(d) Drill through to the other side of the worm sleeve with the  $\frac{1}{16}$ " drill.

(e) Proceed to reassemble the line shaft in the reverse order of the foregoing disassembling procedure using new  $\frac{1}{16}$ " x  $\frac{3}{8}$ " taper groove pins on the worms and a new  $\frac{5}{64}$ " x  $\frac{1}{2}$ " taper groove pin on the sprocket.

#### 5.8.5. Replacing a Line Shaft Sprocket

5.8.5.1. Follow the same procedure as used for replacing the singleturn worm except use a #47 drill.

#### 5.8.6. Replacing the Chain Drive

5.8.6.1. As the line shaft is being pulled out the left end of the casting, slip off the old chain and sprocket. Put the new chain on the sprocket and push the line shaft back into place, slipping the shaft through the sprocket. Slip the singleturn worm on the end of the shaft and then replace with **new** taper groove pins.

#### 5.8.7. Replacing a Line Shaft Bearing

5.8.7.1. The oilite type line shaft bearings are held in place by means of a press fit. A thin steel sleeve fits over these bearings. After removing the line shaft the defective bearing should be driven out gently by using a mallet and a rod or blunt end punch. The new bearing should then be gently driven into place. Be careful not to deform the bearing.

#### 5.8.8. Replacing the Main Line Shaft Thrust Bearing

5.8.8.1. In replacing this bearing, it will not be necessary to remove the entire line shaft assembly. The following procedure is recommended:

(a) Remove the four screws from the bearing retainer plate on the left end of the casting.

(b) Remove the taper groove pin from the line shaft sprocket.

(c) Work the shaft end bearing out about an inch or more from the end of the casting.

(d) Carefully block up the outside bearing collar and drive out the taper groove pin from the inside bearing collar. Caution: Be careful not to spring the line shaft when driving the taper groove pin out.

(e) Replace the inside collar on the shaft, slide the new bearing on the shaft and then slide the outside collar through the bearing into the inside collar.

(f) Insert a taper groove pin and gently drive it home. Caution: Be sure the outside collar is blocked up properly so the line shaft will not be sprung.

(g) Slide the shaft back to its original position and replace the bearing plate. Use a new taper groove pin in the line shaft sprocket.

#### 5.8.9. Replacing the Main Line Shaft

5.8.9.1. The task of installing a new line shaft is difficult and lengthy and should only be attempted by an experienced mechanic who has adequate tools available.

The following procedure is recommended for replacing the main line shaft:

(a) Remove the line shaft as previously prescribed.

(b) Reassemble the gears on the shaft and drive the taper groove pins in lightly. (c) Carefully measure the distance from the milled end of the shaft to one end of each worm, the sprocket and the thrust bearing.

(d) Completely disassemble the line shaft.

(e) Centerpunch each gear and the sprocket at a point which is at a right angle to the previously used taper groove pin hole and the same distance from the end.

(f) Drill each gear with a  $\frac{1}{16}''$  drill and the sprocket with a #47 drill through on one side only.

(g) Put one of the worms on the shaft, in its predetermined position, block the shaft well, and, using a  $\frac{1}{16''}$  drill, drill through the new hole in the gear into the line shaft through the other side of the gear.

(h) Suitably mark the new hole on the sleeve of the gear.

(i) Repeat Steps (g) and (h) for the remaining worms and sprocket. Use a #47drill for the sprocket.

(j) Assemble the bearing and slide it on the end of the shaft.

(k) Clamp the bearing, block the shaft and drill through the two sleeves and the shaft at a point at right angles to the old hole. Use a  $\frac{1}{16}$  drill. (l) Suitably mark the new hole on both sleeves.

(m) Using a new taper groove pin (five  $\frac{1}{16}$ " x  $\frac{3}{8}$ " and one  $\frac{5}{64}$ " x  $\frac{1}{2}$ ") assemble the shaft in the casting as previously described. Note: Be sure to place the gears in their proper order on the shaft.

#### 5.8.10. Servicing the Multiturn Line Shaft Assembly

5.8.10.1. The following replaceable parts are associated with the Multiturn line shaft assembly:

| Item      | Description                 |
|-----------|-----------------------------|
| 15        | Small Multiturn Worm        |
| 16        | Large Multiturn Worm        |
| 17        | Multiturn Line Shaft        |
| 19        | Multiturn Line Shaft Thrust |
|           | Bearing                     |
| <b>20</b> | Line Shaft Bearing          |

5.8.10.2. This shaft assembly may be serviced in the same general way as the main line shaft. The multiturn head must be removed before any work may be done on the shaft. The large worm requires a  $\frac{5}{64}$ " x  $\frac{1}{2}$ " taper groove pin and the small worm and thrust bearing require  $\frac{1}{16}$ " x  $\frac{3}{8}$ " taper groove pins.

## VI DATA

## Page No.

| Table | I    | L-F Oscillator Calibration Data 83                                   |
|-------|------|----------------------------------------------------------------------|
| Table | II   | H-F Oscillator Calibration Data 85                                   |
|       |      | Low Frequency Tuning Charts 96                                       |
|       |      | High Frequency Tuning Charts 98                                      |
| Table | III  | Typical Antenna Tuning Data101                                       |
| Table | IV   | Typical Audio Frequency Data105                                      |
| Table | V    | Typical Operating Voltages and Currents106                           |
| Table | VI   | Voltage to Ground from Vacuum Tube Terminals107                      |
| Table | VII  | Voltage to Ground from Cable Connector Terminals108                  |
| Table | VIII | Resistance to Ground from Vacuum Tube Terminals109                   |
| Table | IX   | Resistance to Ground from Cable Connector<br>Terminals110            |
| Table | Х    | Resistance Measurements on Autotune Motor111                         |
| Table | XI   | General Specifications of Equipment112                               |
| Table | XII  | Equipment Supplied on Contract115                                    |
| Table | XIII | Equipment Required for Operation, but Not<br>Supplied on Contract115 |
| Table | XIV  | Interchangeability of Units116                                       |

Frequency 200 to 750 kilocycles

DATA

| TABLE | I-L-F | OSCILLATOR | CALIBRATION     | DATA | (200 Kc.  | to | 1500 | Kc.) |
|-------|-------|------------|-----------------|------|-----------|----|------|------|
| IADDD | TTT-  | ODDINATION | VIIIIIIIIIIIIII | ~~~~ | (200 110. |    | 1000 |      |

| Freq.                                     | A          | F              | G G                                             | Freq.        | A                                     | F              | G                                                  | Freq.                                     | A                                     | F      | G                                                | Freq.                                     | A          | F       | G                           |
|-------------------------------------------|------------|----------------|-------------------------------------------------|--------------|---------------------------------------|----------------|----------------------------------------------------|-------------------------------------------|---------------------------------------|--------|--------------------------------------------------|-------------------------------------------|------------|---------|-----------------------------|
| 200                                       | 13         | 1              | 393                                             | 300          | 13                                    | 2              |                                                    | 400                                       | 13                                    | 3      | 1090                                             | 500                                       | 13         | 4       |                             |
| 200                                       | 13         | 1              |                                                 | 302          | 13                                    | 2              | <b>1114</b><br>1153 육                              | 402                                       | 13                                    | 3      | 1120                                             | 505                                       | 13         | 4       | 518 su<br>565 si<br>kc)     |
| $202 \\ 204$                              | 13         | 1              | 469 ĝ<br>540 <sup>ĝ</sup>                       | 304          | 13                                    | $\overline{2}$ | 1192 5                                             | 404                                       | 13                                    | 3      | 1148                                             | 510                                       | $13^{-1}$  | 4       | 609 <b>≝</b> ⊾              |
| 206                                       | 13         | 1              | 609 g                                           | 306          | 13                                    | 2              | 1229 🛱                                             | 406                                       | 13                                    | 3      | 1177                                             | 515                                       | 13         | 4       | 565<br>609<br>654<br>654    |
| 208                                       | 13         | 1              | 676                                             | 308          | 13                                    | 2              | 1266 5                                             | 408                                       | 13                                    | 3      | 1205<br>1233 🎗                                   |                                           |            |         | 8                           |
| 210                                       | 13         | 1              | 739 00<br>801 00<br>861 00                      | 310          | 13                                    | 2              | 1302 💈<br>1338 🚽                                   | 410                                       | 13                                    | 3      | 1233 🛱                                           | 520                                       | 13         | 4       | 697                         |
| 212                                       | 13         | 1              | 801 🖫                                           | 312          | 13                                    | <b>2</b>       | 1338 🚽                                             | 412                                       | 13                                    | 3      | 1260 늘                                           | 525                                       | 13         | 4       | 739<br>781 <sup>오</sup>     |
| 214                                       | 13         | 1              | 861 <del>Ş</del>                                | 314          | 13                                    | 2              | 1373 œ                                             | 414                                       | 13                                    | 3      | 1288 👼                                           | 530                                       | 13         | 4       | 781 🎽                       |
| 216                                       | 13         | 1              | 919 🤶                                           | 316          | 13                                    | <b>2</b>       | 1407 5                                             | 416                                       | 13                                    | 3      | 1314<br>1341<br>1368 H                           | 533                                       | 13         | 4       | 808 눭                       |
| 218                                       | 13         | 1              | 976 💛                                           |              |                                       |                |                                                    | 418                                       | 13                                    | 3      | 1341                                             | 535                                       | 13         | 4       | 821 m                       |
| 220                                       | 13         | 1              | 1030                                            | 318          | 13                                    | 2              | 1442                                               | 420                                       | 13                                    | 3      | 1368 5                                           | 540                                       | 13         | 4       | 862 50<br>901 5<br>940 5    |
|                                           |            |                |                                                 | 320          | 13                                    | 2              | 1476                                               | 422                                       | 13                                    | 3      | 1394                                             | 545                                       | 13         | 4       | 901                         |
| 222                                       | 13         | 1              | 1084                                            | 322          | 13                                    | 2              | 1508<br>1542 ຊີ                                    | 424                                       | 13                                    | 3      | 1419 5                                           | 550                                       | 13         | 4       |                             |
| 224                                       | 13         | 1              | 1136                                            | 324          | 13                                    | 2              |                                                    | 426                                       | 13                                    | 3      | 1445                                             | 555                                       | 13         | 4       | 978 œ                       |
| 226                                       | 13         | 1              | 1187 g                                          | 326          | 13                                    | 2              | 1574 5<br>1606 5                                   | $\begin{array}{r} 428 \\ 430 \end{array}$ | $\begin{array}{c} 13\\ 13\end{array}$ | 3<br>3 | $\begin{array}{c} 1470 \\ 1495 \end{array}$      | 560 $565$                                 | $13 \\ 13$ | 4<br>4  | 1016                        |
| 228                                       | 13         | 1              | 1237 년<br>1286 월                                | 328          | $13 \\ 13$                            | 2<br>2         |                                                    | $430 \\ 432$                              | 13                                    | 3<br>3 | 1495                                             | 909                                       | 13         | 4       | 1053                        |
| $\begin{array}{c} 230\\ 232 \end{array}$  | 13         | 1              | 1094 00                                         | 330<br>332   | 13                                    | 2              | 1638 <sup>su</sup><br>1670 si<br>1691 <sup>j</sup> | 404                                       | 10                                    | U      | 1015                                             | 570                                       | 13         | 4       | 1090                        |
| 232<br>234                                | 13<br>13   | 1<br>1         | 1334 ะ<br>1381 ะ<br>1426 ะ                      | 333          | 13                                    | 2              | 1691 2                                             | 434                                       | 13                                    | 3      | 1544                                             | 575                                       | 13         | 4       | 1127                        |
| 234<br>236                                | 13         | 1              | 14965                                           | 334          | 13                                    | 2              | 1701                                               | 436                                       | 13                                    | 3      | 1569                                             | 580                                       | 13         | 4       | 1163                        |
| 238                                       | 13         | 1              | 1472                                            | 336          | 13                                    | 2              | 1732 Ξ                                             | 438                                       | 13                                    | 3      |                                                  | 585                                       | 13         | 4       | 1198 👮                      |
| <b>240</b>                                | 13         | 1              | 1515 ឡ                                          | 338          | 13                                    | 2              | 1763                                               | 440                                       | 13                                    | 3      | 1593<br>1616 ន                                   | 590                                       | 13         | 4       |                             |
| 242                                       | 13         | 1              | 1560                                            | 340          | 13                                    | 2              | 1793                                               | 442                                       | 13                                    | 3      | 1641 ង                                           | 595                                       | 13         | 4       | 1234 5<br>1270 5            |
| 244                                       | 13         | ĩ              | 1603                                            | • • •        |                                       |                |                                                    | 444                                       | 13                                    | 3      | 1665 P                                           | 600                                       | 13         | 4       | <b>1304</b> ខ្ល<br>1340 ឆ្ន |
|                                           |            | -              |                                                 | 342          | 13                                    | 2              | <b>1823</b> ତ୍ରି                                   | 446                                       | 13                                    | 3      | 1688 6<br>1710 5<br>1734 2<br>1757               | 605                                       | 13         | 4       | 1340 ភ្លី                   |
| 246                                       | 13         | 1              | 1646 <sub>ටු</sub>                              | 344          | 13                                    | 2              | 1823 9<br>1854 5<br>1883 8                         | 448                                       | 13                                    | 3      | 1710 🛓                                           | 610                                       | 13         | 4       | 1375 🚔                      |
| 248                                       | 13         | 1              | 1688 ≝                                          | 346          | 13                                    | 2              | 1883 ឌ្ណី                                          | 450                                       | 13                                    | 3      | 1734 🛔                                           | 615                                       | 13         | 4       | 1408                        |
| 250                                       | 13         | 1              | 1729 b                                          | 348          | 13                                    | 2              | 1912 m<br>1942 - 5                                 | 452                                       | 13                                    | 3      | 1191 -                                           | 620                                       | 13         | 4       | 1444                        |
| 252                                       | 13         | 1              | 1770 m                                          | 350          | 13                                    | 2              | 1942 🧟                                             | 454                                       | 13                                    | 3      | 1780 ೮                                           | 625                                       | 13         | 4       | 1479                        |
| 254                                       | 13         | 1              | 1810 គ្នី                                       | 352          | 13                                    | 2              | 1971 5                                             | 456                                       | 13                                    | 3      | 1802                                             | 630                                       | 13         | 4       | 1512                        |
| 256                                       | 13         | 1              | $1851 \frac{5}{2}$                              | 354          | 13                                    | 2              | 2000                                               | 458                                       | 13                                    | 3      | 1825                                             |                                           |            |         |                             |
| 258                                       | 13         | 1              | 1890 🗟                                          | 356          | 13                                    | 2              | 2028 5                                             | 460                                       | 13                                    | 3      | 1847                                             | 635                                       | 13         | 4       | 1548                        |
| 260                                       | 13         | 1              | 1929 ຊ                                          | 050          | 10                                    | ~              | - <b>- /</b>                                       | 462                                       | 13                                    | 3      | 1870<br>1892 अँ                                  | 640                                       | 13         | 4       | 1584<br>1618 🛱              |
| 262                                       | 13         | 1              | 1968                                            | 350          | 13                                    | 3              | 154                                                | $\begin{array}{c} 464 \\ 466 \end{array}$ | $\begin{array}{c}13\\13\end{array}$   | 3<br>3 |                                                  | 645                                       | 13         | 4       |                             |
|                                           | 4.0        | •              | - 77 -                                          | 352          | 13                                    | 3              | 205<br>255 S                                       | 460<br><b>467</b>                         | 13                                    | 3      | 1913 눭<br><b>1921</b> ㅠ                          | $\begin{array}{c} 650 \\ 655 \end{array}$ | 13         | 4<br>4  | 1655 5<br>1691 m            |
| 262                                       | 13         | 2<br>2         | $\begin{array}{c} 175 \\ 242 \end{array}$       | $354 \\ 356$ | $\begin{array}{c} 13\\ 13\end{array}$ | 3<br>3         | 200 x<br>202 t                                     | 468                                       | 13                                    | 3      | 1921<br>1936 §                                   | 660                                       | $13 \\ 13$ | 4       | 1728 5                      |
| $\begin{array}{c} 264 \\ 266 \end{array}$ | $13 \\ 13$ | 2              | 242                                             | 358          | 13                                    | 3<br>3         | 302 b<br>347                                       | 470                                       | 13                                    | 3      | 1958 7                                           | 665                                       | 13         | 4       | 1766.3                      |
| <b>260</b><br><b>267</b>                  | 13         | 2              | 305 (ទ្រុ<br><b>325</b> រួង<br>366 <sup>1</sup> | 360          | $13 \\ 13$                            | 3              | 392 8                                              | 472                                       | 13                                    | 3      | 1958 <sup>is</sup> i<br>1980 ig                  | 667                                       | 13         | 4       | 1766 IA<br>1779 B           |
| 268                                       | 13         | 2              | 366 8                                           | 362          | 13                                    | 3              | 392<br>434<br>476<br>515                           | 474                                       | 13                                    | 3      | 2001                                             | 670                                       | 13         | 4       | 1804 5                      |
| 270                                       | 13         | 2              | 423 2                                           | 364          | 13                                    | 3              | 476 Ē                                              | 476                                       | 13                                    | 3      | 2022 ೮                                           | 675                                       | 13         | 4       | 1845                        |
| 272                                       | 13         | $\overline{2}$ | 423 su<br>480 si                                | 366          | 13                                    | 3              | 515                                                |                                           |                                       |        |                                                  | 680                                       | 13         | 4       | 1886                        |
| 274                                       | 13         | 2              | 533 2                                           | 368          | 13                                    | 3              | 555 😇                                              | 467                                       | 13                                    | 4      | 176<br>191 9                                     |                                           |            |         |                             |
| 276                                       | 13         | 2              | 533 1<br>585 m                                  | 370          | 13                                    | 3              | 593                                                | 468                                       | 13                                    | 4      | 191 ጃ                                            | 685                                       | 13         | 4       | 1928 ु                      |
| 278                                       | 13         | 2              | 635 🖱                                           | 372          | 13                                    | 3              | 631                                                | 470                                       | 13                                    | 4      | 213 ង្គ                                          | 690                                       | 13         | 4       | 1976 <del>j</del>           |
| 280                                       | 13         | 2              | 684                                             | 374          | 13                                    | 3              | 668                                                | 472                                       | 13                                    | 4      | 235 m                                            | 695                                       | 13         | 4       | و 2023 م                    |
| 282                                       | 13         | <b>2</b>       | 731                                             |              |                                       |                |                                                    | 474                                       | 13                                    | 4      | 257 5                                            |                                           |            |         |                             |
|                                           |            |                |                                                 | 376          | 13                                    | 3              | 704                                                | 476                                       | 13                                    | 4      | 279 5                                            | 695                                       | 13         | 5       | 156                         |
| 284                                       | 13         | 2              | 778<br>823 x                                    | 378          | 13                                    | 3              | 739                                                | 478                                       | 13                                    | 4      | 213 ad<br>235 sub<br>257 sub<br>279 si<br>300 jp | 700                                       | 13         | 5       | 195                         |
| 286                                       | 13         | 2              | 823 🛎                                           | 380          | 13                                    | 3              | 774 🕱                                              | 480                                       | 13                                    | 4      | 321 I                                            | 705                                       | 13         | 5       | 231                         |
| 288                                       | 13         | 2              | 868 5<br>911 m                                  | 382          | 13                                    | 3              | 808 5<br>841 5                                     | 482                                       | 13                                    | 4      | 342 5                                            | $710 \\ 715$                              | 13         | 5<br>5  | 269                         |
| 290                                       | 13         | 2              | 911 m                                           | 384          | 13                                    | 3              | 841                                                | A O A                                     | 10                                    | ,      | 969                                              | 715                                       | 13         | ۸5<br>5 | 303<br>338 ¥                |
| 292                                       | 13         | 2              | 953 0<br>995 1<br>1035 0                        | 386          | 13                                    | 3              | 874                                                | $\begin{array}{r} 484 \\ 486 \end{array}$ | 13<br>13                              | 4<br>4 | 363<br>383 🛱                                     | $\begin{array}{c} 720 \\ 725 \end{array}$ | 13<br>13   | 5       | 000 54<br>979 L             |
| 294                                       | 13         | 2              | 995                                             | 388          | 13                                    | 3              | 906 m<br>020 k                                     | 480<br>488                                | 13                                    | 4<br>4 | 000 M<br>109 H                                   | 725                                       | 13<br>13   | 5<br>5  | 373 5<br>406 -              |
| 296                                       | 13         | 2              | 1035                                            | 390          | 13                                    | 3              | 874<br>906 sphip<br>938 ip<br>970 91               | 488<br>490                                | 13                                    | 4      | 402 5<br>422 0                                   | 733                                       | 13         | 5       | 427                         |
| 298<br><b>300</b>                         | 13<br>13   | 2<br><b>2</b>  | 1075 5<br>1114 S                                | 392<br>204   | 13                                    | 3              | 1000                                               | 490                                       | 13                                    | 4      | 442                                              | 735                                       | 13         | 5       | 438 4                       |
| 200                                       | 13         | 4              | 1114                                            | $394 \\ 396$ | 13<br>13                              | 3<br>3         | 1000 こ<br>1030                                     | 494                                       | 13                                    | 4      | 422<br>442 suoisi<br>462 sinip<br>481 ip         | 740                                       | 13         | 5       | 400<br>427<br>438<br>471    |
|                                           |            |                |                                                 | 395          | 13                                    | а<br>3         | 1061                                               | 496                                       | 13                                    | 4      | 481 <sup>E</sup>                                 | 745                                       | 13         | 5       | 502 5                       |
|                                           |            |                |                                                 | 400          | 13                                    | 3              | 1090                                               | 498                                       | 13                                    | 4      | 499 0                                            | 750                                       | 13         | 5       | 533                         |
|                                           |            |                |                                                 |              |                                       | -              |                                                    | 500                                       | 13                                    | 4      | 518 <sup>C</sup>                                 |                                           |            |         |                             |
|                                           |            |                |                                                 |              |                                       |                |                                                    | 1 1                                       | 1                                     |        |                                                  |                                           |            |         |                             |

# Frequency 750 to 1500 kilocycles

#### DATA

|         |                                           |               |              |                                                       |                     | D               | ATA            | ł                                         |                     |                 |        |                                                                             |
|---------|-------------------------------------------|---------------|--------------|-------------------------------------------------------|---------------------|-----------------|----------------|-------------------------------------------|---------------------|-----------------|--------|-----------------------------------------------------------------------------|
| TABLE I | —(Con                                     | i <b>t.</b> ) |              |                                                       |                     |                 |                |                                           |                     |                 |        |                                                                             |
|         | Freq.                                     | Α             | $\mathbf{F}$ | G                                                     | Freq.               | Α               | $\mathbf{F}$   | G                                         | Freq.               | A               | F      | G                                                                           |
|         | 750                                       | 13            | 5            | 533 <b>ਹ</b>                                          | 1000                | 13              | 5              | 1795 <sup>9</sup>                         | 1250                | 13              | 6      | 1016 ~                                                                      |
|         | 755                                       | 13            | 5            | 533 (c)<br>565 .ad<br>594 d                           | 1005                | 13              | 5              | 1822 눭                                    | 1255                | 13              | 6      | 1016 g                                                                      |
|         | 760                                       | 13            | 5            | 594                                                   | 1010                | 13              | 5              | 1850                                      | 1260                | 13              | 6      | 1050 复                                                                      |
|         | 765                                       | 13            | 5            | 624 >                                                 | 1015                | 13              | $\overline{5}$ | 1878 5                                    | 1265                | 13              | 6      | 1067 0                                                                      |
|         | 770                                       | 13            | 5            | 624 ×<br>654 <sup>vi</sup>                            | 1020                | $\overline{13}$ | 5              | 1850<br>1878 suoisiv<br>1905 in<br>1935 m | 1267                | 13              | 6      | 1067 suoisivi<br>1073 1084 in 1084 in 100 second                            |
|         |                                           |               | •            | (9                                                    | 1025                | 13              | 5              | 1935 5                                    | 1270                | 13              | 6      | 1084 5                                                                      |
|         | 775                                       | 13            | 5            | 683                                                   | 1030                | 13              | 5              | 1966                                      | 1275                | 13              | 6      | 1100 8                                                                      |
|         | 780                                       | 13            | <b>5</b>     | 711                                                   | 1035                | 13              | 5              | 1990                                      | 1280                | 13              | 6      | 1116 🚆                                                                      |
|         | 785                                       | 13            | 5            | 739                                                   |                     |                 |                | (c)                                       |                     |                 |        |                                                                             |
|         | 790                                       | 13            | <b>5</b>     | 768 🕄                                                 | 1035                | 13              | 6              | 145 L<br>171 ·<br>196 ·                   | 1285                | 13              | 6      | 1132                                                                        |
|         | 795                                       | 13            | 5            | 795 5                                                 | 1040                | 13              | 6              | 171 <sup>×</sup>                          | 1290                | 13              | 6      | 1149                                                                        |
|         | 800                                       | 13            | 5            | 795 b<br>821 a                                        | 1045                | 13              | 6              | 196 🛓                                     | 1295                | 13              | 6      | 1166                                                                        |
|         | 805                                       | 13            | <b>5</b>     | 849 🖄                                                 | 1050                | 13              | 6              | 219 ື                                     | 1300                | 13              | 6      | <b>1182</b> g                                                               |
|         | 810                                       | 13            | <b>5</b>     |                                                       | 1055                | 13              | 6              | 244 ご                                     | 1305                | 13              | 6      | 1198 🚆                                                                      |
|         | 815                                       | 13            | <b>5</b>     | 901 ლ                                                 |                     |                 |                |                                           | 1310                | 13              | 6      | 1214 2                                                                      |
|         | 820                                       | 13            | 5            | 927                                                   | 1060                | 13              | 6              | 270 🤶                                     | 1315                | 13              | 6      | 1230 su<br>1246 si<br>1262 si<br>1278 su                                    |
|         | 825                                       | 13            | <b>5</b>     | 953                                                   | 1065                | 13              | 6              | 293 J<br>300 A                            | 1320                | 13              | 6      | 1246 ខ្ល                                                                    |
|         | 830                                       | 13            | <b>5</b>     | 979                                                   | 1067                | 13              | 6              | 300 <del>^</del>                          | 1325                | 13              | 6      | 1262 🚊                                                                      |
|         |                                           |               |              |                                                       | 1070                | 13              | 6              | 315 <u>-</u>                              | 1330                | 13              | 6      |                                                                             |
|         | 835                                       | 13            | <b>5</b>     | 1004                                                  | 1075                | 13              | 6              | 338 <sub>10</sub>                         | 1335                | 13              | 6      | 1294 📆                                                                      |
|         | 840                                       | 13            | 5            | 1029                                                  | 1080                | 13              | 6              | 363 E                                     | 1340                | 13              | 6      | 1309                                                                        |
|         | 845                                       | 13            | 5            | 1054 🛱                                                |                     |                 |                |                                           | 1345                | 13              | 6      | 1325                                                                        |
|         | 850                                       | 13            | 5            | 1079 b<br>1103 <sup>b</sup>                           | 1085                | 13              | 6              | 385 g<br>407 4                            | 1350                | 13              | 6      | 1341                                                                        |
|         | 855                                       | 13            | 5            |                                                       | 1090                | 13              | 6              | 407 4                                     |                     |                 |        |                                                                             |
|         | 860                                       | 13            | 5            | 1127 to<br>1152 si<br>1160 ip                         | 1095                | 13              | 6              | 428 2                                     | 1355                | 13              | 6      | 1358                                                                        |
|         | 865                                       | 13            | 5            | 1152 2                                                | 1100                | 13              | 6              | 451 5<br>473 8                            | 1360                | 13              | 6      | 1374                                                                        |
|         | 867                                       | 13            | 5            | 1160 🗃                                                | 1105                | 13              | 6              | 473 3                                     | 1365                | 13              | 6      | 1389                                                                        |
|         | 870                                       | 13            | 5            | 1176 ∞                                                | 1110                | 13              | 6              | 493 <sup>∞</sup>                          | 1370                | 13              | 6      | 1404                                                                        |
|         | 875                                       | 13            | 5            | 1199 ゼ                                                | 1115                | 13              | 6              | 514                                       | 1375                | 13              | 6      | 1419 g                                                                      |
|         | 880                                       | 13            | 5            | 1223                                                  | 1100                | 10              | •              | 534 🛱                                     | 1380                | 13              | 6      | 1436 1<br>1452 2                                                            |
|         | 005                                       | 10            | -            | 1247 🕄                                                | 1120                | 13              | 6              | 534 -                                     | 1385                | 13              | 6      |                                                                             |
|         | $\begin{array}{c} 885 \\ 890 \end{array}$ | 13<br>13      | 5            | 1247 5                                                | 1125                | $13_{12}$       | 6              | 000 g                                     | 1390                | 13              | 6      | 1408 6                                                                      |
|         | 890                                       | 13            | 5<br>5       | 1270 0                                                | 1130<br><b>1133</b> | 13<br><b>13</b> | 6<br>6         | 556 ba<br>576<br>589 ip                   | 1395                | 13<br><b>13</b> | 6<br>C | 1468 <sup>g</sup> uoisi<br>1484 <sup>g</sup> uoisi<br>1499 <sup>1</sup> 514 |
|         | <b>900</b>                                | 13            | 5            | 1294 0                                                | 1135                | 13              | 6              | <b>305</b> ా<br>596 ౌ                     | <b>1400</b><br>1405 | 13              | 6<br>6 | 1499 P                                                                      |
|         | 905                                       | 13            | 5            | 1270 La<br>1294 st<br>1317 loss<br>1341 in<br>1364 b  | 1199                | 19              | 0              | 990 C                                     | 1405                | $13 \\ 13$      |        | 1011 01                                                                     |
|         | 910                                       | $13 \\ 13$    | 5            | 1964 5                                                | 1140                | 13              | 6              | 615                                       | $1410 \\ 1415$      | $13 \\ 13$      | 6<br>6 | 1530 లే<br>1547                                                             |
|         | 915                                       | $13 \\ 13$    | 5            | 1387 9                                                | 1145                | $13 \\ 13$      | 6              |                                           | 1410                | $13 \\ 13$      | 6      | 1563                                                                        |
|         | 010                                       | 10            | 0            | 1387 🦉                                                | 1150                | 13              | ő              | 635 (c)<br>656 Jac<br>675 d               | 1425                | 13              | 6      | 1580                                                                        |
|         | 920                                       | 13            | 5            | 1410                                                  | 1155                | 13              | 6              | 675 8                                     | 1420                | 13              | 6      | 1595                                                                        |
|         | 925                                       | 13            | 5            | 1433 🚊                                                | 1160                | 13              | ő              | 694 >                                     | 1100                | 10              | v      | 1000                                                                        |
|         | 930                                       | 13            | 5            | 1457 5                                                | 1165                | 13              | 6              | 712 8                                     | 1435                | 13              | 6      | 1611                                                                        |
|         | 933                                       | 13            | 5            | 1473                                                  | 1170                | 13              | 6              | 731 👸                                     | 1440                | 13              | 6      |                                                                             |
|         | 935                                       | 13            | 5            | 1480 8                                                | 1175                | 13              | 6              | 751                                       | 1445                | 13              | 6      | $1627_{1644}$                                                               |
|         | 940                                       | 13            | 5            | 1457<br>1473<br>1480 uoisin<br>1526 p                 |                     |                 |                |                                           | 1450                | 13              | 6      | 1661 5                                                                      |
|         | 945                                       | 13            | 5            | 1526 🛱                                                | 1180                | 13              | 6              | 770                                       | 1455                | 13              | 6      | 1678 2                                                                      |
|         | 950                                       | 13            | 5            | 1550 9.<br>1574 <sup>9</sup>                          | 1185                | 13              | 6              | 788                                       | 1460                | 13              | 6      | 1694                                                                        |
|         | 955                                       | 13            | 5            | 1574 2                                                | 1190                | 13              | 6              |                                           | 1465                | 13              | 6      | 1678 d<br>1694 suoisi<br>1710 suoisi<br>1715 p                              |
|         | 960                                       | 13            | 5            | 1597                                                  | 1195                | 13              | 6              | 806<br>823 ਤੋਂ                            | 1467                | 13              | 6      | 1715 🗄                                                                      |
|         |                                           |               |              |                                                       | 1200                | 13              | 6              | 842 b                                     | 1470                | 13              | 6      | 1727 🚆                                                                      |
|         | 965                                       | 13            | 5            | 1621 ¥                                                | 1205                | 13              | 6              | 860 📜                                     | 1475                | 13              | 6      | 1744                                                                        |
|         | 970                                       | 13            | 5            | 1645 ad<br>1670 suo<br>1694 uo<br>1718 isi<br>1744 ip | 1210                | 13              | 6              | 842 ad<br>860 Ap<br>878 p                 | 1480                | 13              | 6      | 1763                                                                        |
|         | 975                                       | 13            | 5            | 1670 👷                                                | 1215                | 13              | 6              | 895 <u></u><br>913 <sup>©</sup>           |                     |                 |        | 6                                                                           |
|         | 980                                       | 13            | 5            | 1694 5                                                | 1220                | 13              | 6              |                                           | 1485                | 13              | 6      | 1780 🛱                                                                      |
|         | 985                                       | 13            | 5            | 1718                                                  | 1225                | 13              | 6              | 930                                       | 1490                | 13              | 6      | 1797 b                                                                      |
|         | 990                                       | 13            | 5            | 1744 🖶                                                | 1230                | 13              | 6              | 948                                       | 1495                | 13              | 6      | 1813 .<br>1832 =                                                            |
|         | 995                                       | 13            | 5            | 1770 ∞                                                |                     |                 |                | kc)                                       | 1500                | 13              | 6      | 1832 🗄                                                                      |
|         | 1000                                      | 13            | 5            | 1795 🖱                                                | 1235                | 13              | 6              | 966 5                                     |                     |                 |        | (3.5                                                                        |
|         |                                           |               |              |                                                       | 1240                | 13              | 6              | 966<br>983<br>9999<br>1010                |                     |                 |        | •                                                                           |
|         |                                           |               |              |                                                       | 1245                | 13              | 6              | 999                                       |                     |                 |        |                                                                             |
|         |                                           |               |              |                                                       | 1250                | 13              | 6<br>6         | 1010 -                                    |                     |                 |        |                                                                             |
|         |                                           |               |              | 11                                                    | 1267                | 13              | 6              | 1073                                      | A                   |                 |        |                                                                             |
|         |                                           |               |              | use nea                                               | rest cneck          | , pon           | ut Sl          | hown in heav                              | vv type.            |                 |        |                                                                             |

。 2 第 4

#### DATA

TABLE II-H-F OSCILLATOR CALIBRATION DATA (2000 Kc. to 18,100 Kc.)

| Freq.          | А      | в                                                       | Freq.          | A              | в                                                           | Freq.                                   | А       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Freq.                                      | А              | в                                                           |
|----------------|--------|---------------------------------------------------------|----------------|----------------|-------------------------------------------------------------|-----------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|-------------------------------------------------------------|
| 2000           | 1      | 100 ହ                                                   | 2250           | 1              | 1027                                                        | 250                                     | 00 2    | <b>366</b> ତ୍ରି                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2750                                       | 2              | 1133                                                        |
| 2005           | 1      | 100 (c)<br>119 Led<br>138 dd                            | 2255           | 1              | 1046 2                                                      | 25                                      |         | 381 🛓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2755                                       | 2              | 1148                                                        |
| 2010           | 1      | 138                                                     | 2260           | 1              | 1046 ()<br>1064 L<br>1083 a                                 | 25                                      |         | 397 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2760                                       | 2              | 1163                                                        |
| 2015           | 1      | 156 suoisivi<br>174 isivi<br>193 ivi<br>211 9           | 2265           | 1              | 1083 <sup>B</sup>                                           | 25                                      |         | 412 <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2765                                       | 2              | 1179                                                        |
| 2020           | 1      | 174                                                     | 2267           | 1              | 1089 × 1101 × 1101 × 1119 ÷                                 |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2770                                       | 2              | 1194                                                        |
| 2025           | 1      | 193 🛎                                                   | 2270           | 1              | 1101                                                        | 25                                      | 20 2    | 427 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2775                                       | 2              | 1209                                                        |
| 2030           | 1      | 211                                                     | 2275           | 1              | 1119 ອ                                                      | 25                                      |         | 443 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2780                                       | 2              | 1224                                                        |
| 2035           | 1      | 230 😇                                                   | 2280           | 1              | 1138                                                        | 25                                      | 30 2    | 458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2785                                       | <b>2</b>       | 1239 ĝ                                                      |
| 2040           | 1      | 248                                                     |                |                |                                                             | 25                                      | 33 2    | <b>469</b> ଞ୍ଚି                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2790                                       | 2              | 1254 5                                                      |
| 2045           | 1      | 267                                                     | 2285           | 1              | 1156                                                        | 25                                      | 35 2    | 474 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2795                                       | 2              | 1254 5<br>1270 5                                            |
| 2050           | 1      | 285                                                     | 2290           | 1              | 1174                                                        | 25                                      |         | 489 👼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2800                                       | 2              | 1285 ខ្ល                                                    |
|                |        |                                                         | 2295           | 1              | 1193                                                        | 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2805                                       | 2              | <b>1285</b> su 1300 isi Aig                                 |
| 2055           | 1      | 303                                                     | 2300           | 1              | 1211 <b>ខ្</b>                                              | 25                                      |         | 520 <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2810                                       | <b>2</b>       | 1315                                                        |
| 2060           | 1      | 322                                                     | 2305           | 1              | 1229 L                                                      | 25                                      |         | $535 \sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2815                                       | 2              | 1330 8                                                      |
| 2065           | 1      | 340                                                     | 2310           | 1              | 1247 🛱                                                      | 25                                      | 60 2    | 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2820                                       | 2              | 1345                                                        |
| 2070           | 1      | 359 <u>9</u>                                            | 2315           | 1              | 1265 su<br>1284 su<br>1302 ig<br>1221                       |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2825                                       | 2              | 1361                                                        |
| 2075           | 1      | 377                                                     | 2320           | 1              | 1284 5                                                      | 25                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2830                                       | 2              | 1376                                                        |
| 2080           | 1      | 396 Å                                                   | 2325           | 1              | 1302 🛓                                                      | 25                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2835                                       | 2              | 1391                                                        |
| 2085           | 1      | 415 ដ                                                   | 2330           | 1              | 1021 0                                                      | 25,                                     |         | 597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2840                                       | 2              | 1406                                                        |
| 2090           | 1      | 433 ig                                                  | 2335           | 1              | 1339 C                                                      | 25                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2845                                       | 2              | 1421                                                        |
| 2095           | 1      | 377<br>396<br>415<br>433<br>452<br>470<br>9<br>470<br>9 | 2340           | 1              | 1357                                                        | 25                                      |         | 628 🛎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2850                                       | 2              | 1436                                                        |
| 2100           | 1      | 470 <sub>e</sub>                                        | 2345           | 1              | 1376                                                        | 25                                      |         | 644 b<br>659 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                |                                                             |
| 2105           | 1      | 489 😇                                                   | 2350           | 1              | 1394                                                        | 25                                      |         | 659 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2855                                       | <b>2</b>       | 1452                                                        |
| 2110           | 1      | 508                                                     |                |                |                                                             | 26                                      |         | 674<br>690 suoisivip<br>705 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2860                                       | <b>2</b>       | 1469                                                        |
| 2115           | 1      | 526                                                     | 2355           | 1              | 1412                                                        | 26                                      |         | 690 🗄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2865                                       | 2              | 1482                                                        |
|                |        |                                                         | 2360           | 1              | 1430 2<br>1449 <sup>1</sup><br>1468 <sup>1</sup><br>1468    | 26                                      |         | 705 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2870                                       | 2              | 1482<br>1498 S                                              |
| 2120           | 1      | 545                                                     | 2365           | 1              | 1449 🚆                                                      | 26                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2875                                       | 2              | 1513 ind<br>1528 store<br>1544 store<br>1559 int<br>1574 ip |
| 2125           | 1      | 564                                                     | 2370           | 1              | 1468 g                                                      | 26                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2880                                       | 2              | 1528 👷                                                      |
| 2130           | 1      | 582                                                     | 2375           | 1              | 1486 5<br>1504 5                                            | 26                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2885                                       | 2              | 1544 8                                                      |
| 2133           | 1      | <b>595</b> ୍ରି                                          | 2380           | 1              | 1504 😇                                                      | 26                                      | 30 2    | 767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2890                                       | 2              | 1559.5                                                      |
| 2135           | 1      | 601 5                                                   | 2385           | 1              | 1523                                                        |                                         |         | - • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2895                                       | 2              | 1574                                                        |
| 2140           | 1      | 601 1<br>620<br>638 jp<br>657 9                         | 2390           | 1              | 1541                                                        | 26                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2900                                       | 2              | 1590 <del>.</del>                                           |
| 2145           | 1      | 638 <u>&gt;</u>                                         | 2395           | 1              | 1560                                                        | 26                                      |         | 797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2905                                       | 2              | 1605                                                        |
| 2150           | 1      | 657                                                     | 2400           | 1              | 1578                                                        | 26                                      |         | 813 🕄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2910                                       | 2              | 1621                                                        |
| 2155           | 1      | 675 ල්<br>600                                           | 2400           | 2              | 060                                                         | 26                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2915                                       | 2              | 1636                                                        |
| 2160           | 1<br>1 | 693                                                     | 2400<br>2405   |                | 076                                                         | 26<br>26                                |         | 844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9090                                       |                | 1059                                                        |
| 2165           | 1      | 713                                                     | 2403<br>2410   | $\frac{2}{2}$  |                                                             | 26                                      |         | 859 subject set and se | 2920                                       | 2              | 1653                                                        |
| 2170           | 1      | 732                                                     | $2410 \\ 2415$ | $\frac{2}{2}$  | 091<br>106 🛱                                                | 26                                      |         | 874.ª<br>870.≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 2925\\ 2930 \end{array}$ | $\frac{2}{2}$  | 1668<br>1683 ල                                              |
| $2170 \\ 2175$ | 1      | 750                                                     | 2415           | 2              | 191 5                                                       | 26                                      |         | 890 ლ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>2930</b><br><b>2933</b>                 | 2              | 1603 J                                                      |
| 2180           | 1      | 769                                                     | 2420<br>2425   | $\frac{2}{2}$  | 121 b<br>137                                                | 26                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2935                                       | 2              | <b>1694</b> <sup>호</sup><br>1699 불                          |
| 2180           | 1      | 787                                                     | 2420           | 2              | 152                                                         | 26                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2940                                       | $\frac{2}{2}$  | 1035 A<br>1715 m                                            |
| 2190           | 1      | 6 308                                                   | 2435           | $\frac{2}{2}$  |                                                             | 20                                      | <b></b> | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2945                                       | $\frac{2}{2}$  | 1715 su<br>1731 is<br>1749 is<br>1763 se                    |
| 2195           | 1      | 824                                                     | 2440           | 2              | 168 e                                                       | 26                                      | 85 2    | 935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2950                                       | $\frac{1}{2}$  | 17495                                                       |
| 2200           | î      | 806 (2)<br>824<br>843                                   | 2445           | 2              | 198                                                         | 26                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2955                                       | $\frac{1}{2}$  | 1763                                                        |
| 2205           | 1      | 862 2                                                   | 2450           | 2              | 213                                                         | 26                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2960                                       | $\tilde{2}$    | 1779 <sup>™</sup>                                           |
| 2210           | 1      | 880                                                     |                | -              |                                                             | 27                                      | 00 2    | 981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2965                                       | 2              | 1795                                                        |
| 2215           | 1      | 862 suoisi<br>880 suoisi<br>917 g                       | 2455           | 2              | 228                                                         | 27                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                       | -              | 1100                                                        |
| 2220           | 1      | 917                                                     | 2460           | 2              | 243 3                                                       | 27                                      |         | 1012 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2970                                       | 2              | 1811                                                        |
| 2225           | 1      | 935 ల                                                   | 2465           | $\overline{2}$ | 243<br>259<br>274<br>290<br>305<br>320<br>835<br>835<br>835 | 27                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2975                                       | 2              |                                                             |
| 2230           | 1      | 954                                                     | 2470           | $\overline{2}$ | 274 5                                                       | 27                                      |         | 1042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2980                                       | 2              | 1827 ອີ<br>1843 ຼີ                                          |
| 2235           | 1      | 972                                                     | 2475           | $\frac{1}{2}$  | 290                                                         | 27                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2985                                       | 2              | 1860 2                                                      |
| 2240           | 1      | 991                                                     | 2480           | 2              | 305 5                                                       | 27                                      |         | 1073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2990                                       | 2              | 1877                                                        |
| 2245           | 1      | 1009                                                    | 2485           | 2              | 320 2                                                       | 27                                      |         | 1088 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2995                                       | 2              | 1893 च                                                      |
| 2250           | 1      | 1027                                                    | 2490           | 2              | 335 ਦ                                                       | 27                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000                                       | $\overline{2}$ | 1910 9                                                      |
|                |        |                                                         | 2495           | 2              | 351 2                                                       | 27                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | -              |                                                             |
|                |        |                                                         | 2500           | 2              | 366                                                         | 27                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                |                                                             |

# Frequency 3000 to 4000 kilocycles

TABLE II-(Cont.)

| ÷                                           |               |                                                  | ÷                                           |        |                                         |                |               |                                                              |                |              |                           |
|---------------------------------------------|---------------|--------------------------------------------------|---------------------------------------------|--------|-----------------------------------------|----------------|---------------|--------------------------------------------------------------|----------------|--------------|---------------------------|
| Freq.                                       |               | _                                                | Freq.                                       |        |                                         | Freq.          |               |                                                              | Freq.          |              |                           |
|                                             | Α             | В                                                | H                                           | A      | В                                       | H              | Α             | В                                                            | 듁              | $\mathbf{A}$ | В                         |
| 3000                                        | 3             | 100                                              | 3250                                        | 3      | 719                                     | 3500           | 3             | 1333                                                         | 3750           | 4            | 366 g                     |
| 3005                                        | 3             | 113                                              | 3255                                        | 3      | 731                                     | 3505           | 3             | 1345                                                         | 3755           | 4            | 376 <sup>¥</sup><br>386 ¥ |
| 3010                                        | 3             | 126                                              | 3260                                        | 3      | 743                                     | 3510           | 3             | 1357                                                         | 3760           | 4            | 386 🛓                     |
| 3015                                        | 3             | 138                                              | 3265                                        | 3      | 755                                     | 3515           | 3             | 1369                                                         | 3765           | 4            | 397 🛃                     |
| 3020                                        | 3             | 150 g                                            | 3270                                        | 3      | 769                                     | 3520           | 3             | 1381                                                         | 3770           | 4            | 407 😇                     |
| 3025                                        | 3             | 162 <del>[</del>                                 | 3275                                        | 3      | 781                                     | 3525           | 3             | 1394                                                         | 3775           | 4            | 417 🔁                     |
| 3030                                        | 3             | 174 🏟                                            | 3280                                        | 3      | 793<br>806 위                            | 3530           | 3             | 1406                                                         |                |              |                           |
| 3035                                        | 3             | 186 g                                            | 3285                                        | 3      | 806 🛱                                   | 3535           | 3             | 1406<br>1418 🛱                                               | 3780           | 4            | 427                       |
| 3040                                        | 3             | 162 174<br>174 support<br>198 support<br>211 223 | 3290                                        | 3      | 818 5                                   | 3540           | 3             | 1430 5                                                       | 3785           | 4            | 437                       |
| 3045                                        | 3             | 211 >                                            | 3295                                        | 3      | 830 suoisivip<br>8557ip<br>867          | 3545           | 3             | 1443                                                         | 3790           | 4            | 447                       |
| 3050                                        | 3             |                                                  | 3300                                        | 3      | 843 <u>5</u>                            | 3550           | 3             | 1456 <sup>G</sup><br>1468 <sup>SI</sup><br>1480 <sup>I</sup> | 3795           | 4            | 458                       |
| 3055                                        | 3             | 235 📆                                            | 3305                                        | 3      | 855 si                                  | 3555           | 3             | 1468 🖉                                                       | 3800           | 4            | <b>469</b> 😫              |
| 3060                                        | 3             | 248                                              | 3310                                        | 3      | 867 5                                   | 3560           | 3             | 1480 Ę                                                       | 3805           | 4            | 479 ដ                     |
| 3065                                        | 3             | 260                                              | 3315                                        | 3      | 880 w                                   | 3565           | 3             | 1492 <b>ა</b>                                                | 3810           | 4            | 100 8                     |
| 3070                                        | 3             | 272                                              | 3320                                        | 3      | 892 9                                   | 3570           | 3             | 1504 9                                                       | 3815           | 4            | 499 <b>ह</b>              |
| 3075                                        | 3             | 285                                              | 3325                                        | 3      | 904                                     | 3575           | 3             | 1516                                                         | 3820           | 4            | 499<br>509<br>520<br>520  |
|                                             | •             | <b></b>                                          | 3330                                        | 3      | 917                                     | 3580           | 3             | 1528                                                         | 3825           | 4            | 520 🚽                     |
| 3080                                        | 3             | 297                                              | 3335                                        | 3      | 929                                     | 3585           | 3             | 1541                                                         | 3830           | 4            | 530 ფ                     |
| 3085                                        | 3             | 309                                              | 3340                                        | 3      | 941                                     | 3590           | 3             | 1553                                                         | 3835           | 4            | 540                       |
| 3090                                        | 3             | 322                                              | 3345                                        | 3      | 954                                     | 3595           | 3             | 1565                                                         | 3840           | 4            | 551                       |
| 3095                                        | 3             | 334                                              | 3350                                        | 3      | 966                                     | 3600           | 3             | 1578                                                         | 3845           | 4            | 561                       |
| 3100                                        | 3,            | 346                                              |                                             |        |                                         |                |               |                                                              | 3850           | 4            | 571                       |
| 3105                                        | 3             | 359                                              | 3355                                        | 3      | 978                                     | 3600           | 4             | 060                                                          |                |              |                           |
| 3110                                        | 3             | 371 🛱                                            | 3360                                        | 3      | 991                                     | 3605           | 4             | 070                                                          | 3855           | 4            | 582                       |
| 3115                                        | 3             | 383 ad<br>396 800<br>420 suoisi<br>433 be<br>435 | 3365                                        | 3      | 1003                                    | 3610           | 4             | 080                                                          | 3860           | 4            | 592                       |
| 3120                                        | 3             | 396                                              | 3370                                        | 3      | 1015                                    | 3615           | 4             | 091                                                          | 3865           | 4            | 602                       |
| 3125                                        | 3             | 408 8                                            | 3375                                        | 3      | 1027 ()<br>1039 1<br>1051 a             | 3620           | 4             | 101                                                          | 3870           | 4            | 613                       |
| 3130                                        | 3             | 420 g                                            | 3380                                        | 3      | 1039 4                                  | 3625           | 4             | 116<br>121 오                                                 | 3875           | 4            | 623                       |
| 3135                                        | 3             | 433 5                                            | 3385                                        | 3      | 1051 8                                  | 3630           | 4             | 121 🛎                                                        | 3880           | 4            | 633                       |
| $\begin{array}{c} 3140 \\ 3145 \end{array}$ | 3             | 445<br>457 S                                     | 3390                                        | 3      |                                         | 3635           | 4             | 131 b<br>141 .<br>152 p                                      | 3885           | 4            | 644<br>654 ୱ୍ଲି           |
| <b>314</b> 5<br><b>3150</b>                 | 3<br><b>3</b> | 457 S<br>470                                     | 3395                                        | 3      | 1076 ਦੇ<br>1088 ਤੋਂ                     | 3640           | 4             | 141 .                                                        | 3890           | 4            | 654 .4                    |
| 3155                                        | 3             | 483                                              | 3400                                        | 3      |                                         | 3645           | 4             | 152 g                                                        | 3895           | 4            | 664 and suoisivip         |
| 3160                                        | 3             | 405                                              | 3405                                        | 3      | 1101                                    | 3650           | 4             | 162 🔊                                                        | 3900           | 4            | 674 m                     |
| 3165                                        | 3             | 490<br>508                                       | 3410                                        | 3      | 1113                                    | 3655           | 4             | 172                                                          | 3905           | 4            | 684 5                     |
| 3170                                        | 3             | 508<br>520                                       | $\begin{array}{c} 3415 \\ 3420 \end{array}$ | 3      | 1125                                    | 3660           | 4             | 183                                                          | 3910           | 4            | 694.                      |
| 3175                                        | 3             | 532                                              | 3420                                        | 3      | 1138                                    | 3665           | 4             | 193                                                          | 3915           | 4            | 705 🗃                     |
| 5115                                        | 9             | 004                                              | 3425                                        | 9      | 1150                                    | 3670           | 4             | 203                                                          | 3920           | 4            | 715 😁                     |
| 3180                                        | 3             | 545                                              | $\begin{array}{r} 3425 \\ 3430 \end{array}$ | 3<br>3 | $\begin{array}{c}1150\\1162\end{array}$ | 3675           | 4             | 213                                                          | 3925           | 4            | 725                       |
| 3185                                        | 3             | 557                                              | $3430 \\ 3435$                              | 3      | 1174                                    | 0.000          |               | 0.00                                                         | 3930           | 4            | 736                       |
| 3190                                        | 3             | 569                                              | 3435                                        | 3      | 1174                                    | 3680           | 4             | 223                                                          | 3935           | 4            | 746                       |
| 3195                                        | 3             | 582 0                                            | 3440                                        | 3      | 1198                                    | 3685           | 4             | 233                                                          | 3940           | 4            | 756                       |
| 3200                                        | 3<br>3        | 582 ()<br>594 J<br>606 J                         | 3450                                        | 3      | 1211                                    | 3690           | 4             | 243                                                          | 3945           | 4            | 767                       |
| 3205                                        | 3             | 606                                              | 3455                                        | 3      | 1223 g                                  | 3695           | 4<br><b>4</b> | 253<br>264                                                   | 3950           | 4            | 777                       |
| 3210                                        | 3             | 620 0                                            | 3460                                        | 3      | 1220 g<br>1995 L                        | 3700           |               | 264 34                                                       | 00FF           |              |                           |
| 3215                                        | 3             | 632 8                                            | 3465                                        | 3      | 1235 5<br>1247 5                        | $3705 \\ 3710$ | 4             | 270 5                                                        | 3955           | 4            | 787                       |
| 3220                                        | 3             | 644                                              | 3470                                        | 3      | 1259 g                                  | 3715           | 4             | 200 5                                                        | $3960 \\ 3965$ | 4            | 797                       |
| 3225                                        | 3             | 620 suojsi<br>632 ojsi<br>644 i<br>657 o         | 3475                                        | 3      | 1271 -                                  | 3715           | 4<br>4        | 275<br>285<br>295<br>305<br>315<br>givisions per divisions   |                | 4            | 807 (c)<br>817 1<br>828 d |
| 3230                                        | 3             | 669 19                                           | 3480                                        | 3      | 1284                                    | 3720<br>3725   | 4<br>4        | 303 8                                                        | 3970           | 4            | 017                       |
| 3235                                        | 3             | 669 5<br>681                                     | 3485                                        | 3      | 1296                                    | 3725           | 4<br>4        | 313 8                                                        | 3975           | 4<br>4       | 020 A                     |
| 3240                                        | 3             | 693                                              | 3490                                        | 3      | 1308                                    | 3735           | 4<br>4        | 325 ფ<br>335                                                 | 3980<br>3985   | 4<br>4       | 0000                      |
| 3245                                        | 3             | 706                                              | 3495                                        | 3      | 1321                                    | 3740           | 44            | 345                                                          | 3985           | 4<br>4       | 838 .<br>848 8<br>859 8)  |
| 3250                                        | 3             | 719                                              | 3500                                        | 3      | 1333                                    | 3745           | 4             | 345                                                          | 3990           | 4<br>4       | 869                       |
|                                             |               |                                                  |                                             |        | 2000                                    | 3750           | 4             | 366                                                          | 4000           | 4            | 879                       |
|                                             |               |                                                  |                                             |        |                                         |                | -             |                                                              |                | -            |                           |

DATA

TABLE II-(Cont.)

| Freq.                                       | A      | в                                                                                      | Freq.                                       | A        | в                                                                        | Freq.                                       | A      | в                                                             | Freq.                                       | А        | в                           |
|---------------------------------------------|--------|----------------------------------------------------------------------------------------|---------------------------------------------|----------|--------------------------------------------------------------------------|---------------------------------------------|--------|---------------------------------------------------------------|---------------------------------------------|----------|-----------------------------|
| 4000                                        | 5      | 100                                                                                    | 4250                                        | 5        | 564                                                                      | 4500                                        | 5      | 1027                                                          | 4750                                        | 5        | 1486                        |
| 4005                                        | 5      | 109                                                                                    | 4255                                        | 5        | 573                                                                      | 4505                                        | 5      | 1036                                                          | 4755                                        | 5        | 1495 g<br>1504 <sup>g</sup> |
| 4010                                        | 5      | 119                                                                                    | 4260                                        | 5        | 582                                                                      | 4510                                        | 5      | 1046                                                          | 4760                                        | 5        | 1504                        |
| 4015                                        | 5      | 128                                                                                    | 4265                                        | 5        | 591                                                                      | 4515                                        | 5      |                                                               | 4765                                        | 5        | 1513 ģ                      |
| 4020                                        | 5      | 138                                                                                    | 4267                                        | 5        | 595                                                                      | 4520                                        | 5      | 1055 ()<br>1064 🕺                                             | 4770                                        | 4        | 1523 m                      |
| 4025                                        | 5      | 147                                                                                    | 4270                                        | 5        | 601<br>620<br>620<br>627<br>638<br>647<br>7<br>647<br>7<br>647<br>657    | 4525                                        | 5      | 1073 5                                                        | 4775                                        | 5        | 1532<br>1541<br>1550        |
| 4030                                        | 5      | 156<br>165<br>174<br>183<br>193<br>202<br>211<br>9<br>8<br>193<br>202<br>211<br>9<br>8 | 4275                                        | 5        | 610                                                                      | 4530                                        | 5      | 1083 su<br>1083 su<br>1092 ivij<br>1101 p                     | 4780                                        | 5        | 1541 5                      |
| 4035                                        | 5      | 165 🕺                                                                                  | 4280                                        | 5        | 620 Å                                                                    | 4533                                        | 5      | 1089 <u>ត</u> ្រ                                              | 4785                                        | 5        | 1550 3                      |
| 4040                                        | 5      | 174 5                                                                                  | 4285                                        | 5        | 629 2                                                                    | 4535                                        | 5      | 1092 🛱                                                        | 4790                                        | <b>5</b> | 1560 🚆                      |
| 4045                                        | 5      | 183 g                                                                                  | 4290                                        | 5        | 638 ฐ                                                                    | 4540                                        | 5      | 1101 3                                                        | 4795                                        | 5        | 1569                        |
| 4050                                        | 5      |                                                                                        | 4295                                        | 5        | 647 A                                                                    | 4545                                        | 5      | $1110 \stackrel{\infty}{\stackrel{\infty}{_{\sim}}}{}_{\sim}$ | 4800                                        | 5        | 1578                        |
| 4055                                        | 5      | 202                                                                                    | 4300                                        | 5        | 00100                                                                    | 4550                                        | 5      | 1113                                                          | 4000                                        | •        |                             |
| 4060                                        | 5      | 211 0                                                                                  | 4305                                        | 5        | 666 년                                                                    | 4555                                        | 5      | 1128                                                          | 4800                                        | 6        | 060                         |
| 4065                                        | 5      | 220 °                                                                                  | 4310                                        | 5        | 675                                                                      | 4560                                        | 5      | 1138                                                          | 4805                                        | 6        | 068                         |
| 4070                                        | 5      | 230                                                                                    | 4315                                        | 5        | 684<br>602                                                               | 4565                                        | 5      | 1147                                                          | 4810                                        | 6        | 076                         |
| $\begin{array}{r} 4075 \\ 4080 \end{array}$ | 5<br>5 | $239 \\ 248$                                                                           | $\begin{array}{r} 4320 \\ 4325 \end{array}$ | 5<br>5   | 693<br>702                                                               | 4570                                        | 5      | 1150                                                          | 4815                                        | 6        | 084                         |
| 4085                                        | 5<br>5 | $248 \\ 257$                                                                           | 4320                                        | 5<br>5   | 702                                                                      | 4575                                        | 5<br>5 | $\begin{array}{c} 1156 \\ 1165 \end{array}$                   | $\begin{array}{r} 4820 \\ 4825 \end{array}$ | 6        | 091                         |
| 4085                                        | 5      | 267                                                                                    | 4000                                        | 0        | 110                                                                      | 4580                                        | 5      | $1105 \\ 1174$                                                | 4825                                        | 6<br>6   | 099                         |
| 4095                                        | 5      | 276                                                                                    | 4335                                        | 5        | 722                                                                      | 4585                                        | 5      | 1183                                                          | 4835                                        | 6        | 114                         |
| 4100                                        | 5      | 285                                                                                    | 4340                                        | 5        | 732                                                                      | 4590                                        | 5      | 1193                                                          | 4840                                        | 6        | 106 ()<br>114<br>121 8      |
| *100                                        | Ũ      | 200                                                                                    | 4345                                        | 5        | 741                                                                      | 4595                                        | 5      | 1202                                                          | 4845                                        | 6        | 121 <u>p</u>                |
| 4105                                        | 5      | 293                                                                                    | 4350                                        | 5        | 750                                                                      | 4600                                        | Š      | 1211                                                          | 4850                                        | 6        | 137.9                       |
| 4110                                        | 5      | 303                                                                                    | 4355                                        | 5        | 759                                                                      | 4605                                        | 5      | 1220                                                          | 4855                                        | 6        | 129<br>137<br>145<br>152    |
| 4115                                        | 5      | 312                                                                                    | 4360                                        | 5        | 769                                                                      | 4610                                        | 5      | 1229                                                          | 4860                                        | 6        | 152 1                       |
| 4120                                        | 5      | 322                                                                                    | 4365                                        | 5        | 778                                                                      | 4615                                        | 5      | 1238                                                          | 4865                                        | 6        | 160 2                       |
| 4125                                        | 5      | 331                                                                                    | 4370                                        | 5        | 787                                                                      | 4620                                        | 5      | 1238<br>1247 🛱                                                | 4870                                        | 6        | 168                         |
| 4130                                        | 5      | 340                                                                                    | 4375                                        | 5        | 796                                                                      | 4625                                        | 5      | 1256 and<br>1266 1275 00                                      | 4875                                        | 6        | 176                         |
| 4135                                        | 5      | 349                                                                                    | 4380                                        | <b>5</b> | 806                                                                      | 4630                                        | 5      | 1266 🛱                                                        | 4880                                        | 6        | 183                         |
| 4140                                        | 5      | 359                                                                                    | 4385                                        | <b>5</b> | 806<br>815 🛱                                                             | 4635                                        | 5      | 1275 8                                                        | 4885                                        | 6        | 191                         |
| 4145                                        | 5      | 368                                                                                    | 4390                                        | 5        | 824<br>833<br>843<br>852<br>862<br>862                                   | 4640                                        | 5      | 1284 <sup>is</sup><br>1293 ig                                 | 4890                                        | 6        | 198                         |
| 4150                                        | 5      | 377                                                                                    | 4395                                        | 5        | 833 0                                                                    | 4645                                        | 5      | 1293 🗄                                                        | 4895                                        | 6        | 206                         |
| 4155                                        | 5      | 386                                                                                    | 4400                                        | 5        | 843 <u>5</u>                                                             | 4650                                        | 5      | 1302 ∽្ម                                                      | 4900                                        | 6        | 213                         |
| 4160                                        | 5      | 396 ()<br>405 415<br>424 ↓<br>433 p                                                    | 4405                                        | 5        | 852 5                                                                    | 4655                                        | 5      | 1311 년                                                        |                                             |          |                             |
| 4165                                        | 5      | 405                                                                                    | 4410                                        | 5        | 862 3                                                                    | 4660                                        | 5      | 1321                                                          | 4905                                        | 6        | 221                         |
| 4170                                        | 5      | 415 g                                                                                  | 4415                                        | 5        | 871 <sup>∞</sup> .<br>880 <sup>☉</sup>                                   | 4665                                        | 5      | 1330                                                          | 4910                                        | 6        | 228                         |
| 4175                                        | 5      | 424                                                                                    | 4420                                        | 5        | 000                                                                      | 4670                                        | 5      | 1339                                                          | 4915                                        | 6        | 236                         |
| $\begin{array}{r} 4180 \\ 4185 \end{array}$ | 5<br>5 | 4330                                                                                   | $\begin{array}{r} 4425\\ 4430 \end{array}$  | 5        | 889                                                                      | 4675                                        | 5      | 1348                                                          | 4920                                        | 6        | 243                         |
| 4185                                        | о<br>5 | $\begin{array}{c} 442 \stackrel{\mathfrak{O}}{\underbrace{1}}\\ 452 \end{array}$       | $\begin{array}{r} 4430 \\ 4435 \end{array}$ | 5<br>5   | 898<br>907                                                               | $\begin{array}{r} 4680 \\ 4685 \end{array}$ | 5<br>5 | 1357                                                          | 4925                                        | 6        | 251<br>250 D                |
| 4190                                        | 5      | 461                                                                                    | $4435 \\ 4440$                              | 5<br>5   | 907<br>917                                                               | 4685                                        | э<br>5 | $1366 \\ 1376$                                                | $4930 \\ 4935$                              | 6<br>6   | 259 9<br>967                |
| 4200                                        | 5      | 470                                                                                    | 4440                                        | 5        | 926                                                                      | 4695                                        | 5      | 1385                                                          | 4935                                        | 6        | 267 b<br>274 d              |
| 4205                                        | 5      | 479                                                                                    | 4450                                        | 5        | 935                                                                      | 4700                                        | 5      | 1394                                                          | 4945                                        | 6        | 214 -                       |
| 4210                                        | 5      | 489                                                                                    | 4455                                        | 5        | 944                                                                      | <b>1</b> 100                                | v      | 1004                                                          | 4950                                        | 6        | 282 suoisivip               |
| 4215                                        | 5      | 498                                                                                    | 4460                                        | 5        | 954                                                                      | 4705                                        | 5      | 1403                                                          | 4955                                        | 6        | 298 2                       |
| 4220                                        | 5      | 508                                                                                    |                                             | Ũ        |                                                                          | 4710                                        | 5      | 1412 🤶                                                        | 4960                                        | 6        | 305                         |
| 4225                                        | 5      | 517                                                                                    | 4465                                        | 5        | 963                                                                      | 4715                                        | 5      | 1421                                                          | 4965                                        | 6        | 305<br>313 ਦ                |
| 4230                                        | 5      | 526                                                                                    | 4470                                        | 5        | 972 2                                                                    | 4720                                        | 5      | 1421 5<br>1430 5                                              | 4970                                        | 6        | 320                         |
|                                             |        |                                                                                        | 4475                                        | 5        | 981 -                                                                    | 4725                                        | 5      | 1439 ⊵                                                        | 4975                                        | 6        | 328                         |
| 4235                                        | 5      | 535 ()<br>545 1<br>554                                                                 | 4480                                        | 5        | 981<br>991<br>1000 solutions<br>1018 solutions<br>1018 solutions<br>1027 | 4730                                        | 5      | 1439 ⊵<br>1449 ∞                                              | 4980                                        | ě        | 335                         |
| 4240                                        | 5      | 545 5                                                                                  | 4485                                        | 5        | 1000 ដ                                                                   | 4735                                        | 5      | $1458$ $\pm$                                                  | 4985                                        | 6        | 343                         |
| 4245                                        | 5      | 554 Å                                                                                  | 4490                                        | 5        | 1009 🐹                                                                   | 4740                                        | 5      | 1468                                                          | 4990                                        | 6        | 351                         |
| 4250                                        | 5      | 564 🛓                                                                                  | 4495                                        | 5        | 1018                                                                     | 4745                                        | 5      | 1477                                                          | 4995                                        | 6        | 359                         |
| 4267                                        | 5      | 564 .≱<br>595 °.1                                                                      | 4500                                        | 5        | 104/00                                                                   | 4750                                        | 5      | 1486                                                          | 5000                                        | 6        | 366                         |
|                                             |        | 5                                                                                      | 4533                                        | 5        | 1089 ರ                                                                   | 4800                                        | 5      | 1578                                                          |                                             |          |                             |

Use nearest check point shown in heavy type.

Frequency 4000 to 5000 kilocycles

# Frequency 5000 to 6000 kilocycles

DATA

## TABLE II-(Cont.)

| Freq.                                       | А      | в                                 | Freq.               | А      | в                                                           | Freq.          | А      | в                                 | Freq.                                       | А      | В                                    |
|---------------------------------------------|--------|-----------------------------------|---------------------|--------|-------------------------------------------------------------|----------------|--------|-----------------------------------|---------------------------------------------|--------|--------------------------------------|
| 5000                                        | 6      | <b>366</b> 🤶                      | 5250                | 6      | 752                                                         | 5500           | 6      | 1133                              | 5750                                        | 6      | 1513                                 |
| 5005                                        | 6      | 374                               | 5255                | 6      | 760                                                         | 5505           | 6      | 1141                              | 5755                                        | 6      | 1521                                 |
| 5010                                        | 6      | 374 -<br>381 -                    | 5260                | 6      | 767                                                         | 5510           | 6      | 1148                              | 5760                                        | 6      | 1528                                 |
| 5015                                        | 6      | 389 2                             | 5265                | 6      | 775                                                         | 5515           | 6      | 1156                              | 5765                                        | 6      | 1536                                 |
| 5020                                        | 6      | 397.5                             | 5270                | 6      | 782                                                         | 5520           | 6      | 1163                              | 5770                                        | 6      |                                      |
| 5025                                        | 6      | 389 suoisivit<br>405 di 12        | 5275                | 6      | 790                                                         | 5525           | 6      | 1171                              | 5775                                        | 6      | 1552                                 |
| 5030                                        | 6      | 412 8                             | 5280                | 6      | 797                                                         | 5530           | 6      | 1179                              | 5780                                        | 6      | 1559<br>1567<br>1574<br>1582<br>1582 |
|                                             | -      | (1.5                              | 5285                | 6      | 805                                                         | 5535           | 6      | 1187                              | 5785                                        | 6      | 1567 <sup>Å</sup>                    |
| 5035                                        | 6      | 420 ~                             | 5290                | 6      | 813 3                                                       | 5540           | 6      | 1194                              | 5790                                        | 6      | 1574                                 |
| 5040                                        | 6      | 427                               | 5295                | 6      | 821 🎽                                                       | 5545           | 6      | 1202                              | 5795                                        | 6      | 1582 🛒                               |
| 5045                                        | 6      | 435                               | 5300                | 6      | 828 2                                                       | 5550           | 6      | 1209                              | 5800                                        | 6      | 1590 🛔                               |
| 5050                                        | 6      | 443                               | 5305                | 6      | 813<br>821<br>828<br>836<br>844<br>852<br>859<br>9          | 5555           | 6      | 1217                              | 5805                                        | 6      | <u>م</u> 1598 س                      |
| 5055                                        | 6      | 451                               | 5310                | 6      | 844 5                                                       | 5560           | 6      | 1224                              | 5810                                        | 6      | 1605 さ                               |
| 5060                                        | 6      | 458                               | 5315                | 6      | 852 🛱                                                       | 5565           | 6      | 1232                              | 5815                                        | 6      | 1613                                 |
| 5065                                        | 6      | 466<br><b>469</b> ગ્રિ            | 5320                | 6      | 859 च                                                       | 5570           | 6      | 1239                              | 5820                                        | 6      | 1621                                 |
| 5067                                        | 6      | <b>469</b> 폭                      | 5325                | 6      | 867 🖫                                                       | 5575           | 6      | 1247                              | 5825                                        | 6      | 1629                                 |
| 5070                                        | 6      | 474 5                             | 5330                | 6      |                                                             | 5580           | 6      | 1254 🕄                            | 5830                                        | 6      | 1636                                 |
| 5075                                        | 6      | 482 🖕                             | 5333                | 6      | 879                                                         | 5585           | 6      | 1262 b<br>1270                    |                                             |        |                                      |
| 5080                                        | 6      | 474 482<br>489 suoisivi<br>505 ip | 5335                | 6      | 882                                                         | 5590           | 6      | 1270                              | 5835                                        | 6      | 1644                                 |
| 5085                                        | 6      | 497 5                             | 5340                | 6      | 890                                                         | 5595           | 6      | 1278 suoisi<br>1293 ig<br>1293 ig | 5840                                        | 6      | 1653                                 |
| 5090                                        | 6      | 505 🗟                             | 5345                | 6      | 898                                                         | 5600           | 6      | 1285 🚊                            | 5845                                        | 6      | 1661                                 |
| 5095                                        | 6      | 513 va                            | 5350                | 6      | 905                                                         | 5605           | 6      | 1293 글                            | 5850                                        | 6      | 1668                                 |
| 5100                                        | 6      | 520 C                             | 5355                | 6      | 913                                                         | 5610           | 6      | 1300 <sub>La</sub>                | 5855                                        | 6      | 1676                                 |
| 5105                                        | 6      | 528                               | 5360                | 6      | 920                                                         | 5615           | 6      | 1308 년                            | 5860                                        | 6      | 1683                                 |
| 5110                                        | 6      | 535                               | 5365                | 6      | 928                                                         | 5620           | 6      | 1315                              | 5865                                        | 6      | 1691 g                               |
| 5115                                        | 6      | 543                               |                     |        |                                                             | 5625           | 6      | 1323                              | 5867                                        | 6      | 1694                                 |
| 5120                                        | 6      | 551                               | 5370                | 6      | 935                                                         | 5630           | 6      | 1330                              | 5870                                        | 6      | 1699 5                               |
| 5125                                        | 6      | 559                               | 5375                | 6      | 943                                                         | 5635           | 6      | 1338                              | 5875                                        | 6      | 1707 -                               |
| 5130                                        | 6      | 567                               | 5380                | 6      | 951                                                         | 5640           | 6      | 1345                              | 5880                                        | 6      | 1715 0<br>1723 1<br>1731 0           |
|                                             |        |                                   | 5385                | 6      | 959                                                         | 5645           | 6      | 1353                              | 5885                                        | 6      | 1723                                 |
| 5135                                        | 6      | 575                               | 5390                | 6      | 966                                                         | 5650           | 6      | 1361                              | 5890                                        | 6      |                                      |
| 5140                                        | 6      | 582                               | 5395<br><b>5400</b> | 6<br>6 | 974<br><b>981</b>                                           | 5655           | 6      | 1369                              | 5895                                        | 6      | 1739 o<br>1747 C                     |
| 5145                                        | 6      | 590                               | 5400<br>5405        | 6      | 989                                                         | $5660 \\ 5665$ | 6<br>6 | $1376 \\ 1384$                    | $\begin{array}{c} 5900 \\ 5905 \end{array}$ | 6<br>6 | 1755                                 |
| 5150                                        | 6      | 597                               | $5405 \\ 5410$      | 6      | 989<br>996                                                  | 5670           | 6      | 1304                              | 5910                                        | 6      | 1763                                 |
| $\begin{array}{c} 5155 \\ 5160 \end{array}$ | 6<br>6 | 605                               | $5410 \\ 5415$      | 6      | 1004                                                        | 5675           | 6      | 1391                              | 5915                                        | 6      | 1771                                 |
| 5165                                        | 6      | 613<br>621                        | 5415                | 6      | 1012 9                                                      | 5680           | 6      | 1406                              | 5920                                        | 6      | 1779                                 |
| $5105 \\ 5170$                              | 6      | 628                               | 5425                | 6      | 1012 J                                                      | 5685           | 6      | 1414                              | 5925                                        | 6      | 1787                                 |
| 5175                                        | 6      | 636                               | 5430                | 6      | 1020 1<br>1027 2                                            | 5690           | 6      | 1421                              | 5930                                        | 6      | 1795                                 |
| 5180                                        | 6      | 644                               | 5435                | 6      | 1035 2                                                      | 5695           | 6      | 1429                              | 0000                                        | v      | 1100                                 |
| 5185                                        | 6      | 652                               | 5440                | 6      | $1035 \operatorname{supp}_{1042 \operatorname{supp}_{133}}$ | 5700           | 6      | 1436                              | 5935                                        | 6      | 1803                                 |
| 5190                                        | 6      | 659 ~                             | 5445                | 6      | 1050 2                                                      | 0100           | v      | 1100                              | 5940                                        | 6      | 1811                                 |
| 5195                                        | 6      | 659 (c)<br>667 4<br>674 19        | 5450                | 6      | 1050 in<br>1057 gri<br>1065 []                              | 5705           | 6      | 1444                              | 5945                                        | 6      | 1819                                 |
| 5200                                        | Ğ      | 674                               | 5455                | 6      | 1065                                                        | 5710           | 6      | 1452                              | 5950                                        | 6      | 1827                                 |
| 5205                                        | 6      | 682 0                             | 5460                | 6      | 1073                                                        | 5715           | 6      | 1460 🙃                            | 5955                                        | 6      | 1835 ដ៏                              |
| 5210                                        | 6      | 690 5                             | 5465                | 6      | 1081                                                        | 5720           | 6      | 1467 🎽                            | 5960                                        | 6      | 1844 5                               |
| 5215                                        | 6      | 698 d<br>690 suoisivi             | 5470                | 6      | 1088                                                        | 5725           | 6      | 1475 🖗                            | 5965                                        | 6      | 1844 Jan 1852 1860 1868 1877 IP      |
| 5220                                        | 6      | 705 0                             | 5475                | 6      | 1096                                                        | 5730           | 6      | 1482 🗖                            | 5970                                        | 6      | 1860 🛱                               |
| 5225                                        | 6      | 713                               | 5480                | 6      | 1103                                                        | 5735           | 6      | 1482 su<br>1490 ossiv<br>1498 si  | 5975                                        | 6      | 1868 💆                               |
| 5230                                        | 6      | 713 ピ<br>721 ご                    | 5485                | 6      | 1111                                                        | 5740           | 6      | 1498 📅                            | 5980                                        | 6      | 1877 🛓                               |
| 5235                                        | 6      | 729                               | 5490                | 6      | 1118                                                        | 5745           | 6      | 1506 🖻                            | 5985                                        | 6      | 0001                                 |
| 5240                                        | 6      | 736                               | 5495                | 6      | 1126                                                        | 5750           | 6      | 1513                              | 5990                                        | 6      | 1893 さ                               |
| 5245                                        | 6      | 744                               | 5500                | 6      | 1133                                                        | 5800           | 6      | 1590 년                            | 5995                                        | 6      | 1901                                 |
| 5250                                        | 6      | 752                               |                     |        |                                                             |                |        |                                   | 6000                                        | 6      | 1910                                 |
|                                             |        |                                   |                     |        |                                                             |                |        |                                   |                                             |        |                                      |

DATA

TABLE II-(Cont.)

| IADLE                                       |               | -(COLL.)                                         |                                           |               |                                           |                |               |                                                                       |                                             |               |                                         |
|---------------------------------------------|---------------|--------------------------------------------------|-------------------------------------------|---------------|-------------------------------------------|----------------|---------------|-----------------------------------------------------------------------|---------------------------------------------|---------------|-----------------------------------------|
| Freq.                                       | А             | в                                                | Freq.                                     | А             | в                                         | Freq.          | A             | в                                                                     | Freq.                                       | А             | В                                       |
| 6000                                        | 7             | 100                                              | 6250                                      | 7             | 408                                       | 6500           | 7             | 719                                                                   | 6750                                        | 7             | 1027                                    |
| 6005                                        | 7             | 106                                              | 6255                                      | $\dot{7}$     | 415                                       | 6505           | $\dot{7}$     | 725                                                                   | 6755                                        | 7             | 1033                                    |
| 6010                                        | $\frac{1}{7}$ | 112                                              | 6260                                      | $\frac{1}{7}$ | 413                                       | 6510           | $\frac{1}{7}$ | 732                                                                   | 6760                                        | $\frac{1}{7}$ | 1039                                    |
| 6015                                        | 7             | 112                                              | 6265                                      | 7             | 427                                       | 6515           | $\frac{1}{7}$ | 738                                                                   | 6765                                        | 7             | 1046                                    |
| 6020                                        | 7             | 125                                              | 6270                                      | 7             | 433                                       | 6520           | 7             | 744                                                                   | 6770                                        | 7             | 1040                                    |
| 6025                                        | 7             | 131                                              | 6275                                      | 7             | 439                                       | 6525           | 7             | 750                                                                   | 6775                                        | 7             | 1052                                    |
| 6030                                        | 7             | 131                                              | 6280                                      | 7             | 435                                       | 6530           | 7             | 756                                                                   | 6780                                        | 7             |                                         |
| 6035                                        | 7             | 144                                              | 6285                                      | 7             | 452 9                                     | 6535           | 7             | 762                                                                   | 6785                                        | 7             | 1064<br>1070 <sup>오</sup>               |
| 6040                                        | 7             | 150                                              | 6290                                      | 7             | 458                                       | 6540           | °7            | 769                                                                   | 6790                                        | $\dot{7}$     | 1076 5                                  |
| 6045                                        | $\frac{1}{7}$ | 156 g                                            | 6295                                      | 7             | 458 L<br>464                              | 6545           | 7             | 775                                                                   | 6795                                        | 7             | 1083                                    |
| 6050                                        | $\frac{1}{7}$ |                                                  | 6300                                      | 7             | 470 suoisivi<br>482 ip                    | 6550           | 7             | 781 0                                                                 | 6800                                        | 7             | 1083<br>1089<br>1095 suo<br>1101 ip     |
| 6055                                        | 7             | 168                                              | 6305                                      | 7             | 476 2                                     | 6555           | 7             | 781 ()<br>787 19<br>793 d                                             | 6805                                        | 7             | 1095                                    |
| 6060                                        | 7             | 174 8                                            | 6310                                      | 7             | 482                                       | 6560           | 7             | 793                                                                   | 6810                                        | 7             | 1101                                    |
| 6065                                        | 7             | 180 8                                            | 6315                                      | 7             | 489                                       | 6565           | 7             | 799 2                                                                 | 6815                                        | 7             | 1107 🔊                                  |
| 6070                                        | 7             | 162 J<br>168 J<br>174 J<br>180 J<br>186 J<br>193 | 6320                                      | 7             | 495 ਦ                                     | 6570           | 7             | 799 suoisi<br>806 si 2 si<br>818 si 8 s | 6820                                        | 7             | 1113 5                                  |
| 6075                                        | 7             | 193                                              | 6325                                      | 7             | 501                                       | 6575           | 7             | 812 🚊                                                                 | 6825                                        | 7             | 1119                                    |
| 6080                                        | 7             | 199 <del>ਦ</del>                                 | 6330                                      | 7             | 508                                       | 6580           | 7             | 818                                                                   | 6830                                        | 7             | 1125                                    |
| 6085                                        | 7             | 205                                              | 6335                                      | 7             | 514                                       | 6585           | 7             | 824 5                                                                 | 6835                                        | 7             | 1131                                    |
| 6090                                        | 7             | 211                                              | 6340                                      | 7             | 520                                       | 6590           | 7             | 830                                                                   | 6840                                        | 7             | 1138                                    |
| 6095                                        | 7             | 217                                              | 6345                                      | 7             | 526                                       | 6595           | 7             | 836                                                                   | 6845                                        | 7             | 1144                                    |
| 6100                                        | 7             | 223                                              | 6350                                      | 7             | 532                                       | 6600           | 7             | 843                                                                   | 6850                                        | 7             | 1150                                    |
| 6105                                        | 7             | 230                                              |                                           |               |                                           | 6605           | <b>7</b>      | 849                                                                   |                                             |               |                                         |
| 6110                                        | 7             | 236                                              | 6355                                      | 7             | 538                                       | 6610           | 7             | 855                                                                   | 6855                                        | 7             | 1156                                    |
| 6115                                        | 7             | 242                                              | 6360                                      | 7             | 545                                       | 6615           | 7             | 862                                                                   | 6860                                        | 7             | 1162                                    |
| 6120                                        | 7             | 248                                              | 6365                                      | 7             | 551                                       | 6620           | 7             | 868                                                                   | 6865                                        | 7             | 1168                                    |
| 6125                                        | 7             | 254                                              | 6370                                      | 7             | 557                                       | 6625           | 7             | 874                                                                   | 6870                                        | <b>7</b>      | 1174                                    |
| 6130                                        | 7             | 260                                              | 6375                                      | 7             | 564                                       | 6630           | 7             | 880                                                                   | 6875                                        | 7             | 1180                                    |
| 6135                                        | 7             | 267                                              | 6380                                      | 7             | 570                                       | 6635           | 7             | 886                                                                   | 6880                                        | 7             | 1186                                    |
| 6140                                        | 7             | 273                                              | 6385                                      | 7             | 576                                       | 6640           | 7             | 892                                                                   | 6885                                        | <b>7</b>      | 1193                                    |
| 6145                                        | 7             | 279                                              | 6390                                      | 7             | 582                                       | 6645           | 7             | 898                                                                   | 6890                                        | <b>7</b>      | 1199                                    |
| 6150                                        | 7             | 285                                              | 6395                                      | 7             | 588                                       | 6650           | <b>7</b>      | 904                                                                   | 6895                                        | <b>7</b>      | 1205                                    |
|                                             |               |                                                  | 6400                                      | 7             | 595                                       | 6655           | <b>7</b>      | 910<br>917 🛱                                                          | 6900                                        | 7             | 1211                                    |
| 6155                                        | 7             | 291                                              | 6405                                      | 7             | 601                                       | 6660           | 7             | 917 - 5                                                               | 6905                                        | <b>7</b>      | 1217                                    |
| 6160                                        | 7             | 297                                              | 6410                                      | 7             | 607 🕤                                     | 6665           | <b>7</b>      | 923 b                                                                 | 6910                                        | 7             | 1223 ()<br>1229 19<br>1235 d            |
| 6165                                        | 7             | 303                                              | 6415                                      | 7             | 613 🚆                                     | 6670           | 7             | 929 g                                                                 | 6915                                        | 7             | 1229 <sub>L</sub>                       |
| 6170                                        | 7             | 309                                              | 6420                                      | 7             | 607 Q<br>613 4<br>620 4                   | 6675           | <b>7</b>      | 935 5                                                                 | 6920                                        | 7             | 1235 4                                  |
| 6175                                        | 7             | 315                                              | 6425                                      | 7             | 626 g                                     | 6680           | 7             | 929 g<br>935 u<br>941 i<br>947 p                                      | 6925                                        | 7             | 1241                                    |
| 6180                                        | 7             | 322                                              | 6430                                      | 7             | 626<br>632<br>638<br>644                  | 6685           | 7             | 947 8                                                                 | 6930                                        | 7             | 1241 suoisivi<br>1253 ip                |
| 6185                                        | 7             | 328 ()<br>334<br>340 A                           | 6435                                      | 7             | 638 5                                     | 6690           | 7             | 954 °.<br>960 <sup></sup>                                             | 6935                                        | 7             |                                         |
| 6190                                        | 7             | 334                                              | 6440                                      | 7             | 644 <sup>ij</sup>                         | 6695           | 7             |                                                                       | 6940                                        | 7             | 1409 0                                  |
| 6195                                        | 7             | 340 A                                            | 6445                                      | 7             | 650                                       | 6700           | <b>7</b>      | 966                                                                   | 6945                                        | 7             | 1266 2                                  |
| 6200                                        | 7             | 346 suoisivit<br>352 si vit<br>365               | 6450                                      | 7             | 657                                       | 0705           | -             | 070                                                                   | 6950                                        | 7             | 1272                                    |
| 6205                                        | 7             | 352 1                                            | 6455                                      | 7             | 663                                       | 6705           | 7             | 972                                                                   | 6955                                        | 7             | 1278                                    |
| 6210                                        | 7             | 359 2                                            | 6460                                      | 7             | 669                                       | 6710           | 7             | 978                                                                   | 6960                                        | 7             | 1284                                    |
| 6215                                        | 7             | 365 <sup>5</sup><br>371 ਦ                        | 6465                                      | 7             | 675                                       | 6715           | 7             | 984                                                                   | 6965                                        | 7             | 1290                                    |
| 6220                                        | 7             |                                                  | 6470                                      | 7             | 681                                       | 6720           | 7             | 991<br>997 운                                                          | 6970<br>6975                                | 7             | 1296                                    |
| 6225                                        | 7             | 377                                              | 6475                                      | 7             | 687                                       | 6725           | 7             |                                                                       | 6975                                        | 7             | 1302                                    |
| $\begin{array}{c} 6230 \\ 6235 \end{array}$ | 7             | 383<br>389                                       | 6480<br>6485                              | 7             | $\begin{array}{c} 693 \\ 699 \end{array}$ | $6730 \\ 6735$ | $\frac{7}{7}$ | 1003 b<br>1009 g                                                      | $\begin{array}{c} 6980 \\ 6985 \end{array}$ | $\frac{7}{7}$ | $\begin{array}{c}1308\\1314\end{array}$ |
| 6235<br>6240                                | $\frac{7}{7}$ |                                                  | 6485                                      | 7             | 699<br>705                                | 6735<br>6740   |               | 1009 "                                                                | 6985<br>6990                                | 7             | $1314 \\ 1321$                          |
| 6240<br>6245                                | 7             | $\begin{array}{c} 396 \\ 402 \end{array}$        | $\begin{array}{c} 6490\\ 6495\end{array}$ | $\frac{7}{7}$ | 708                                       | 6740           | $\frac{7}{7}$ | 1021 2                                                                | 6995                                        | $\dot{7}$     | 1321 $1327$                             |
| $6240 \\ 6250$                              | 7             | 402<br>408                                       | $6495 \\ 6500$                            | 7             | 713                                       | 6750           | 7             | 1015 au<br>1021 isi<br>1027 ig                                        | 7000                                        | $\frac{1}{7}$ | 1327<br>1333                            |
| 6300                                        | 7             | 408<br>470                                       | 0000                                      | 1             | 113                                       | 6800           | 7             | 1089 ~                                                                | 1000                                        | •             | 1000                                    |
| 0000                                        |               | 110                                              |                                           |               |                                           | 0000           | •             | 1089 °                                                                |                                             |               |                                         |
|                                             |               |                                                  |                                           |               |                                           |                |               |                                                                       |                                             |               |                                         |

# Frequency 7000 to 8000 kilocycles

DATA

TABLE II—(Cont.)

|       |          | (0010)                                           |       |     |                                  |       |   |                                                           |       |   |                             |
|-------|----------|--------------------------------------------------|-------|-----|----------------------------------|-------|---|-----------------------------------------------------------|-------|---|-----------------------------|
| ಕ್ಷ   |          |                                                  | ġ     |     |                                  | ġ     |   |                                                           | ġ     |   |                             |
| Freq. |          | в                                                | Freq. | А   | в                                | Freq. | А | в                                                         | Freq. | Α | в                           |
|       | A        | в                                                |       |     |                                  |       |   |                                                           |       |   |                             |
| 6900  | 7        | 1211                                             | 7200  | 8   | 060                              | 7500  | 8 | 366                                                       | 7750  | 8 | 623                         |
| 7000  | 7        | 1333 ე                                           | 7250  | 8   | 111                              | 7505  | 8 | 371                                                       | 7755  | 8 | 628                         |
| 7005  | 7        | 1339 🞽                                           | 7255  | 8   | 116                              | 7510  | 8 | <b>376</b> ट्रि                                           | 7760  | 8 | 633                         |
| 7010  | 7        | 1345 a<br>1351 .                                 | 7260  | 8   | 121                              | 7515  | 8 | 381 194<br>386<br>391 194<br>397 194<br>397 194<br>402 19 | 7765  | 8 | 638                         |
| 7015  | 7        | 1351                                             | 7265  | 8   | 126                              | 7520  | 8 | 386 -                                                     | 7770  | 8 | 644                         |
| 7020  | 7        | 1357 <del>Í</del>                                | 7270  | 8   | 131                              | 7525  | 8 | 391 5                                                     | 7775  | 8 | 649                         |
| 7025  | 7        | 1363 ရှ                                          | 7275  | 8   | 137                              | 7530  | 8 | 397 😤                                                     | 7780  | 8 | 654                         |
| 7030  | 7        | $1369  ^{m C}$                                   | 7280  | 8 . | 142                              | 7535  | 8 | 402 <del>च</del>                                          | 7785  | 8 | 659                         |
| 7035  | 7        | 1376                                             | 7285  | 8   | 147                              | 7540  | 8 | 407 ご                                                     | 7790  | 8 | 664                         |
| 7040  | 7        | 1382                                             | 7290  | 8   | 152                              | 7545  | 8 | 412                                                       | 7795  | 8 | 669                         |
| 7045  | <b>7</b> | 1388                                             | 7295  | 8   | 157 <u>ञ्</u>                    | 7550  | 8 | 417                                                       | 7800  | 8 | 674<br>679 ଥ୍ରି             |
| 7050  | 7        | 1394                                             | 7300  | 8   | 162 H                            |       |   |                                                           | 7805  | 8 | 679 ¥                       |
|       |          |                                                  | 7305  | 8   | 168 5                            | 7555  | 8 | 422                                                       | 7810  | 8 | 684 ដ្ឋ                     |
| 7055  | 7        | 1400                                             | 7310  | 8   | 173 5<br>178 5<br>178 5<br>183 5 | 7560  | 8 | 427                                                       | 7815  | 8 | 690<br>695 to<br>700 isi    |
| 7060  | 7        | 1406                                             | 7315  | 8   | 178 🛱                            | 7565  | 8 | 432                                                       | 7820  | 8 | 695 🤮                       |
| 7065  | 7        | 1412                                             | 7320  | 8   | 183 च                            | 7570  | 8 | 437                                                       | 7825  | 8 | 700 <u>5</u>                |
| 7070  | 7        | 1418                                             | 7325  | 8   | 188 ट                            | 7575  | 8 | 443                                                       | 7830  | 8 | 705                         |
| 7075  | 7        | 1424                                             | 7330  | 8   | 193                              | 7580  | 8 | 448                                                       | 7835  | 8 | 710 5                       |
| 7080  | 7        | 1430                                             | 7335  | 8   | 198                              | 7585  | 8 | 453                                                       | 7840  | 8 | 715                         |
| 7085  | 7        | 1436                                             | 7340  | 8   | 203                              | 7590  | 8 | 458                                                       | 7845  | 8 | 721                         |
| 7090  | 7        | 1442                                             | 7345  | 8   | 208                              | 7595  | 8 | 463                                                       | 7850  | 8 | 726                         |
| 7095  | 7        | 1449                                             | 7350  | 8   | 213                              | 7600  | 8 | 469                                                       | 7855  | 8 | 731                         |
| 7100  | 7        | $1455 \\ 1461 \overset{\frown}{\bowtie}$         |       |     |                                  | 7605  | 8 | 474                                                       | 7860  | 8 | 736                         |
| 7105  | 7        | 1461 ¥                                           | 7355  | 8   | 218                              | 7610  | 8 | 479                                                       | 7865  | 8 | 741                         |
| 7110  | 7        | 1468 ង្គ                                         | 7360  | 8   | 223                              | 7615  | 8 | 484 🕄                                                     | 7870  | 8 | 746                         |
| 7115  | 7        | 1474                                             | 7365  | 8   | 228                              | 7620  | 8 | 489 5<br>494 <sup>A</sup>                                 | 7875  | 8 | 752                         |
| 7120  | 7        | 1480 5                                           | 7370  | 8   | 233                              | 7625  | 8 | 494                                                       | 7880  | 8 | 757                         |
| 7125  | <b>7</b> | 1468 ba<br>1474 s<br>1480 s<br>1486 s<br>1492 ip | 7375  | 8   | 238                              | 7630  | 8 | 499 U0<br>505 IX<br>510 P                                 | 7885  | 8 | 762                         |
| 7130  | 7        | 1492 🗟                                           | 7380  | 8   | 243                              | 7635  | 8 | 505                                                       | 7890  | 8 | 767                         |
| 7135  | 7        | 1498                                             | 7385  | 8   | 248                              | 7640  | 8 | 510 च                                                     | 7895  | 8 | 772                         |
| 7140  | 7        | 1504 🖯                                           | 7390  | 8   | 253                              | 7645  | 8 | 515 ご                                                     | 7900  | 8 | 777                         |
| 7145  | 7        | 1510                                             | 7395  | 8   | 259                              | 7650  | 8 | 520                                                       |       |   |                             |
| 7150  | 7        | 1516                                             | 7400  | 8   | 264                              | 7655  | 8 | 525                                                       | 7905  | 8 | 782                         |
| 7155  | 7        | 1523                                             | 7405  | 8   | 269                              | 7660  | 8 | 530                                                       | 7910  | 8 | 787                         |
| 7160  | 7        | 1529                                             | 7410  | 8   | 274 9<br>279<br>284 a            | 7665  | 8 | 535                                                       | 7915  | 8 | 792                         |
| 7165  | 7        | 1535                                             | 7415  | 8   | 279                              | 7670  | 8 | 540                                                       | 7920  | 8 | 797                         |
| 7170  | 7        | 1541                                             | 7420  | 8   | 284 g                            | 7675  | 8 | 545                                                       | 7925  | 8 | 802                         |
| 7175  | 7        | 1547                                             | 7425  | 8   | 290 uoisivij<br>295 isi          | 7680  | 8 | 551                                                       | 7930  | 8 | 807                         |
| 7180  | 7        | 1553                                             | 7430  | 8   | 295 🚡                            | 7685  | 8 | 556                                                       | 7935  | 8 | 813                         |
| 7185  | 7        | 1560                                             | 7435  | 8   | 300 <u>-</u>                     | 7690  | 8 | 561                                                       | 7940  | 8 | 818                         |
| 7190  | 7        | 1566                                             | 7440  | 8   | 300 <u>-</u>                     | 7695  | 8 | 567                                                       | 7945  | 8 | 823 <u>ဋ</u>                |
| 7195  | 7        | 1572                                             | 7445  | 8   | 510                              | 7700  | 8 | 572                                                       | 7950  | 8 | 828 1<br>833 1              |
| 7200  | 7        | 1578                                             | 7450  | 8   | 315                              |       | - |                                                           | 7955  | 8 | 833 -                       |
|       |          |                                                  | 7455  | 8   | 320                              | 7705  | 8 | 577                                                       | 7960  | 8 | 838 u<br>844 vij<br>849 vij |
| 7200  | 8        | 060                                              | 7460  | 8   | 325                              | 7710  | 8 | 582                                                       | 7965  | 8 | 844 5                       |
| 7205  | 8        | 065<br>070 🛱                                     | 7465  | 8   | 330                              | 7715  | 8 | 587 (j)<br>592 (j)<br>597 (j)                             | 7970  | 8 | 849 0                       |
| 7210  | 8        | 070 폭                                            | 7470  | 8   | 335                              | 7720  | 8 | 592                                                       | 7975  | 8 | 854 년                       |
| 7215  | 8        | 076 b<br>081 .<br>086 jj                         | 7475  | 8   | 340                              | 7725  | 8 | 597 g                                                     | 7980  | 8 | 859                         |
| 7220  | 8        | 081                                              | 7480  | 8   | 345                              | 7730  | 8 | 602 u<br>607 is                                           | 7985  | 8 | 864                         |
| 7225  | 8        | 086 ij                                           | 7485  | 8   | 351                              | 7735  | 8 | 607 5                                                     | 7990  | 8 | 869                         |
| 7230  | 8        | 091 <del>_</del>                                 | 7490  | 8   | 356                              | 7740  | 8 | 613 jp<br>618 U<br>623 U                                  | 7995  | 8 | 874                         |
| 7235  | 8        | 096                                              | 7495  | 8   | 361                              | 7745  | 8 | 618                                                       | 8000  | 8 | 879                         |
| 7240  | 8        | 101                                              | 7500  | 8   | 366                              | 7750  | 8 | 623                                                       |       |   |                             |
| 7245  | 8        | 106                                              |       |     |                                  | 7800  | 8 | 674                                                       |       |   |                             |
| 7250  | 8        | 111                                              |       |     |                                  |       |   |                                                           |       |   |                             |
|       |          |                                                  |       |     |                                  |       |   |                                                           |       |   |                             |

Use nearest check point shown in heavy type.

~

Frequency 8000 to 10000 kilocycles

DATA

TABLE II-(Cont.)

| Freq.                                      | A      | В                                            | Freq.        | A      | в                                                              | Freq.        | A      | в                                                                                               | Freq.          | A      | в                                                  |
|--------------------------------------------|--------|----------------------------------------------|--------------|--------|----------------------------------------------------------------|--------------|--------|-------------------------------------------------------------------------------------------------|----------------|--------|----------------------------------------------------|
| 8000                                       | 8      | 879 ()<br>890 ()<br>900 ()                   | 8400         | 8      | 1285 ()<br>1386 ()<br>1396 ()                                  | 9000         | 9      | 100                                                                                             | 9450           | 9      | 470                                                |
| 8010                                       | 8      | 890 😤                                        | 8500         | 8      | 1386 🚆                                                         | 9010         | 9      | 108                                                                                             | 9500           | 9      | 510                                                |
| 8020                                       | 8      | 900 ଛୁଁ                                      | 8510         | 8      | 1396 ዳ                                                         | 9020         | 9      | 116                                                                                             | 9510           | 9      | 518                                                |
| 8030                                       | 8      | 910 🕏                                        | 8520         | 8      | 1406 to<br>1416 to<br>1426 to                                  | 9030         | 9      | 124                                                                                             | 9520           | 9      | 527                                                |
| 8040                                       | 8      | 920 =                                        | 8530         | 8      | 1416 🖉                                                         | 9040         | 9      | 132                                                                                             |                |        |                                                    |
| 8050                                       | 8      | 930 C                                        | 8540         | 8      | 1426 🚽                                                         | 9050         | 9      | 140                                                                                             | 9530           | 9      | 536                                                |
|                                            |        |                                              | 8550         | 8      | 1436 5                                                         | 9060         | 9      | 148                                                                                             | 9540           | 9      | 545                                                |
| 8060                                       | 8      | 940                                          | 8560         | 8      | 1446                                                           | 9070         | 9      | 156                                                                                             | 9550           | 9      | 553                                                |
| 8070                                       | 8      | 951                                          | 8570         | 8      | 1456                                                           | 9080         | 9      | 165 ម្ន                                                                                         | 9560           | 9      | 561                                                |
| 8080                                       | 8      | 961                                          | 8580         | 8      | 1467                                                           | 9090         | 9      | 156<br>165 (0)<br>174 182<br>190 198 190<br>198 190<br>198 100<br>198 100<br>198 100<br>198 100 | 9570           | 9      | 570                                                |
| 8090                                       | 8      | 971                                          | 8590         | 8      | 1477                                                           | 9100         | 9      |                                                                                                 | 9580           | 9      | 578 2                                              |
| 8100                                       | 8      | <b>981</b>                                   | 8600         | 8      | 1487                                                           | 9110         | 9      | 190 8                                                                                           | 9590           | 9      | 586<br>595<br>601<br>610<br>620<br>givisions per l |
| 8110                                       | 8      | 991                                          | 8610         | 8      | 1498                                                           | 9120<br>9130 | 9      | 198 2                                                                                           | 9600           | 9      | 595 🦷                                              |
| 8120                                       | 8      | 1001                                         | 8620         | 8      | 1508 2                                                         | 9130<br>9140 | 9      | 206 5                                                                                           | 9610           | 9      | 601 5                                              |
| $\begin{array}{c} 8130\\ 8140 \end{array}$ | 8<br>8 | 1012 ĝ                                       | 8630         | 8      | 1508 ()<br>1518 및<br>1528 월                                    | 9140<br>9150 | 9<br>9 | 214 ∞<br>222 ☉                                                                                  | 9620           | 9      | 610.5                                              |
| 8140                                       | 8      | 1022 5                                       | 8640         | 8      | 1528 ৳                                                         | 9150<br>9160 | 9      | $222 \bigcirc$<br>230                                                                           | $9630 \\ 9640$ | 9      | 620 g                                              |
| 8160                                       | 8      | 1022<br>1032<br>1042 io<br>1052 iv<br>1062 P | 8650         | 8      | 1538 u<br>1548 u<br>1559 u<br>1569 u                           | 9170         | 9      | 230                                                                                             | 9640<br>9650   | 9      | 628 ∞<br>636 <sup>©</sup>                          |
| 8170                                       | 8      | 1052 .2                                      | 8660         | 8      | 1548 👸                                                         | 9180         | 9      | 239<br>248                                                                                      | 9660<br>9660   | 9      | 636 ~                                              |
| 8180                                       | 8      |                                              | 8670         | 8      | 1559 🛓                                                         | 9190         | 9      | 256                                                                                             | 9670           | 9<br>9 | $\begin{array}{c} 644\\ 652 \end{array}$           |
| 8190                                       | 8      | 1073 2                                       | 8680         | 8      | 1569                                                           | 9200         | 9      | 264                                                                                             | 9680           | 9<br>9 | 660                                                |
| 8200                                       | 8      | 1083                                         | 8690         | 8      | 1579                                                           | 9210         | 9      | 272                                                                                             | 9690           | 9<br>9 | 668                                                |
| 8210                                       | 8      | 1093                                         | 8700         | 8      | 1590                                                           | 9220         | 9      | 280                                                                                             | 9700           | 9      | 676                                                |
| 8220                                       | 8      | 1103                                         | 8710         | 8      | 1600                                                           | 9230         | 9      | 288                                                                                             | 9710           | 9      | 684                                                |
| 8230                                       | 8      | 1113                                         | 8720         | 8      | 1610                                                           | 9240         | 9      | 296                                                                                             | 9720           | 9      | 693                                                |
| 8240                                       | 8      | 1123                                         | 8730         | 8      | 1621                                                           | 9250         | 9      | 304                                                                                             | 9730           | 9      | 701                                                |
| 8250                                       | 8      | 1133                                         | 8740         | 8      | 1631                                                           |              | ·      | •••                                                                                             | 9740           | 9      | 709                                                |
|                                            | -      |                                              | 8750         | 8      | 1641                                                           | 9260         | 9      | 313                                                                                             | 9750           | 9      | 717                                                |
| 8260                                       | 8      | 1143                                         | 8760         | 8      | 1653                                                           | 9270         | 9      | 322                                                                                             |                | v      |                                                    |
| 8270                                       | 8      | 1153                                         | 8770         | 8      | 1663                                                           | 9280         | 9      | 330                                                                                             | 9760           | 9      | 725                                                |
| 8280                                       | 8      | 1163                                         | 8780         | 8      | 1673                                                           | 9290         | 9      | 338                                                                                             | 9770           | 9      | 733                                                |
| 8290                                       | 8      | 1173                                         | 8790         | 8      | 1683                                                           | 9300         | 9      | 346                                                                                             | 9780           | 9      | 742                                                |
| 8300                                       | 8      | 1183                                         | 8800         | 8      | 1694 9                                                         | 9310         | 9      | 354                                                                                             | 9790           | 9      | 751                                                |
| 8310                                       | 8      | 1194                                         | 8810         | 8      | 1704 5                                                         | 9320         | 9      | 362                                                                                             | 9800           | 9      | 760                                                |
| 8320                                       | 8      | 1204                                         | 8820         | 8      | 1715 4                                                         | 9330         | 9      | 370                                                                                             | 9810           | 9      | 769                                                |
| 8330                                       | 8      | 1214                                         | 8830         | 8      | 1725 5                                                         | 9340         | 9      | 378                                                                                             | 9820           | 9      | 777                                                |
| 8340                                       | 8      | 1224                                         | 8840         | 8      | 1736 🛱                                                         | 9350         | 9      | 387<br>396 옷                                                                                    | 9830           | 9      | 785                                                |
| 8350                                       | 8      | 1234 ල<br>1244 ල<br>1254 ලී                  | 8850         | 8      | 1704 Jan<br>1715 Log<br>1725 Log<br>1736 Log<br>1747 D         | 9360         | 9      | 396 x                                                                                           | 9840           | 9      | 793                                                |
| 8360                                       | 8      | 1244                                         | 8860         | 8      | 1757 ご                                                         | 9370         | 9      | 404 Jan 200                                                                                     | 9850           | 9      | 801 ()<br>809 1<br>817 4                           |
| 8370                                       | 8      | 1254 g                                       | 8870         | 8      | 1768                                                           | 9380         | 9      | 412 📅                                                                                           | 9860           | 9      | 809 🚽                                              |
| 8380                                       | 8      | 1264 g                                       | 8880         | 8      | 1779                                                           | 9390         | 9      | 420 <u>§</u>                                                                                    | 9870           | 9      | 817 🎽                                              |
| 8390                                       | 8      | 1274 🕅<br>1285 🛓                             | 8890         | 8      | 1789                                                           | 9400         | 9      | 428 isi<br>436 ip                                                                               | 9880           | 9      | 825 suoisivip                                      |
| 8400                                       | 8      | 1285 5                                       | 8900         | 8      | 1799                                                           | 9410         | 9      |                                                                                                 | 9890           | 9      | 834 🚊                                              |
| 8410                                       | 8      | 1295 =                                       |              | •      | 1011                                                           | 9420         | 9      | <b>444 ∞</b> .                                                                                  | 9900           | 9      | 843 붉                                              |
| 8420                                       | 8      | 1305                                         | 8910         | 8      | 1811                                                           | 9430         | 9      | 452 <sup>S</sup>                                                                                | 9910           | 9      | 001 00                                             |
| 8430                                       | 8      | 1315                                         | 8920         | 8      | 1821                                                           | 9440         | 9      | 461                                                                                             | 9920           | 9      | 859                                                |
| 8440                                       | 8      | 1325                                         | 8930         | 8      | 1821 ()<br>1832 1832 1843 1843 1854 18554 18554 1865 1877 1888 | 9450         | 9      | 470                                                                                             | 9930           | 9      | 867                                                |
| 8450                                       | 8      | 1335                                         | 8940         | 8      | 1843 8                                                         | 9460         | 9      | 478                                                                                             | 9940           | 9      | 875                                                |
| 8460                                       | 8      | 1345                                         | 8950         | 8      | 1004 6                                                         | 9470         | 9      | 486                                                                                             | 9950           | 9      | 883                                                |
| 8470                                       | 8      | 1355                                         | 8960         | 8      | 1902                                                           | 9480         | 9      | 494                                                                                             | 9960           | 9      | 891                                                |
| 8480                                       | 8<br>8 | 1365                                         | 8970         | 8      | 1000                                                           | 9490         | 9      | 502                                                                                             | 9970           | 9      | 899                                                |
| 8490<br>8500                               | 8<br>8 | $1376 \\ 1386$                               | 8980<br>8990 | 8<br>8 | 1888 <del>5</del><br>1899 <del>5</del>                         | 9500         | 9      | 510                                                                                             | 9980           | 9      | 908                                                |
| 0000                                       | 0      | 1990                                         | 8990<br>9000 | 8      | 1899<br><b>1910</b>                                            |              |        |                                                                                                 | 9990           | 9      | 917                                                |
|                                            |        |                                              | 3000         | 0      | 1910                                                           |              |        |                                                                                                 | 10000          | 9      | 925                                                |

# Frequency 10000 to 12000 kilocycles

TABLE II-(Cont.)

| Freq.            |        | P                                                         | Freq.                                         |        |                                             | Freq.                                     |            |                                          | Freq.            |    |                                                                    |
|------------------|--------|-----------------------------------------------------------|-----------------------------------------------|--------|---------------------------------------------|-------------------------------------------|------------|------------------------------------------|------------------|----|--------------------------------------------------------------------|
|                  | A      | В                                                         |                                               | Α      | В                                           |                                           | Α          | в                                        |                  | Α  | В                                                                  |
| 9900             | 9      | 843 ()<br>925 19<br>933 d                                 | 10350                                         | 9      | <b>1211</b>                                 | 11000                                     | 10         | 195                                      | 11400            | 10 | <b>469</b> 😧                                                       |
| 10000            | 9      | 920                                                       | 10500                                         | 9      | 1333                                        | 11010                                     | 10         | 202                                      | 11500            | 10 | 538<br>545<br>551<br>557<br>563<br>8<br>divisions per l            |
| 10010            | 9      | 933 8                                                     | 10510                                         | 9      | 1341 g                                      | 11020                                     | 10         | 209                                      | 11510            | 10 | 545 s                                                              |
| 10020            | 9<br>9 | 941 suoisivip<br>957 p<br>965 8                           | 10520                                         | 9      | 1349<br>1357<br>1365<br>1365<br>1373<br>8.0 | $\begin{array}{r}11030\\11040\end{array}$ | 10         | 216                                      | 11520            | 10 | 551 .0                                                             |
| $10030 \\ 10040$ | 9<br>9 | 949                                                       | 10530                                         | .9     |                                             | 11040                                     | $10 \\ 10$ | $\begin{array}{c} 223\\ 230 \end{array}$ | 11530            | 10 | 557 5                                                              |
| 10040            | 9      | 957 5                                                     | $\begin{array}{c} 10540 \\ 10550 \end{array}$ | 9      | 1365 >                                      | 11050                                     | 10         | $230 \\ 237$                             | $11540 \\ 11550$ | 10 | 570 <del>8</del>                                                   |
| 10030            | 9      | 900 8.<br>900 8.                                          | 10550                                         | 9      | 1373                                        | 11000                                     | 10         | 243                                      | 11550            | 10 | 910 S                                                              |
| 10060            | 9      | 973                                                       | 10580                                         | 9<br>9 | 1381 e<br>1389                              | 11070                                     | 10         | $243 \\ 249$                             | 11560            | 10 | 577                                                                |
| 10070            | 9      | 982                                                       | 10070                                         | 9      | 1309                                        | 11090                                     | 10         | 245                                      | 11570            | 10 | 584                                                                |
| 10010            | 9      | 991                                                       | 10580                                         | 9      | 1397                                        | 11100                                     | 10         | $250 \\ 264$                             | 11570            | 10 | $584 \\ 591$                                                       |
| 10090            | 9      | 999                                                       | 10590                                         | 9      | 1405                                        | 11110                                     | 10         |                                          | 11590            | 10 | 598                                                                |
| 10100            | 9      | 1007                                                      | 10600                                         | 9      | 1413                                        | 11110                                     | 10         | 270<br>277 अ                             | 11600            | 10 | 605                                                                |
| 10110            | 9      | 1015                                                      | 10610                                         | 9      | 1421                                        | 11130                                     | 10         | 284<br>291<br>297<br>305<br>311<br>ip    | 11610            | 10 | 613                                                                |
| 10120            | 9      | 1099                                                      | 10620                                         | 9      | 1430                                        | 11140                                     | 10         | 201                                      | 11620            | 10 | 619                                                                |
| 10130            | 9      | 1023<br>1031 🔶                                            | 10630                                         | 9      | 1438                                        | 11150                                     | 10         | 297 5                                    | 11630            | 10 | 625                                                                |
| 10140            | 9      | 1039 5                                                    | 10640                                         | 9      | 1446<br>1454 अ                              | 11160                                     | 10         | 305.3                                    | 11640            | 10 | 632                                                                |
| 10150            | 9      | 1047                                                      | 10650                                         | 9      | 1454 ダ                                      | 11170                                     | 10         | 311                                      | 11650            | 10 | 639                                                                |
| 10160            | 9      | 1039 ted<br>1047 suo<br>1055 suo<br>1064 sivij<br>1072 ip | 10660                                         | 9      |                                             | 11180                                     | 10         | 317 8                                    | 11660            | 10 | 646                                                                |
| 10170            | 9      | 1064                                                      | 10670                                         | 9      | 1470 🛱                                      | 11190                                     | 10         | 324 0                                    | 11670            | 10 | 653 0                                                              |
| 10180            | 9      | 1072 ≧                                                    | 10680                                         | 9      | 1478 5                                      | 11200                                     | 10         | 331                                      | 11680            | 10 | 660 3                                                              |
| 10190            | 9      | 1080 ∞                                                    | 10690                                         | 9      | 1470<br>1478 o<br>1486 i<br>1494 ip         | 11210                                     | 10         | 338                                      | 11690            | 10 | 653 ()<br>660 y<br>667 z                                           |
| 10200            | 9      | 1089 <sup>ල</sup> ්                                       | 10700                                         | 9      | 1494 🗟                                      | 11220                                     | 10         | 345                                      | 11700            | 10 | 674 🛎                                                              |
| 10210            | 9      | 1097                                                      | 10710                                         | 9      | 1504 <u>∞</u>                               | 11230                                     | 10         | 352                                      | 11710            | 10 | 680                                                                |
| 10220            | 9      | 1105                                                      | 10720                                         | 9      | 1512 8                                      | 11240                                     | 10         | 359                                      | 11720            | 10 | 687                                                                |
| 10230            | 9      | 1113                                                      | 10730                                         | 9      | 1520                                        | 11250                                     | 10         | 366                                      | 11730            | 10 | 694 ~                                                              |
| 10240            | 9      | 1121                                                      | 10740                                         | 9      | 1528                                        | 11260                                     | 10         | 372                                      | 11740            | 10 | 674<br>680<br>687<br>694<br>701<br>0                               |
| 10250            | 9      | 1129                                                      | 10750                                         | 9      | 1536                                        | 11270                                     | 10         | 378                                      | 11750            | 10 | 708                                                                |
| 10260            | 9      | 1138                                                      | 10760                                         | 9      | 1544                                        | 11280                                     | 10         | 385                                      | 11760            | 10 | 715                                                                |
|                  |        |                                                           | 10770                                         | 9      | 1552                                        | 11290                                     | 10         | 392                                      | 11770            | 10 | 722                                                                |
| 10270            | 9      | 1146                                                      | 10780                                         | 9      | 1560                                        | 11300                                     | 10         | 399                                      | 11780            | 10 | 729                                                                |
| 10280            | 9      | 1154                                                      | 10790                                         | 9      |                                             | 11310                                     | 10         | 406                                      | 11790            | 10 | 736                                                                |
| 10290            | 9      | 1162                                                      | 10800                                         | 9      | 1578                                        | 11320                                     | 10         | 413                                      | 11800            | 10 | 742                                                                |
| 10300            | 9      | 1170                                                      | 10800                                         | 10     | 060                                         |                                           |            | 1.6                                      | 11810            | 10 | 748                                                                |
| 10310            | 9      | 1178                                                      | 10810                                         | 10     | 066                                         | 11330                                     | 10         | 420                                      | 11820            | 10 | 755                                                                |
| 10320            | 9      | 1186                                                      | 10820                                         | 10     | 072                                         | 11340                                     | 10         | 427                                      | 11830            | 10 | 762                                                                |
| 10330            | 9      | 1194                                                      | 10830                                         | 10     | 079                                         | 11350                                     | 10         | 433                                      | 11840            | 10 | 769                                                                |
| 10340            | 9      | 1202<br><b>1211</b> ខ្លិ                                  | 10840                                         | 10     | 086                                         | 11360                                     | 10         | 440                                      | 11850            | 10 | 776                                                                |
| 10350            | 9      |                                                           | 10850                                         | 10     | 093                                         | 11370                                     | 10         | 447 9<br>454 9                           |                  |    |                                                                    |
| 10360            | 9      | 1219 ង្គ                                                  | 10860                                         | 10     | 100 9                                       | 11380                                     | 10         | 454 🎽                                    | 11860            | 10 | 783                                                                |
| 10370            | 9      | 1227                                                      | 10870                                         | 10     | 107 5                                       | 11390                                     | 10         | 462 g                                    | 11870            | 10 | 790                                                                |
| 10380            | 9      | 1235<br>1243<br>1251<br>1251                              | 10880                                         | 10     | 114 គឺ                                      | 11400                                     | 10         | <b>469</b><br>475<br>482<br>489<br>489   | 11880            | 10 | 797                                                                |
| 10390            | 9      | 1243 .                                                    | 10890                                         | 10     | 121 su<br>127 su<br>134 ip<br>141 m         | 11410                                     | 10         | 475 5                                    | 11890            | 10 | 803 g<br>810 g<br>817 g                                            |
| 10400            | 9      | 1251 🗃                                                    | 10900                                         | 10     | 127 8                                       | 11420                                     | 10         | 482 🛱                                    | 11900            | 10 | 810 🚆                                                              |
| 10410            | 9      | 1259 ∞.                                                   | 10910                                         | 10     | 134 5                                       | 11430                                     | 10         | 48 <b>9</b> ë                            | 11910            | 10 | 817 8                                                              |
| 10420            | 9      | 1267 9                                                    | 10920                                         | 10     | 141 0                                       | 11440                                     | 10         | 495 %                                    | 11920            | 10 | 824 m                                                              |
| 10430            | 9      | 1275                                                      | 10930                                         | 10     | 148 3                                       | 11450                                     | 10         | 503 e                                    | 11930            | 10 | 824 suoisi<br>831 is<br>838 si |
| 10440            | 9      | 1284                                                      | 10940                                         | 10     | 155 0                                       | 11460                                     | 10         | 510                                      | 11940            | 10 | 838 5                                                              |
| 10450            | 9      | 1292                                                      | 10950                                         | 10     | 162                                         | 11470                                     | 10         | 517                                      | 11950            | 10 | 845 0                                                              |
| 10460            | 9      | 1300                                                      | 10960                                         | 10     | 169                                         | 11480                                     | 10         | 524                                      | 11960            | 10 | 852 %                                                              |
| 10470            | 9      | 1308                                                      | 10970                                         | 10     | 176                                         | 11490                                     | 10         | 531                                      | 11970            | 10 | 859 C                                                              |
| 10480            | 9      | $1316 \\ 1324$                                            | 10980                                         | 10     | 183                                         | 11500                                     | 10         | 538                                      | 11980            | 10 | 866                                                                |
| 10490            | 9<br>9 | $\begin{array}{c}1324\\1333\end{array}$                   | 10990                                         | 10     | 189                                         |                                           |            |                                          | 11990            | 10 | 873                                                                |
| 10500            | 9      | 1999                                                      | 11000                                         | 10     | 195                                         |                                           |            |                                          | 12000            | 10 | 879                                                                |

# Frequency 12000 to 14000 kilocycles

TABLE II-(Cont.)

| Freq.                                       | A               | в                                                           | Freq.                                     | А               | в                                                     | Freq.            | A        | в                                        | Freq.            | A        | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------|-----------------|-------------------------------------------------------------|-------------------------------------------|-----------------|-------------------------------------------------------|------------------|----------|------------------------------------------|------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12000                                       | 11              | 100                                                         | 12500                                     | 11              | 408                                                   | 13000            | 11       | 719                                      | 13500            | 11       | 1027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12010                                       | 11              | 106                                                         | 12510                                     | 11              | 415                                                   | 13010            | 11       | 725                                      | 13510            | 11       | 1033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12020                                       | 11              | 112                                                         | 12520                                     | 11              | 421                                                   | 13020            | 11       | 732                                      | 13520            | 11       | 1039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12030                                       | 11              | 119                                                         | 12530                                     | 11              | 427                                                   | 13030            | 11       | 738                                      | 13530            | 11       | 1046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12040                                       | 11              | 125                                                         | 12540                                     | 11              | 433                                                   | 13040            | 11       | 744                                      | 13540            | 11       | 1052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12050                                       | 11              | 131                                                         | 12550                                     | 11              | 439                                                   | 13050            | 11       | 750                                      | 13550            | 11       | 1058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12060                                       | 11              | 138                                                         | 12560                                     | 11              |                                                       | 13060            | 11       | 756                                      | 13560            | 11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12070                                       | 11              | 144                                                         | 12570                                     | 11              | 445<br>452 S                                          | 13070            | 11       | 762                                      | 13570            | 11       | 1064<br>1070 ਤੋਂ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12080                                       | 11              | 150                                                         | 12580                                     | 11              | 458 5                                                 | 13080            | 11       | 769                                      | 13580            | 11       | 1076 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12090                                       | 11              | 156                                                         | 12590                                     | 11              | 458<br>464<br>470<br>476<br>1<br>1<br>1<br>482<br>482 | 13090            | 11       | 775                                      | 13590            | 11       | 1083 🗖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12100                                       | 11              | 162                                                         | 12600                                     | 11              | 470 <del>គ</del>                                      | 13100            | 11       | 781 ()<br>787 1<br>793 d                 | 13600            | 11       | 1089 <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12110                                       | 11              | 168                                                         | 12610                                     | 11              | 476 🖉                                                 | 13110            | 11       | 787 🚆                                    | 13610            | 11       | 1095 🚆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12120                                       | 11              | 174                                                         | 12620                                     | 11              | 482 ÷                                                 | 13120            | 11       | 793 Å                                    | 13620            | 11       | 1083 <b>1089</b><br>1089 1095 in<br>1101 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12130                                       | 11              | 180 S                                                       | 12630                                     | 11              | 489 9<br>495 9                                        | 13130            | 11       | 799 g                                    | 13630            | 11       | 1107 🙁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12140                                       | 11              | 187 🎽                                                       | 12640                                     | 11              |                                                       | 13140            | 11       | 806                                      | 13640            | 11       | 2-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12150                                       | 11              | 180 ()<br>187 193 199<br>205 211 217 19<br>217 19<br>217 19 | 12650                                     | 11              | 501                                                   | 13150            | 11       | 799 su<br>806 si<br>812 i<br>818         | 13650            | 11       | 1119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12160                                       | 11              | 199 g                                                       | 12660                                     | 11              | 508                                                   | 13160            | 11       | 818                                      | 13660            | 11       | 1125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12170                                       | 11              | 205 5                                                       | 12670                                     | 11              | 514                                                   | 13170            | 11       | 824 e                                    | 13670            | 11       | 1131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12180                                       | 11              | 211 2                                                       | 12680                                     | 11              | 520                                                   | 13180            | 11       | 830                                      | 13680            | 11       | 1138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12190                                       | 11              | 217 5                                                       | 12690                                     | 11              | 526                                                   | 13190            | 11       | 836                                      | 13690            | 11       | 1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12200                                       | 11              | 223 9                                                       | 12700                                     | 11              | 532                                                   | 13200            | 11       | 843                                      | 13700            | 11       | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12210                                       | 11              | 230                                                         | 10710                                     |                 | <b>500</b>                                            | 13210            | 11       | 849                                      | 19710            |          | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12220                                       | 11              | 236                                                         | 12710                                     | 11              | 538                                                   | 13220            | 11       | 855                                      | 13710            | 11       | 1156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c} 12230\\ 12240\end{array}$ | 11              | 242                                                         | 12720                                     | $\frac{11}{11}$ | 545                                                   | $13230 \\ 13240$ | 11<br>11 | 862<br>868                               | $13720 \\ 13730$ | 11<br>11 | 1162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12240<br>12250                              | 11<br>11        | 248                                                         | $\begin{array}{r}12730\\12740\end{array}$ | 11              | 551<br>557                                            | 13240<br>13250   | 11       | 874                                      | 13730<br>13740   | 11       | 1168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12250                                       | 11              | $254 \\ 260$                                                | 12740<br>12750                            | 11              | 564                                                   | 13260            | 11       | 880                                      | 13740<br>13750   | 11       | 1174<br>1180 육                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12200                                       | 11              | 267                                                         | 12760                                     | 11              | 570                                                   | 13270            | 11       | 886                                      | 13760            | 11       | 1186 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12280                                       | 11              | 273                                                         | 12770                                     | 11              | 576                                                   | 13280            | 11       | 892                                      | 13770            | 11       | 1193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12290                                       | 11              | 279                                                         | 12780                                     | 11              | 582                                                   | 13290            | 11       | 898                                      | 13780            | 11       | 1199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12200                                       |                 | 210                                                         | 12790                                     | 11              | 500                                                   | 13300            | 11       | 904                                      | 13790            | 11       | 1205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12300                                       | 11              | 285                                                         | 12800                                     | 11              | 595 S                                                 | 13310            | 11       | 010                                      | 13800            | 11       | 1186 a<br>1193 subject of the second sec |
| 12310                                       | 11              | 291                                                         | 12810                                     | 11              | 601 ad<br>607 suojsi<br>620 sij                       | 13320            | 11       | 917 ម្ព                                  | 13810            | 11       | 1217 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12320                                       | 11              | 297                                                         | 12820                                     | 11              | 607 <sup>Å</sup>                                      | 13330            | 11       | 923<br>929<br>935<br>941<br>947<br>947   | 13820            | 11       | 1223 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12330                                       | 11              | 303                                                         | 12830                                     | 11              | 613                                                   | 13340            | 11       | 929 Å                                    | 13830            | 11       | 1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12340                                       | 11              | 309                                                         | 12840                                     | 11              | 620 🛱                                                 | 13350            | 11       | 935 គ                                    | 13840            | 11       | 1235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12350                                       | 11              | 315                                                         | 12850                                     | 11              | 626 🛱                                                 | 13360            | 11       | 941 គ្នី                                 | 13850            | 11       | 1241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12360                                       | 11              | 322                                                         | 12860                                     | 11              | 632 <del>o</del>                                      | 13370            | 11       | 947 🗧                                    | 13860            | 11       | 1247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12370                                       | 11              | 328<br>334 <sup>©</sup>                                     | 12870                                     | 11              |                                                       | 13380            | 11       | 954 w                                    | 13870            | 11       | 1253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12380                                       | 11              | 334 -                                                       | 12880                                     | 11              | 644                                                   | 13390            | 11       | 960 <sup>Ś</sup>                         | 13880            | 11       | 1259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12390                                       | 11              | 340 헐                                                       | 12890                                     | 11              | 650                                                   | 13400            | 11       | 966                                      | 13890            | 11       | 1266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12400                                       | 11              | 346 suoisi<br>352 suoisi<br>365 p                           | 12900                                     | 11              | 657                                                   |                  |          |                                          | 13900            | 11       | 1272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12410                                       | 11              | 352 5                                                       | 12910                                     | 11              | 663                                                   | 13410            | 11       | 972                                      | 13910            | 11       | 1278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12420                                       | 11              | 359 😤                                                       | 12920                                     | 11              | 669                                                   | 13420            | 11       | 980                                      | 13920            | 11       | 1284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12430                                       | 11              | 365 च                                                       | 12930                                     | 11              | 675                                                   | 13430            | 11       | 986                                      | 13930            | 11       | 1290 g<br>1296 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12440                                       | 11              | 371 ÷                                                       | 12940                                     | 11              | 681                                                   | 13440            | 11       | 991<br>997 <sup>2</sup>                  | 13940            | 11       | 1296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12450                                       | 11              | 0.1                                                         | 12950                                     | 11              | 687                                                   | 13450            | 11       | 997 A                                    | 13950            | 11       | 1302 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12460                                       | 11              | 383                                                         | 12960                                     | 11              | 693                                                   | 13460            | 11       | 1003 b                                   | 13960            | 11       | 1308 5<br>1314 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $12470 \\ 12480$                            | $\frac{11}{11}$ | 389<br>396                                                  | 12970                                     | 11              | 699<br>706                                            | $13470 \\ 13480$ | 11<br>11 | 1009 su<br>1015 su<br>1021 ivi<br>1027 p | 13970            | 11<br>11 | 1901 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12480                                       | 11              | 396<br>402                                                  | 12980                                     | 11<br>11        |                                                       | 13480            | 11       | 1021 2                                   | 13980<br>13990   | 11       | 1321 e<br>1327 e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12490                                       | 11              | 402                                                         | $12990 \\ 13000$                          | 11              | 713<br>719                                            | 13490            | 11       | 1027                                     | 13990            | 11       | 1327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12600<br>12600                              | 11              | <b>4</b> 08<br><b>470</b>                                   | 19000                                     | T T             | 119                                                   | 13600            | 11       | 1089 9                                   | 1-2000           | 11       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12000                                       |                 | 110                                                         |                                           |                 |                                                       | 10000            |          | 1089 <del>g</del>                        |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

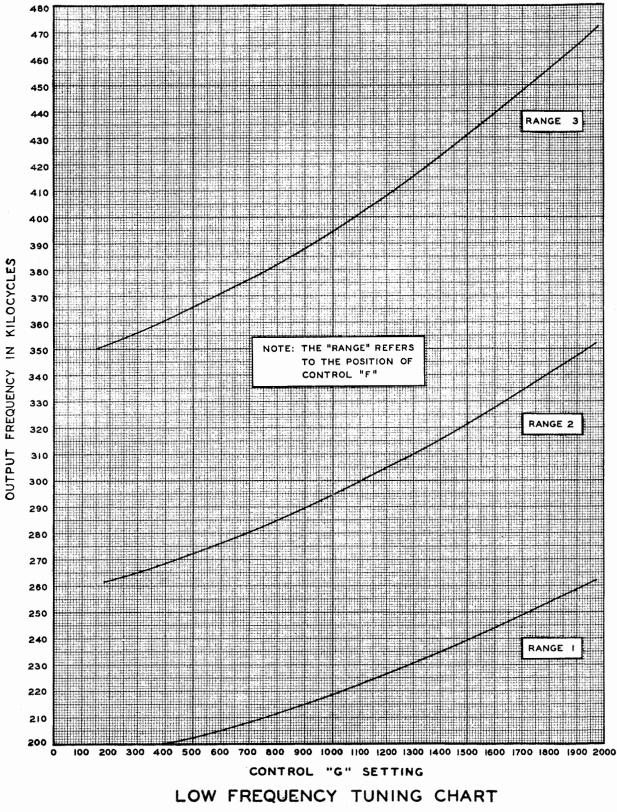
Use nearest check point shown in heavy type.

# Frequency 14000 to 16000 kilocycles

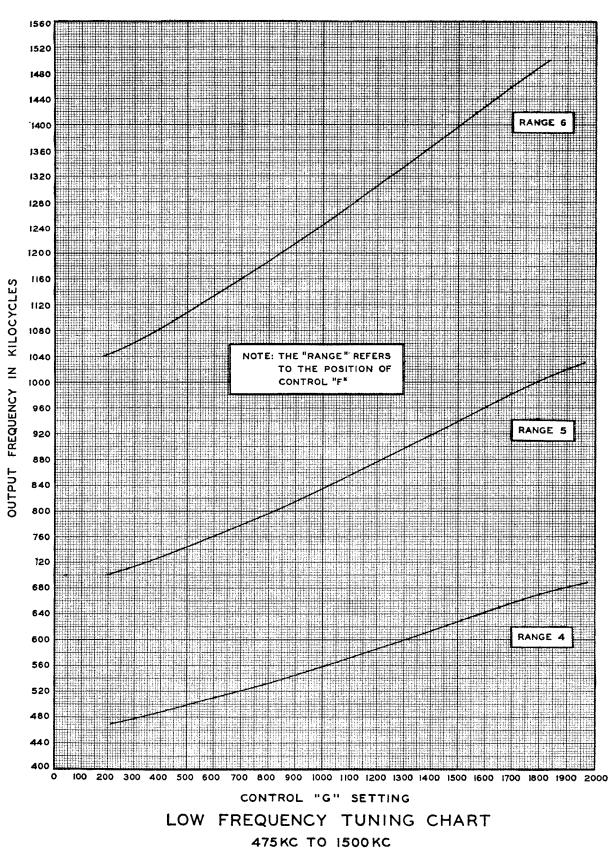
TABLE II-(Cont.)

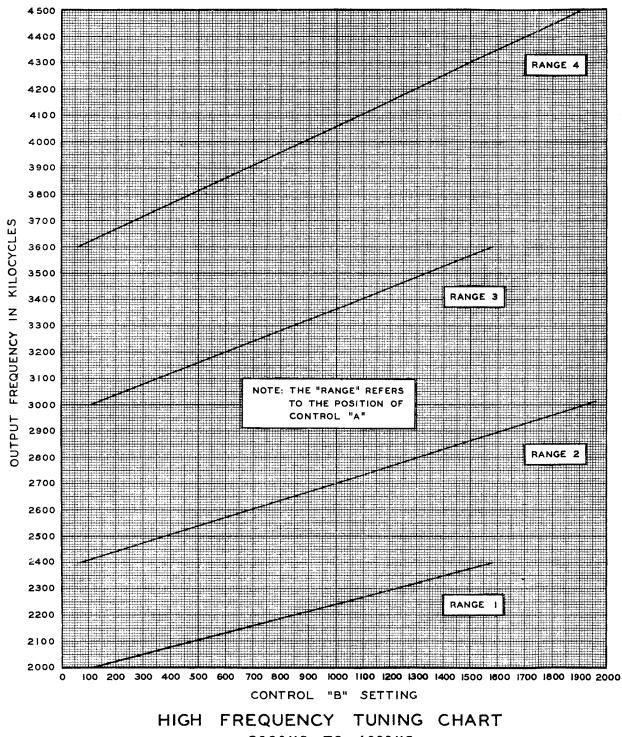
|                                               |                 | (00)                                    |                  |                 |                                |                                               |            |                                                  |                                           |                 |                                               |
|-----------------------------------------------|-----------------|-----------------------------------------|------------------|-----------------|--------------------------------|-----------------------------------------------|------------|--------------------------------------------------|-------------------------------------------|-----------------|-----------------------------------------------|
| •bə                                           |                 |                                         | •đ•              |                 |                                | G                                             |            |                                                  | ġ                                         |                 |                                               |
| Freq.                                         | $\mathbf{A}$    | в                                       | Freq.            | A               | B                              | Freq.                                         | A          | в                                                | Freq.                                     | А               | в                                             |
| 13800                                         | 11              | 1211                                    | 14400            | 12              | 060                            | 15000                                         | 12         | 366                                              | 15500                                     | 12              | 623                                           |
| 14000                                         | 11              | 1333                                    | 14500            | 12              | 111                            | 15010                                         | 12         |                                                  | 15500<br>15510                            | $12 \\ 12$      | 628                                           |
| 14010                                         | 11              |                                         | 14510            | 12              | 116                            | 15010                                         | $12 \\ 12$ | 371<br>376 <sup>3</sup>                          | 15510<br>15520                            | $12 \\ 12$      | 633                                           |
| 14020                                         | 11              | $\begin{array}{c}1339\\1345\end{array}$ | 14520            | 12              | 121                            | 15020                                         | $12 \\ 12$ | 381 5                                            | 15530                                     | 12              | 638                                           |
| 14030                                         | 11              | 1351 ੈ                                  | 14530            | 12              | 126                            | 15040                                         | $12 \\ 12$ | 386                                              | 15540                                     | 12              | 644                                           |
| 14040                                         | 11              | 1357 2                                  | 14540            | 12              | 131                            | 15040                                         | 12         | 391 8                                            | 15550                                     | 12              | 649                                           |
| 14050                                         | 11              | 1363 8                                  | 14550            | 12              | 137                            | 15060                                         | $12 \\ 12$ | 397                                              | 15560                                     | 12              | 654                                           |
| 14060                                         | 11              | 1363 0<br>1369 5                        | 14560            | $12^{$          | 142                            | 15070                                         | 12         | 381<br>386<br>397<br>402<br>9<br>402<br>9<br>402 | 15570                                     | 12              | 659                                           |
| 14070                                         | 11              | 1376 5                                  | 14570            | 12              | 147                            | 15080                                         | 12         | 407 3                                            | 15580                                     | 12              | 664                                           |
| 14080                                         | 11              | 1382 9                                  | 14580            | 12              | 152 🙃                          | 15090                                         | 12         | $407 \overset{5}{\underline{3}}_{412}$           | 15590                                     | 12              |                                               |
| 14090                                         | 11              | 1388 9                                  | 14590            | 12              | 152 g<br>157 g<br>162 g        | 15100                                         | 12         | 417                                              | 15600                                     | 12              | 669<br>674 🕄                                  |
| 14100                                         | 11              | 1394                                    | 14600            | 12              | 162 \$                         | 10100                                         |            |                                                  | 15610                                     | 12              | 679 5                                         |
|                                               |                 |                                         | 14610            | 12              | 16X m                          | 15110                                         | 12         | 422                                              | 15620                                     | 12              | 684                                           |
| 14110                                         | 11              | 1400                                    | 14620            | 12              | 173 00<br>178 1                | 15120                                         | 12         | 427                                              | 15630                                     | 12              | 679<br>684<br>689<br>694<br>699<br>699<br>699 |
| 14120                                         | 11              | 1406                                    | 14630            | 12              | 178 🛱                          | 15130                                         | 12         | 432                                              | 15640                                     | 12              | 694 3                                         |
| 14130                                         | 11              | 1412                                    | 14640            | 12              | 183 🗢                          | 15140                                         | 12         | 437                                              | 15650                                     | 12              | 699 🖥                                         |
| 14140                                         | 11              | 1418                                    | 14650            | 12              | 188 🤤                          | 15150                                         | 12         | 443                                              | 15660                                     | 12              | 705 <u>9</u>                                  |
| 14150                                         | 11              | 1424                                    | 14660            | 12              | 193 🖱                          | 15160                                         | 12         | 448                                              | 15670                                     | 12              | 710 9                                         |
| 14160                                         | 11              | 1430                                    | 14670            | 12              | 198                            | 15170                                         | 12         | 453                                              | 15680                                     | 12              | 715                                           |
| 14170                                         | 11              | 1436                                    | 14680            | 12              | 203                            | 15180                                         | 12         | 458                                              | 15690                                     | 12              | 721                                           |
| 14180                                         | 11              | 1442                                    | 14690            | 12              | 208                            | 15190                                         | 12         | 463                                              | 15700                                     | 12              | 726                                           |
| 14190                                         | 11              | 1449                                    | 14700            | 12              | 213                            | 15200                                         | 12         | <b>469</b> ଥି                                    | 15710                                     | 12              | 731                                           |
| 14200                                         | 11              | 1455                                    | 14710            | 12              | 218                            | 15210                                         | 12         | 474 5                                            | 15720                                     | 12              | 736                                           |
| 14210                                         | 11              | 1461                                    | 14720            | 12              | 223                            | 15220                                         | 12         | 474 b<br>479 b                                   | 15730                                     | 12              | 741                                           |
| 14220                                         | 11              | 1468<br>1474 ਤੋਂ                        | 14730            | 12              | 228                            | 15230                                         | 12         | 484 uoisivip<br>494 ip                           | 15740                                     | 12              | 746                                           |
| 14230                                         | 11              | 1474 ¥                                  | 14740            | 12              | 233                            | 15240                                         | 12         | 489 🛒                                            | 15750                                     | 12              | 752                                           |
| 14240                                         | 11              | 1480 b                                  | 14750            | 12              | 238                            | 15250                                         | 12         | 494 🛔                                            | 15760                                     | 12              | 757                                           |
| 14250                                         | 11              | 1486 🛱                                  |                  |                 |                                | 15260                                         | 12         | 499 m.                                           | 15770                                     | 12              | 762                                           |
| 14260                                         | 11              | 1486<br>1492<br>1498                    | 14760            | 12              | 243                            | 15270                                         | 12         | 505 S                                            | 15780                                     | 12              | 767                                           |
| 14270                                         | 11              | 1498 😤                                  | 14770            | 12              | 248                            | 15280                                         | 12         | 510                                              | 15790                                     | 12              | 772                                           |
| 14280                                         | 11              | 1504 🗟                                  | 14780            | 12              | 253                            | 15290                                         | 12         | 515                                              | 15800                                     | 12              | 777                                           |
| 14290                                         | 11              | 1510 %                                  | 14790            | 12              | 259                            | 15300                                         | 12         | 520                                              |                                           |                 |                                               |
| 14300                                         | 11              | 1516 😇                                  | 14800            | 12              | 264                            | 15310                                         | 12         | 525                                              | 15810                                     | 12              | 782                                           |
| 14310                                         | 11              | 1523                                    | 14810            | 12              | 269                            | 15320                                         | 12         | 530                                              | 15820                                     | 12              | 787                                           |
| 14320                                         | 11              | 1529                                    | 14820            | 12              | 274                            | 15330                                         | 12         | 535                                              | 15830                                     | 12              | 792                                           |
| 14330                                         | 11              | 1535                                    | 14830            | 12              | 279                            | 15340                                         | 12         | 540                                              | 15840                                     | 12              | 797                                           |
| 14340                                         | 11              | 1541                                    | 14840            | 12              | 284                            | 15350                                         | 12         | 545                                              | 15850                                     | 12              | 802                                           |
| 14350                                         | 11              | 1547                                    | 14850            | 12              | 290                            | 15360                                         | 12         | 551                                              | 15860                                     | 12              | 807                                           |
| 14360                                         | 11              | 1553                                    | 14860            | 12              | 295<br>300 ଥ୍ଲି                | 15370                                         | 12         | 556                                              | 15870                                     | 12              | 813                                           |
| 14370                                         | 11              | 1560                                    | 14870            | 12              | 300 3                          | 15380                                         | 12         | 561                                              | 15880                                     | 12              | 818 2                                         |
| 14380                                         | 11              |                                         | 14880            | 12              | 305 b<br>310 -                 | 15390                                         | 12         | 567                                              | 15890                                     | 12              | 823 4                                         |
| 14390                                         | 11<br><b>11</b> | 1572<br><b>1578</b>                     | 14890            | 12              | 310 ~                          | 15400                                         | 12         | 572                                              | 15900                                     | 12              | 828 g                                         |
| 14400                                         | 11              | 1570                                    | 14900            | 12              | 315 5                          |                                               |            | ~ ~ ~ ~                                          | 15910                                     | 12              | 833 #                                         |
| 14400                                         | 12              | 060                                     | 14910            | 12              | 315<br>320 su<br>325 ip        | 15410                                         | 12         | 577                                              | 15920                                     | 12              | 833 suojeja<br>838 ojeja<br>844 ja            |
|                                               | 12              |                                         | $14920 \\ 14930$ | $\frac{12}{12}$ | 323 5                          | 15420                                         | 12         | 582<br>587 भ्र                                   | 15930                                     | 12              | 844 5                                         |
| $\begin{array}{r} 14410 \\ 14420 \end{array}$ | 12              | 065<br>070 육                            | 14930<br>14940   | $12 \\ 12$      | بمبا 330<br>335 <sup>(2)</sup> | 15430                                         | 12         | 507 4                                            | 15940                                     | 12              | 849 5                                         |
| 14420<br>14430                                | 12              | 076 g                                   | $14940 \\ 14950$ | $12 \\ 12$      | $335 \odot 340$                | 15440                                         | 12         | 592 bd<br>597 g                                  | $\begin{array}{c}15950\\15960\end{array}$ | $\frac{12}{12}$ | 854 <b>3</b><br>859                           |
| 14430<br>14440                                | $12 \\ 12$      | 0.81 8                                  | 14950            | $12 \\ 12$      | $340 \\ 345$                   | 15450                                         | 12         | 09/ 0                                            | $15960 \\ 15970$                          | 12              | 859<br>864                                    |
| $14440 \\ 14450$                              | $12 \\ 12$      |                                         | 14980            | $12 \\ 12$      | $345 \\ 351$                   | 15460                                         | 12         | 602 ioisiv<br>607 ivi<br>613 ib                  | 15970                                     | 12<br>12        | 864<br>869                                    |
| $14450 \\ 14460$                              | $12 \\ 12$      | 091 g                                   | 14970            | $12 \\ 12$      | 356                            | 15470                                         | 12         | 619                                              | 15980                                     | 12<br>12        | 869<br>874                                    |
| 14400<br>14470                                | $12 \\ 12$      | 096 9                                   | 14980            | 12              | 361                            | 15480                                         | 12         | 61910                                            | 16990<br>16000                            | 12              | 874<br>879                                    |
| 14470                                         | 12              | 101                                     | 15000            | 12              | 366                            | $\begin{array}{r} 15490 \\ 15500 \end{array}$ | $12 \\ 12$ | 618 9<br>623 9                                   | 10000                                     | 12              | 013                                           |
| 14490                                         | 12              | 106                                     | 10000            |                 |                                | 15500<br>15600                                | 12<br>12   | 623<br>674                                       |                                           |                 |                                               |
| 14500                                         | 12              | 111                                     |                  |                 |                                | 12000                                         | 14         | 014                                              |                                           |                 |                                               |
|                                               |                 | +                                       |                  |                 |                                |                                               |            |                                                  |                                           |                 |                                               |

Use nearest check point shown in heavy type.

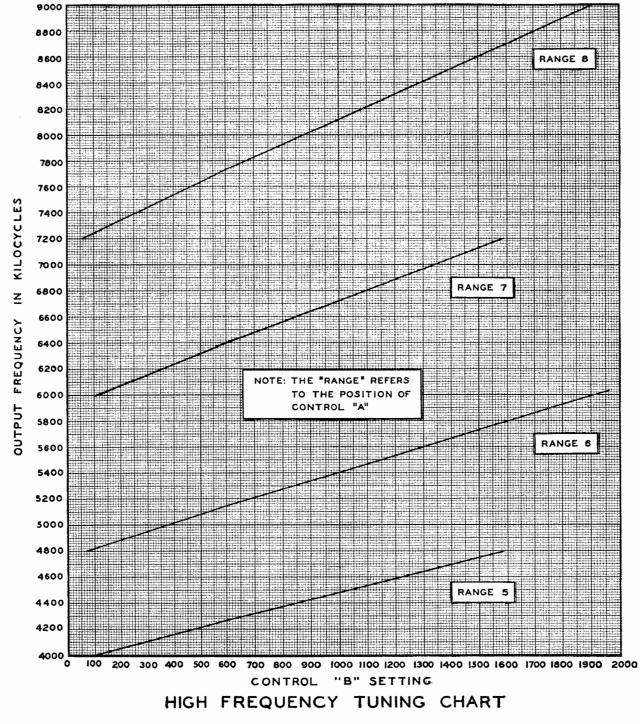

# Frequency 16000 to 18100 kilocycles

DATA

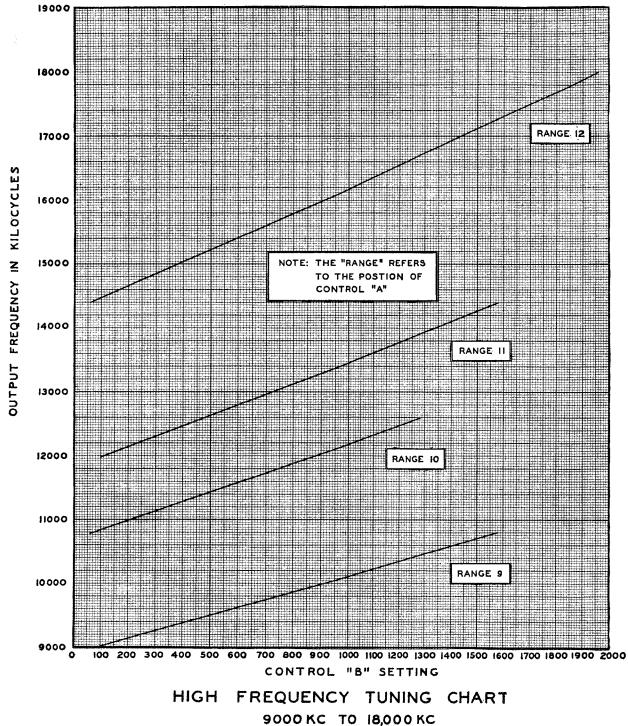

TABLE II-(Cont.)


| Freq.                                         | A               | в                                            | Freq.                                       | А               | В                                                                            |   | Freq.            | A               | в                                        | Freq.                                       | А          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------|-----------------|----------------------------------------------|---------------------------------------------|-----------------|------------------------------------------------------------------------------|---|------------------|-----------------|------------------------------------------|---------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16000                                         | 12              | 879                                          | 16500                                       | 12              | 1133                                                                         |   | 16800            | 12              | 1285                                     | 17550                                       | 12         | 1668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16010                                         | 12              | 884 ()<br>890 <sup>1</sup><br>895 a          | 16510                                       | 12              | 1138                                                                         |   | 17000            | 12              | 1386 3<br>1391<br>1396 8                 | 17560                                       | 12         | 1673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16020                                         | 12              | 890 -                                        | 16520                                       | 12              | 1143                                                                         |   | 17010            | 12              | 1391                                     | 17570                                       | 12         | 1678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16030                                         | 12              | 895 🛓                                        | 16530                                       | 12              | 1148                                                                         |   | 17020            | 12              | 1396 2                                   | 17580                                       | 12         | 1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16040                                         | 12              | 900<br>905 suoisi<br>910 915                 | 16540                                       | 12              | 1153                                                                         |   | 17030            | 12              | 1401 su<br>1406 su<br>1411 i i i<br>1416 | 17590                                       | 12         | 1688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16050                                         | 12              | 905.0                                        | 16550                                       | 12              | 1158                                                                         |   | 17040            | 12              | 1406 3                                   | 17600                                       | 12         | 1694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16060                                         | 12              | 910 5                                        | 16560                                       | 12              | 1163                                                                         |   | 17050            | 12              |                                          | 17610                                       | 12         | 1699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16070                                         | 12              | 915 0                                        | 16570                                       | 12              | 1168                                                                         |   | 17060            | $12 \\ 12$      | 1416                                     | 17620                                       | 12         | 1704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16080                                         | 12              | 920 3                                        | 16580                                       | $\frac{12}{12}$ | 1173                                                                         |   | $17070 \\ 17080$ | $12 \\ 12$      | 1421 S<br>1426                           | $\begin{array}{r} 17630\\ 17640\end{array}$ | $12 \\ 12$ | 1709<br>1715 ទ្ឋិ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $16090 \\ 16100$                              | $\frac{12}{12}$ | 925<br>930                                   | $\begin{array}{c} 16590\\ 16600\end{array}$ | $12 \\ 12$      | $1179_{1184}$                                                                |   | 17080            | $12 \\ 12$      | 1420<br>1431                             | 17650                                       | 12         | 1720.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10100                                         | 14              | 530                                          | 16610                                       | 12              | 1189 5                                                                       |   | 17100            | 12              | 1436                                     | 17660                                       | 12         | 1720<br>1725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16110                                         | 12              | 935                                          | 16620                                       | 12              | 1189 ad<br>1194 su<br>1194 su<br>1199 io<br>1204 ix<br>1209 ip               |   |                  |                 |                                          | 17670                                       | 12         | 1731 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16120                                         | 12              | 940                                          | 16630                                       | 12              | 1199 8                                                                       |   | 17110            | 12              | 1441                                     | 17680                                       | 12         | 1731 $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1736$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ $1106$ |
| 16130                                         | $12^{$          | 945                                          | 16640                                       | 12              | 1204 🛱                                                                       |   | 17120            | 12              | 1446                                     | 17690                                       | 12         | 1742 🗄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16140                                         | 12              | 951                                          | 16650                                       | 12              | 1209 <del>จี</del> ้                                                         |   | 17130            | 12              | 1452                                     | 17700                                       | 12         | 1742 <sup>2</sup><br>1747 <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16150                                         | 12              | 956 ຊີ                                       | 16660                                       | 12              | 1214 5                                                                       |   | 17140            | 12              | 1457                                     | 17710                                       | 12         | 1752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16160                                         | 12              | 961 5                                        | 16670                                       | 12              | 1219 ຮ                                                                       |   | 17150            | 12              | 1462                                     | 17720                                       | 12         | 1757 Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16170                                         | 12              | 966 <sup>8</sup>                             | 16680                                       | 12              | 1224                                                                         |   | 17160            | 12              | 1467                                     | 17730                                       | 12         | 1763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16180                                         | 12              | 961 966<br>966 971 976<br>976 976<br>981 976 | 16690                                       | 12              | 1229                                                                         |   | 17170            | $12 \\ 12$      | 1472                                     | 17740                                       | 12         | 1768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16190                                         | 12              | 976 🛒                                        | 16700                                       | 12              | 1234                                                                         |   | $17180 \\ 17190$ | $12 \\ 12$      | $\frac{1477}{1482}$                      | 17750                                       | 12         | 1773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16200                                         | 12              | 981 🔮                                        | 16710                                       | 12              | 1239                                                                         |   | 17200            | 12              | 1482<br>1487                             | 17760                                       | 12         | 1779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16210                                         | 12              | 986 m                                        | 16720                                       | 12              | 1244                                                                         |   | 17210            | 12              | 1492                                     | 17770                                       | 12         | 1784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16220                                         | 12              | 991 S                                        | 16730                                       | 12              | 1249                                                                         |   | 17220            | 12              | 1498                                     | 17780                                       | 12         | 1789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16230                                         | 12              | 996                                          | 16740                                       | 12              | 1254                                                                         |   | 17230            | 12              | 1503                                     | 17790                                       | 12         | 1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16240                                         | 12              | 1001                                         | 16750                                       | 12              | 1259                                                                         |   | 17240            | 12              | 1508                                     | 17800                                       | 12         | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16250                                         | 12              | 1006                                         | 16760                                       | 12              | 1264                                                                         |   | 17250            | 12              | 1513                                     | 17010                                       | 10         | 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16260                                         | 12              | 1012                                         | 16770                                       | 12              | 1270                                                                         |   | 17260            | 12              | 1518                                     | $\begin{array}{r}17810\\17820\end{array}$   | 12         | 1805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16270                                         | $\frac{12}{12}$ | $\begin{array}{c}1017\\1022\end{array}$      | $16780 \\ 16790$                            | $12 \\ 12$      | $\begin{array}{r} 1275 \\ 1280 \end{array}$                                  |   | 17270            | 12              | 1523                                     | 17820                                       | 12<br>12   | 1811<br>1816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{r} 16280 \\ 16290 \end{array}$ | $12 \\ 12$      | 1022                                         | <b>16790</b>                                | 12<br>12        | 1285                                                                         |   | 17280            | 12              | 1528 9<br>1533 1<br>1538 1               | 17840                                       | 12         | 1816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16300                                         | $12 \\ 12$      | 1027                                         | 16810                                       | 12              | 1290                                                                         |   | 17290            | 12              | 1533 🗒                                   | 17850                                       | 12         | 1827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16310                                         | 12              | 1032                                         | 16820                                       | $12 \\ 12$      | 1295                                                                         |   | 17300            | 12              | 1538 Å                                   | 17860                                       | 12         | 1832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16320                                         | 12              | 1042                                         | 16830                                       | 12              | 1200                                                                         |   | 17310            | 12              | 1544 🚆                                   | 17870                                       | 12         | 1837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16330                                         | 12              | 1047                                         | 16840                                       | 12              | 1305<br>1310<br>1310<br>1315<br>1320<br>1325<br>1330<br>1335<br>1335<br>1335 |   | 17320            | 12              | 1544 su<br>1549 si<br>1554 ip            | 17880                                       | 12         | 1843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16340                                         | 12              |                                              | 16850                                       | 12              | 1310 🛱                                                                       |   | 17330            | 12              | 1554 <u>}</u>                            | 17890                                       | 12         | 1848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16350                                         | 12              | $1052_{1057}$                                | 16860                                       | 12              | 1315 5                                                                       |   | 17340            | 12              | 1559                                     | 17900                                       | 12         | 1854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16360                                         | 12              | 1062 ह                                       | 16870                                       | 12              | 1320 🔤                                                                       |   | 17350            | 12              | 1559<br>1564 9                           | 17910                                       | 12         | 1860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16370                                         | 12              | 1067 🗖                                       | 16880                                       | 12              | 1325 -                                                                       |   | 17360            | 12              | 1969                                     | 17920                                       | 12         | 1865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16380                                         | 12              | 1073 ភ្នី                                    | 16890                                       | 12              | 1330 💈                                                                       |   | 17370            | 12              | 1574                                     | 17930                                       | 12         | 1871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16390                                         | 12              | 1067 su<br>1073 0<br>1078 5                  | 16900                                       | 12              | 1335 😇                                                                       |   | $17380 \\ 17390$ | $\frac{12}{12}$ | $\begin{array}{c}1579\\1584\end{array}$  | 17940                                       | 12         | 1877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16400                                         | 12              | 1083 च                                       | 16910                                       | 12              | $1340 \frac{13}{2}$                                                          |   | 17400            | 12              | 1590                                     | 17950                                       | 12         | 1882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16410                                         | 12              |                                              | 16920                                       | 12              |                                                                              |   | 17410            | 12              | 1595                                     | 17960                                       | 12         | 1888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16420                                         | 12              | 1093                                         | 16930                                       | 12              | 1350                                                                         |   | 17420            | $12 \\ 12$      | 1600                                     | 17970                                       | 12         | 1893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16430                                         | 12              | 1098                                         | 16940                                       | 12              | 1355                                                                         |   | 17430            | 12              | 1605                                     | 17980                                       | 12         | 1898 ਹੈ<br>1904<br><b>1910 ਵਿੱ</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16440                                         | 12              | 1103                                         | 16950                                       | 12              | 1361                                                                         |   | 17440            | 12              | 1610                                     | 17990                                       | 12         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16450                                         | 12              | 1108                                         | 16960                                       | 12              | 1366                                                                         |   | 17450            | 12              | 1615                                     | 18000                                       | 12         | 1910 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16460                                         | 12              | 1113                                         | 16970                                       | 12              | 1371                                                                         |   | 17460            | 12              | 1621                                     | 18010                                       | 12         | 1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16470                                         | $\frac{12}{12}$ | $\begin{array}{c} 1118\\ 1123 \end{array}$   | $16980 \\ 16990$                            | 12<br>12        | $\begin{array}{c} 1376\\ 1381 \end{array}$                                   |   | 17470            | 12              | 1626                                     | $18020 \\ 18030$                            | $12 \\ 12$ | 1915 su<br>1921 si<br>1927 N<br>1933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $16480 \\ 16490$                              | 12              | 1123                                         | 17000                                       | 12              | 1381                                                                         |   | 17480            | 12              | 1631                                     | 18030                                       | $12 \\ 12$ | 1927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16500                                         | 12              | 1123                                         | 1,000                                       | 14              | 1990                                                                         |   | 17490            | 12              | 1636                                     | 18040                                       | $12 \\ 12$ | 1939 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10000                                         | 12              | 1100                                         |                                             |                 |                                                                              |   | 17500            | 12              | 1641                                     | 18050                                       | 12         | 1939 <sup>36</sup><br>1944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                 |                                              |                                             |                 |                                                                              |   | 17510            | 12              | 1647 🤶                                   | 18000                                       | $12 \\ 12$ | 1949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               |                 |                                              |                                             |                 |                                                                              |   | 17520            | 12              | 1653 5                                   | 18080                                       | 12         | 1955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               |                 |                                              |                                             |                 |                                                                              |   | 17530            | 12              | 1658                                     | 18090                                       | 12         | 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               |                 |                                              |                                             |                 |                                                                              |   | 17540            | 12              | 1653 5<br>1658 5<br>1663 5               | 18100                                       | 12         | 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               |                 |                                              |                                             |                 |                                                                              |   | 17550            | 12              | 1668 3                                   |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                               |                 |                                              |                                             |                 |                                                                              |   | 17600            | 12              | 1694 <sup>ન</sup>                        |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                               |                 |                                              |                                             |                 |                                                                              | · |                  |                 |                                          |                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Use nearest check point shown in heavy type.




200KC TO 475KC






2000KC TO 4000KC



4000KC TO 9000KC



# TABLE III-TYPICAL ANTENNA TUNING DATA

|           | KC             | $\mathbf{C}$    | $\mathbf{D}$ | $\mathbf{E}$ | KC    | $\mathbf{C}$   | D         | $\mathbf{E}$ | $\mathbf{K}\mathbf{C}$ | $\mathbf{C}$ | D     | $\mathbf{E}$ | KC             | С     | D     | $\mathbf{E}$ | KC    | С     | D          | $\mathbf{E}$      | KC    | С     | D            | $\mathbf{E}$ |            |
|-----------|----------------|-----------------|--------------|--------------|-------|----------------|-----------|--------------|------------------------|--------------|-------|--------------|----------------|-------|-------|--------------|-------|-------|------------|-------------------|-------|-------|--------------|--------------|------------|
|           | 3000           | 1 9             |              | 70           |       |                | _         |              |                        | 1 0          |       | 1.0          |                |       |       |              |       |       |            |                   |       |       | -            |              |            |
|           | 3500           |                 | • • •        | 115          | 2800  |                | • • •     | 70           | 2700                   |              | •••   | 10           | 2600           | 1     | · · · | 0            | 2500  | 1 - 2 | · · ·      | 20                | 2450  |       | · · ·        | 26           |            |
|           |                |                 | • • •        |              | 3000  |                | · • ·     | 70           | 3000                   |              | •••   | 60           | 3000           | 2     | •••   | 75           | 3000  |       | · · ·      | 70                | 3000  | 3     |              | 65           |            |
|           |                | $3^{-4}$<br>4-5 | 70           | $130 \\ 150$ | 3500  |                |           | 120          | 3500                   |              | •••   | 100          | 3500           | 3-4   | · · · | 110          | 3500  | 4     |            | 95                |       |       | · · <i>·</i> | 100          |            |
|           |                |                 |              | 150          | 4000  |                | • - •     | 130          | 4000                   |              | • • • | 125          | 4000           | 4 - 5 |       | 130          | 4000  |       | · · ·      | 120               | 4000  | 5     | • • •        | 120          |            |
|           |                | 5-6             | 45           | 170          | 5000  |                | 90        | 150          | 5000                   |              |       | 150          | 5000           | 6     | · · · | 150          | 5000  | 5 - 6 | · • •      | 145               | 5000  | 5 - 6 |              | 150          |            |
|           | 8000           | 6-7             | 30           | 185          | 6000  |                | 60        | 160          | 6000                   | 6            | 80    | 160          | 6000           | 6-7   | • • • | 165          | 6000  | 6 - 7 |            | 165               | 6000  | 6 - 7 | • • •        | 165          |            |
|           | 10000          | 7               | 75           | 190          | 8000  | 6 - 7          | 40        | 185          | 8000                   |              | 70    | 180          | 8000           | 7     | 70    | 190          | 8000  | 7     | 95         | 180               | 8000  | 7     | 100          | 200          |            |
|           | 11000          | 7               | 90           | 200          | 10000 | $\overline{7}$ | 80        | 200          | 9800                   | 7            | 100   | 200          | 9100           | 7     | 100   | 200          | 8500  | 7     | 100        | 200               |       |       |              |              |            |
|           | 11300          | 7               | 100          | 200          |       |                |           |              |                        |              |       |              |                |       |       |              |       |       |            |                   | 7600  | 10    | 36           | 0            |            |
|           |                |                 |              |              | 9500  | 11             | 60        | 200          | 9000                   | 10           | 75    | 200          | 9000           | 10    | 59    | 10           | 8200  | 10    | 48         | 0                 | 8000  | 10    | 37           | 90           |            |
|           | 10500          | 11              | 67           | 200          | 10000 | 11             | 65        | 200          | 9500                   | 10           | 85    | 200          | 9500           | 10    | 57    | 80           | 9000  | 10    | 48         | 130               | 9000  | 10    | 42           | 160          |            |
| <u>بر</u> | 11000          | 11              | 75           | 200          | 10500 | 11             | 77        | 200          | 9500                   | 10           | 65    | 0            | 10000          | 10    | 55    | 110          | 10000 | 10    | 50         | 170               | 10000 | 10    | 46           | 185          | t          |
| 0         | 11500          | 11              | 85           | 200          | 11000 | 11             | 94        | 200          | 10000                  | 10           | 65    | 55           | 11000          | 10    | 60    | 175          | 11000 | 10    | 55         | 200               | 11000 | 10    | 54           | 200          | A          |
|           | 12000          | 11              | 100          | 200          | 11000 | 11             | 64        | 66           | 11000                  | 10           | 65    | 150          | 12000          | 10    | 65    | 185          | 12000 | 10    | 63         | 200               | 12000 | 10    | 65           | 200          | ΓA         |
|           | 12000          | 11              | 75           | 30           | 12000 | 11             | 65        |              | 12000                  | 10           | 70    | 170          | 12000<br>14000 | 10    | 80    | 195          | 14000 | 10    | 82         | $\frac{200}{200}$ |       |       |              |              | , <b>P</b> |
|           | 13000          | 11              | 75           | 140          |       |                |           | 150          | 14000                  | 10           | 85    | 180          | 14000<br>15500 | 10    | 100   |              |       |       |            |                   | 13000 | 10    | 75           | 200          |            |
|           | 14000          | 11              | 80           | 164          | 13000 | 11             | 68        | 165          | 15000                  | 10           | 95    | 190          | 15500          | 10    | 100   | 195          | 15000 | 10    | <b>9</b> 2 | 200               | 14000 | 10    | 82           | 200          |            |
|           | 14000<br>15000 | 11              | 85           |              | 14000 | 11             | 75        | 180          | 10000                  | 10           | 50    | 100          |                |       |       |              | 15600 | 10    | <b>9</b> 8 | 200               | 14600 | 10    | 88           | 200          |            |
|           | 19000          | 11              | 00           | 170          | 15000 | 11             | 80        | 180          | 11000                  |              | 50    | 1.00         | 9000           | 11    | 45    | 40           |       |       |            |                   |       |       |              |              |            |
|           | 11500          | 10              |              | 10           |       |                |           |              | 11000                  | 11           | 53    | 160          | 10000          | 11    | 40    | 140          | 8000  | 11    | 62         | 110               | 8000  | 11    | 0            | 113          |            |
|           | 11500          | 12              | 60           | 10           | 11500 | 12             | <b>38</b> | 145          | 12000                  | 11           | 55    | 180          | 12000          | 11    | 55    | 195          | 10000 | 11    | 32         | 180               | 9000  | 11    | 22           | 168          |            |
|           | 12000          | 12              | 55           | 60           | 12000 | 12             | 40        | 170          | 14000                  | 11           | 70    | 200          | 14000          | 11    | 75    | 200          | 12000 | 11    | 45         | 200               | 10000 | 11    | 35           | 188          |            |
|           | 13000          | 12              | 55           | 155          | 13000 | 12             | 45        | 190          | 15000                  | 11           | 80    | 200          | 16500          | 11    | 95    | 200          | 14000 | 11    | 65         | 200               | 11000 | 11    | 47           | 200          |            |
|           | 14000          | 12              | <b>6</b> 0   | 180          | 14000 | 12             | 65        | 200          | 16000                  | 11           | 95    | 200          |                |       |       |              | 16000 | 11    | 90         | 200               | 12000 | 11    | 60           | 200          |            |
|           | 16000          | 12              | 75           | 190          | 16000 | 12             | 75        | 200          |                        |              |       |              |                |       |       |              | 16600 | 11    | 98         | 200               | 14000 | 11    | 78           | 200          |            |
|           | 18000          | 12              | 85           | 200          |       |                |           |              | 15000                  | 13           | 0     | 155          | 16000          | 13    | 0     | 180          |       |       |            |                   | 16000 | 11    | 100          | 188          |            |
|           |                |                 |              |              | 16000 | 13             | 40        | 170          | 16000                  | 13           | 0     | 180          | 17000          | 13    | 45    | 190          | 16000 | 13    | 0          | 184               | 16200 |       |              | 200          |            |
|           | 16000          | 13              | <b>6</b> 0   | 150          | 17000 | 13             | 60        | 175          | 17000                  | 13           | 35    | 190          | 18000          | 13    | 60    | 195          | 17000 | 13    | 45         | 188               | 10400 |       | 100          | 400          |            |
|           | 17000          | 13              | 65           | 170          | 18000 | 13             | 65        | 185          | 18000                  | 13           | 55    | 195          | 20000          |       | 00    | 200          | 18000 | 13    | 70         | 188               | 16000 | 13    | 52           | 165          |            |
|           | 18000          | 13              | 65           | 180          | 10000 | 10             | 00        | 100          |                        |              |       |              |                |       |       |              | 10000 | 10    | 10         | 100               | 16000 |       | -            |              |            |
|           | 20000          |                 |              |              |       |                |           |              |                        |              |       |              |                |       |       |              |       |       |            |                   | 16500 | 13    | 69<br>70     | 160          |            |
|           |                |                 |              |              |       |                |           |              |                        |              |       |              |                |       |       |              |       |       |            |                   | 17000 | 13    | 70           | 170          |            |
|           |                |                 |              |              |       |                |           |              |                        |              |       |              |                |       |       |              |       |       |            |                   | 18000 | 13    | 75           | 180          |            |

DO NOT USE ANTENNA CAPACITOR

DATA

32.5 Ft. Antenna

20 Ft. Antenna

22.5 Ft. Antenna

25 Ft. Antenna

27.5 Ft. Antenna 30 Ft. Antenna

| КC                                           | С            | D              | E                                      | KC                                        | С               | D          | Е                 | КC                                            | С          | D               | $\mathbf{E}$      | КC    | С          | D                 | Е                 | KC    | С          | D          | Е          | KC    | С        | D   | Е   |    |
|----------------------------------------------|--------------|----------------|----------------------------------------|-------------------------------------------|-----------------|------------|-------------------|-----------------------------------------------|------------|-----------------|-------------------|-------|------------|-------------------|-------------------|-------|------------|------------|------------|-------|----------|-----|-----|----|
| 9450                                         | 1 0          |                | 0.0                                    | 2400                                      | 1 - 2           |            | 0                 | 2300                                          | 1 - 2      |                 | 3                 | 2200  | 1 - 2      |                   | 0                 | 2100  | 1 - 2      |            | 0          | 2000  | 1 - 2    |     | 0   |    |
| 2450<br>3000                                 | $^{1-2}_{3}$ | • • •          | $\begin{array}{c} 26\\ 65 \end{array}$ | 3000                                      |                 |            | 70                | 2500                                          |            |                 | 10                | 2500  |            |                   | 20                | 2500  |            |            | 19         | 2500  | $_{3-4}$ |     | 15  |    |
| $3000 \\ 3500$                               |              |                | 65<br>100                              | 3500                                      |                 |            | 100               | 3000                                          |            |                 | 60                | 3000  |            |                   | 62                | 3000  |            |            | 55         | 3000  |          |     | 45  |    |
| 4000                                         | 4~5<br>5     |                | $100 \\ 120$                           | 4000                                      |                 |            | 120               | 3500                                          |            |                 | 95                | 3500  |            |                   | 90                | 3500  |            |            | 95         | 3500  | 5 - 6    |     | 100 |    |
| 4000<br>5000                                 |              | <i>·</i> · · · | $120 \\ 150$                           | 5000                                      |                 |            | 145               | 4000                                          |            |                 | 120               | 4000  | 6          |                   | 120               | 4000  |            |            | 120        | 4000  | 6 - 7    |     | 130 |    |
| 6000                                         |              | · · ·          | $150 \\ 165$                           | 6000                                      | 7               |            | 160               | 5000                                          |            |                 | 150               | 5000  | 7          |                   | 155               | 5000  | 7          |            | 160        | 5000  | 7        | 100 | 168 |    |
| 8000                                         |              | 100            |                                        | 7000                                      | 7               |            | 180               | 6000                                          | 7          |                 | 170               | 6000  | 7          | 100               | 175               | 5500  |            | 100        | 180        | 5170  | 7        | 100 | 181 |    |
| 0000                                         | (            | 100            | 200                                    | 7600                                      | 7               | 100        | 200               | 6800                                          | 7          | 100             | 200               | 6100  |            | 100               | 185               |       |            |            |            |       |          |     |     |    |
| 7600                                         | 10           | 36             | 0                                      |                                           |                 |            |                   |                                               |            |                 |                   |       |            |                   |                   | 5400  | 8          | 32         | 0          | 5000  | 8        | 15  | 0   |    |
| 8000                                         | 10           | 37             | 90                                     | 7500                                      | 8               | 70         | 0                 | 6600                                          | 8          | 57              | 0                 | 6000  | 8          | 49                | 0                 | 6000  | 8          | <b>38</b>  | 90         | 6000  | 8        | 35  | 126 |    |
| 9000                                         | 10           | 42             | 160                                    | 8000                                      | 8               | 75         | 40                | 7000                                          | 8          | 60              | 50                | 7000  | 8          | 59                | 106               | 7000  | 8          | <b>48</b>  | 148        | 7000  | 8        | 51  | 152 | Ц  |
| 10000                                        | 10           | 46             | 185                                    | 9009                                      | 8               | 85         | 62                | 8000                                          | 8          | 70              | 121               | 0003  | 8          | 69                | 129               | 8000  | 8          | 65         | 152        | 8000  | 8        | 64  | 160 | DA |
| N 11000                                      | 10           | 54             |                                        | 10000                                     |                 | 100        | 100               | 9000                                          | 8          | 83              | 111               | 9000  | 8          | 85                | 106               | 9000  | 8          | 85         | 148        | 9000  | 8        | 81  | 136 | ĥ  |
| 12000                                        | 10           | 65             | 200                                    | 10400                                     | 8               | 100        | 126               | 10000                                         | 8          | 97              | 121               | 9800  | 8          | 100               | 90                | 10000 | 8          | 92         | 142        | 9700  | 8        | 100 | 106 | A  |
| 13000                                        | 10           | 75             | 200                                    |                                           |                 |            |                   | 10500                                         | 8          | 100             | 140               |       |            |                   |                   |       |            |            |            |       |          |     |     |    |
| 14000                                        | 10           | 82             | 200                                    | 8.00                                      | 11              | 0          | 175               |                                               |            |                 |                   | 7500  | 10         | 0                 | 171               | 9000  | 11         | 29         | 200        | 9500  | 9        | 62  | 198 |    |
| 14600                                        | 10           | 88             | 200                                    | 0003                                      | 11              | 8          | 180               | 8400                                          | 10         | 0               | 188               | 8000  | 10         | 0                 | 185               | 10000 | 11         | <b>40</b>  | 200        | 10000 | 9        | 68  | 195 |    |
|                                              |              |                |                                        | 10000                                     | 11              | 28         | 200               | 9000                                          | 10         | 25              | 196               | 9000  | 10         | 38                | 193               | 11000 | 11         | 53         | 200        | 11000 | 9        | 87  | 171 |    |
| 8000                                         | 11           |                | 113                                    | 11000                                     | 11              | $52 \\ 62$ | $200 \\ 200$      | 10000                                         | 10         | 47              | 200               | 10000 | 10         | 53                | 200               | 12000 | 11         | 72         | 200        | 11500 | 9        | 100 | 165 |    |
| 9000                                         | 11           |                | 168                                    | $\begin{array}{c}12000\\14000\end{array}$ | $\frac{11}{11}$ | 62<br>77   | $200 \\ 200$      | 11000                                         | 10         | 60<br>70        | 200               | 11000 | 10         | 64                | 200               | 13000 | 11         | 82         | 200        | 11200 | 10       | 73  | 200 |    |
| 10000                                        | 11           |                | 188                                    | 15000                                     | 11              | 86         | $\frac{200}{200}$ | $\begin{array}{c} 12000 \\ 14000 \end{array}$ | $10\\10$   | $\frac{70}{88}$ | $200 \\ 200$      | 12000 | 10         | 73                | 200               | 14000 | 11         | 100        | 0          | 12000 | 10       | 90  | 161 |    |
| 11000                                        | 11           | 47             | 200                                    | 15000<br>15700                            | 11              | 100        | 190               | $14000 \\ 14500$                              |            | 100             | $\frac{200}{200}$ | 13000 | 10         | 83<br>10 <b>0</b> | $\frac{200}{182}$ | 15000 | 11         | <b>9</b> 8 | 135        | 12200 | 10       | 100 | 82  |    |
| 12000                                        | 11           | 60             | 200                                    | 10100                                     | 11              | 100        | 100               | 14000                                         | 10         | 100             | 200               | 13740 | 10         | 100               | 104               | 13500 | 13         | 37         | <b>2</b> 8 | 12200 | 10       | 100 | 01  |    |
| 14000                                        | 11           |                | 200                                    | 15000                                     | 13              | 0          | 166               | 14500                                         | 12         | 71              | 200               | 13500 | 12         | 66                | 200               | 14000 | $13 \\ 13$ | 45         | 52         | 12100 | 12       | 60  | 200 |    |
| $\begin{array}{c} 16000\\ 16200 \end{array}$ |              | 100            |                                        | 16000                                     | 13              | 66         | 152               | 15000                                         | $12^{12}$  | 76              | 200               | 14000 | 12         | 70                | 200               | 15000 | 13         | 52         | 125        | 13000 | 12       | 62  | 133 |    |
| 10200                                        | 11           | 100            | 200                                    | 17000                                     | 13              | 84         | 142               | 16000                                         | $12^{-12}$ | 84              | 200               | 15000 | 12         | 82                | 92                | 16000 | 13         | 69         | 136        | 14000 | 12       | 63  | 183 |    |
| 16000                                        | 13           | 52             | 165                                    | 18000                                     |                 | 100        | 154               | 17000                                         | $12^{-12}$ | 100             | 141               | 16000 | 12         | 85                | 125               | 17000 | 13         | 71         | 164        | 15000 | 12       | 68  | 200 |    |
| 16500                                        | 13           |                | $160 \\ 160$                           |                                           |                 |            |                   | 18000                                         |            | 100             | 146               | 17000 | $12^{-12}$ | 87                | 164               | 18000 | 13         | 68         | 184        |       |          |     |     |    |
| 17000                                        | 13           |                | 170                                    |                                           |                 |            |                   |                                               |            |                 |                   | 18000 | 12         | 86                | 195               |       |            |            |            | 14800 | 13       | 0   | 155 |    |
| 18000                                        | 13           |                | 180                                    |                                           |                 |            |                   |                                               |            |                 |                   |       |            |                   |                   |       |            |            |            | 15000 | 13       | 0   | 160 |    |
|                                              | 20           |                |                                        |                                           |                 |            |                   |                                               |            |                 |                   |       |            |                   |                   |       |            |            |            | 16000 | 13       | 45  | 169 |    |
|                                              |              |                |                                        |                                           |                 |            | •                 |                                               |            |                 |                   |       |            |                   |                   |       |            |            |            | 17000 | 13       | 62  | 177 |    |
|                                              |              |                |                                        |                                           |                 |            |                   |                                               |            |                 |                   |       |            |                   |                   |       |            |            |            | 18000 | 13       | 72  | 185 |    |

TYPICAL ANTENNA TUNING DATA

45 Ft. Antenna

55 Ft. Antenna

50 Ft. Antenna

40 Ft. Antenna

35 Ft. Antenna

32.5 Ft. Antenna

| $ \begin{array}{c} \begin{array}{c} 4750 \\ 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \begin{array}{c} 2500 & 3-4 & \cdots & 15 \\ 3000 & 5-6 & \cdots & 55 \\ 3000 & 5-6 & \cdots & 55 \\ 3000 & 4-5 & \cdots & 90 \\ 4000 & 7 & \cdots & 90 \\ 4000 & 7 & \cdots & 125 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 5000 & 8 & 4 & 60 \\ 5000 & 8 & 4 & 60 \\ 5000 & 8 & 4 & 60 \\ 5000 & 8 & 4 & 60 \\ 7000 & 8 & 44 & 10000 & 7 & 72 \\ 146 & 7000 & 7 & 65 \\ 132 & 7000 & 7 & 64 \\ 10400 & 7 & 100 & 76 \\ 5000 & 8 & 4 & 61 \\ 7000 & 8 & 44 & 10000 & 7 & 90 \\ 6000 & 8 & 22 \\ 155 & 10500 & 7 & 100 \\ 7000 & 8 & 44 & 170 \\ 8000 & 8 & 63 \\ 8000 & 8 & 63 \\ 800 & 10 & 75 \\ 200 & 8 & 100 \\ 1200 & 10 & 10 & 75 \\ 200 & 10000 & 10 & 85 \\ 200 & 10000 & 10 & 85 \\ 9700 & 8 & 100 \\ 1200 & 10 & 100 & 10 \\ 9000 & 9 & 58 \\ 200 & 11100 & 10 & 75 \\ 1000 & 10 & 85 \\ 11000 & 10 & 75 \\ 11000 & 10 & 75 \\ 11000 & 10 & 85 \\ 11000 & 10 & 73 \\ 11000 & 10 & 73 \\ 11000 & 10 & 66 \\ 920 & 9000 & 10 \\ 58 \\ 11000 & 10 & 66 \\ 92 \\ 9000 & 9 & 58 \\ 200 \\ 11000 & 10 & 94 \\ 1000 & 10 & 85 \\ 11000 & 10 & 81 \\ 10000 & 10 & 81 \\ 1000 & 10 & 75 \\ 10000 & 10 & 81 \\ 1000 & 10 & 75 \\ 10000 & 10 & 81 \\ 1000 & 10 & 75 \\ 10000 & 10 & 81 \\ 11000 & 10 & 75 \\ 10000 & 10 & 81 \\ 11000 & 10 & 75 \\ 10000 & 10 & 81 \\ 11000 & 10 & 75 \\ 10000 & 10 & 81 \\ 11000 & 10 & 76 \\ 11000 & 10 & 78 \\ 181 \\ 1400 & 11 & 75 \\ 1800 & 11 & 80 \\ 142 \\ 11290 & 11 & 74 \\ 200 \\ 12000 & 11 & 80 \\ 142 \\ 11290 & 11 & 74 \\ 200 \\ 12000 & 11 & 82 \\ 160 & 110 \\ 13 & 0 \\ 164 \\ 16000 & 13 \\ 67 \\ 200 \\ 13 & 0 \\ 13 \\ 67 \\ 200 \\ 13 & 0 \\ 14400 \\ 13 & 0 \\ 14400 \\ 13 & 0 \\ 14400 \\ 13 & 0 \\ 14400 \\ 13 & 0 \\ 164 \\ 16000 \\ 13 \\ 67 \\ 200 \\ 18000 \\ 13 \\ 85 \\ 200 \\ \end{array} $                                                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c} \begin{array}{c} 2500 \ 3-4 \ \dots \ 15 \ 2500 \ 3-4 \ \dots \ 15 \ 2500 \ 3-4 \ \dots \ 0 \ 2500 \ 2-3 \ \dots \ 20 \ 2500 \ 2-3 \ \dots \ 20 \ 2500 \ 2-3 \ \dots \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 28 \ 2500 \ 2-3 \ 200 \ 200 \ 20 \ 20 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \ 200 \$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c} \begin{array}{cccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c} 3500 & 6-7 & \dots & 90 \\ 4000 & 7 & \dots & 125 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 5000 & 6-7 & \dots & 102 \\ 5000 & 6-7 & \dots & 108 \\ 5000 & 6-7 & \dots & 108 \\ 5000 & 6-7 & \dots & 108 \\ 5000 & 7 & 50 & 118 \\ 6000 & 7 & 50 & 118 \\ 6000 & 7 & 50 & 118 \\ 6000 & 7 & 50 & 118 \\ 6000 & 7 & 50 & 118 \\ 6000 & 7 & 50 & 118 \\ 6000 & 7 & 70 & 118 \\ 6000 & 7 & 90 & 168 \\ 8000 & 7 & 72 & 146 \\ 7000 & 8 & 44 & 170 \\ 8000 & 8 & 44 & 170 \\ 8000 & 8 & 63 & 164 \\ 9000 & 8 & 63 & 164 \\ 9000 & 8 & 80 & 150 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 10000 & 10 & 75 & 200 \\ 9700 & 8 & 100 & 120 \\ 10000 & 10 & 94 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 11600 & 11 & 75 & 200 \\ 10000 & 9 & 74 & 186 \\ 11600 & 11 & 75 & 0 \\ 10000 & 10 & 81 & 120 \\ 10000 & 9 & 74 & 186 \\ 11600 & 11 & 75 & 0 \\ 10000 & 11 & 85 & 200 \\ 10000 & 10 & 78 & 181 \\ 11600 & 11 & 75 & 0 \\ 10000 & 11 & 85 & 142 \\ 10000 & 10 & 78 & 181 \\ 11600 & 11 & 75 & 0 \\ 12000 & 11 & 85 & 142 \\ 11000 & 10 & 78 & 181 \\ 14000 & 11 & 86 & 180 \\ 11000 & 11 & 86 & 180 \\ 11000 & 11 & 86 & 180 \\ 11200 & 11 & 75 & 190 \\ 12000 & 11 & 86 & 180 \\ 11200 & 11 & 75 & 190 \\ 12000 & 11 & 86 & 180 \\ 12000 & 11 & 86 & 180 \\ 12000 & 11 & 86 & 180 \\ 12000 & 11 & 86 & 180 \\ 12000 & 11 & 86 & 180 \\ 12000 & 11 & 85 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 86 & 180 \\ 14000 & 13 & 0 & 140 \\ 15000 & 13 & 0 & 181 \\ 14000 & 13 & 85 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 80 & 140 \\ 17000 & 13 & 67 & 200 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 164 \\ 16000 & 13 & 67 & 200 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 164 \\ 16000 & 13 & 67 & 200 \\ 18000 & 13 & 89 & 200 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c} \begin{array}{c} 4000 & 7 & \dots & 125 \\ 4800 & 7 & 100 & 178 \\ 4800 & 7 & 100 & 178 \\ 5000 & 6-7 & \dots & 102 \\ 5000 & 6-7 & \dots & 102 \\ 5000 & 6-7 & \dots & 108 \\ 5000 & 7 & 50 & 118 \\ 5000 & 7 & 50 & 118 \\ 5000 & 7 & 50 & 118 \\ 5000 & 7 & 50 & 118 \\ 5000 & 7 & 50 & 118 \\ 5000 & 7 & 50 & 118 \\ 5000 & 8 & 44 & 60 \\ 10000 & 7 & 90 & 168 \\ 8000 & 7 & 70 & 149 \\ 7000 & 8 & 44 & 170 \\ 7000 & 8 & 44 & 170 \\ 8000 & 8 & 63 & 164 \\ 9000 & 8 & 80 & 150 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 11000 & 10 & 94 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 11600 & 11 & 95 & 200 \\ 10000 & 9 & 74 & 186 \\ 11600 & 11 & 75 & 01 \\ 10000 & 10 & 81 & 100 \\ 10000 & 10 & 81 & 1100 \\ 10000 & 10 & 81 & 1100 \\ 10000 & 10 & 81 & 1100 \\ 10000 & 10 & 81 & 1100 \\ 10000 & 10 & 81 & 1100 \\ 10000 & 10 & 81 & 1100 \\ 10000 & 10 & 81 & 1100 \\ 10000 & 10 & 81 & 1100 \\ 10000 & 10 & 76 & 75 \\ 13000 & 10 & 82 & 160 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 90 & 200 \\ 14000 & 10 & 81 & 14000 \\ 11 & 80 & 142 \\ 11000 & 10 & 78 & 181 \\ 14000 & 11 & 86 & 180 \\ 11350 & 10 & 89 & 0 \\ 15000 & 11 & 80 & 142 \\ 11290 & 11 & 74 & 200 \\ 12000 & 11 & 75 & 130 & 164 \\ 16000 & 13 & 0 & 175 \\ 16000 & 13 & 80 & 200 \\ 14400 & 13 & 0 & 150 \\ 17000 & 13 & 85 & 200 \\ 14400 & 13 & 89 & 200 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116       5000       6-7       121         138       6000       7       54       138         154       7000       7       71       152         174       8000       7       81       186         200       8350       7       100       200         0       8100       10       50       0         40       8500       10       50       88         156       9000       10       52       138         191       10000       10       55       165         200       11000       10       66       200         200       12000       10       76       200         200       13000       10       85       200 |
| $ \begin{array}{c} \begin{array}{c} 4800 & 7 & 100 & 178 \\ 4750 & 8 & 0 & 0 \\ 5000 & 8 & 4 & 60 \\ 6000 & 7 & 50 & 118 \\ 5000 & 7 & 72 & 146 \\ 5000 & 7 & 72 & 146 \\ 6000 & 7 & 72 & 146 \\ 6000 & 7 & 90 & 168 \\ 8000 & 7 & 72 & 146 \\ 6000 & 7 & 90 & 168 \\ 8000 & 7 & 70 & 168 \\ 8000 & 7 & 90 & 168 \\ 8000 & 7 & 90 & 168 \\ 8000 & 7 & 90 & 168 \\ 8000 & 7 & 100 & 174 \\ 10000 & 7 & 90 & 168 \\ 9000 & 8 & 44 & 170 \\ 8000 & 8 & 63 & 164 \\ 9000 & 8 & 80 & 150 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 10000 & 10 & 94 & 200 \\ 9700 & 8 & 100 & 120 \\ 11000 & 10 & 94 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10880 & 9 & 100 & 123 \\ 10880 & 9 & 100 & 123 \\ 10880 & 9 & 100 & 123 \\ 10880 & 9 & 100 & 123 \\ 10880 & 9 & 100 & 123 \\ 11000 & 11 & 75 & 80 \\ 11000 & 11 & 75 & 80 \\ 11000 & 11 & 75 & 80 \\ 11000 & 11 & 75 & 80 \\ 11000 & 11 & 75 & 80 \\ 11000 & 11 & 75 & 80 \\ 11100 & 11 & 75 & 80 \\ 11100 & 11 & 75 & 80 \\ 11100 & 11 & 75 & 80 \\ 11100 & 11 & 75 & 80 \\ 11100 & 11 & 75 & 80 \\ 11100 & 11 & 75 & 80 \\ 11100 & 11 & 75 & 80 \\ 11100 & 11 & 86 & 180 \\ 11350 & 10 & 89 & 0 \\ 15000 & 11 & 86 & 180 \\ 11300 & 11 & 86 & 180 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 11200 & 11 & 75 & 80 \\ 14000 & 13 & 0 & 140 \\ 15000 & 13 & 0 & 164 \\ 15000 & 13 & 0 & 164 \\ 15000 & 13 & 0 & 1800 \\ 1800 & 13 & 89 & 200 \\ 1800 & 13 & 89 & 200 \\ 14400 & 13 & 89 & 200 \\ 14400 & 13 & 89 & 200 \\ 14400 & 13 & 89 & 200 \\ 14400 & 13 & 89 & 200 \\ 14400 & 13 & 89 & 200 \\ 14400 & 13 & 85 & 200 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 138       6000       7       54       138         154       7000       7       71       152         174       8000       7       81       186         200       8350       7       100       200         0       8100       10       50       0         40       8500       10       50       88         156       9000       10       52       138         191       10000       10       55       165         200       11000       10       66       200         200       12000       10       76       200         200       13000       10       85       200                                            |
| $ \begin{array}{c} \begin{array}{c} 4750 \\ 8 \\ 0 \\ 000 \\ 08 \\ 4 \\ 000 \\ 000 \\ 8 \\ 8 \\ 4 \\ 100 \\ 000 \\ 8 \\ 8 \\ 4 \\ 100 \\ 000 \\ 8 \\ 8 \\ 4 \\ 100 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 154       7000       7       71       152         174       8000       7       81       186         200       8350       7       100       200         0       8100       10       50       0         40       8500       10       50       88         156       9000       10       52       138         191       10000       10       55       165         200       11000       10       66       200         200       12000       10       76       200         200       13000       10       85       200                                                                                              |
| $ \begin{matrix} 5000 & 8 & 4 & 60 \\ 6000 & 8 & 22 & 155 \\ 7000 & 8 & 44 & 170 \\ 9000 & 8 & 63 & 164 \\ 9000 & 8 & 63 & 164 \\ 9000 & 8 & 63 & 164 \\ 9000 & 8 & 63 & 164 \\ 9000 & 8 & 80 & 150 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 11000 & 10 & 94 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 10 & 10 & 94 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 76 & 200 \\ 10000 & 10 & 10 & 10 & 200 \\ 10000 & 10 & 10 & 10 & 200 \\ 10000 & 10 & 10 & 10 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 76 & 200 \\ 10000 & 11 & 75 & 80 \\ 10000 & 11 & 75 & 11000 \\ 10000 & 11 & 75 & 80 \\ 10000 & 11 & 75 & 11000 \\ 10000 & 10 & 10 & 100 \\ 1000 & 10 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 174       8000       7       81       186         200       8350       7       100       200         0       8100       10       50       0         40       8500       10       50       88         156       9000       10       52       138         191       10000       10       55       165         200       11000       10       66       200         200       12000       10       76       200         200       13000       10       85       200         200       13500       10       89       200                                                                                            |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} 30000 & 8 & 4 & 60 \\ 6000 & 8 & 22 & 155 \\ 7000 & 8 & 44 & 170 \\ 8000 & 8 & 63 & 164 \\ 9000 & 8 & 80 & 150 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 11000 & 10 & 94 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 58 & 200 \\ 10000 & 9 & 58 & 200 \\ 10000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 75 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 75 & 200 \\ 10000 & 10 & 10 & 10 & 200 \\ 11000 & 10 & 10 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 75 & 0 \\ 10000 & 11 & 75 & 200 \\ 10000 & 9 & 74 & 186 \\ 10000 & 11 & 75 & 200 \\ 10000 & 11 & 75 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 75 & 0 \\ 10000 & 10 & 123 \\ 11600 & 11 & 75 & 0 \\ 11000 & 11 & 75 & 0 \\ 12000 & 11 & 75 & 1200 \\ 11000 & 10 & 78 & 181 \\ 11350 & 10 & 89 & 0 \\ 11200 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 13 & 0 & 164 \\ 16000 & 13 & 0 & 167 \\ 17000 & 13 & 85 & 200 \\ 17000 & 13 & 85 & 200 \\ 17000 & 13 & 85 & 200 \\ 18000 & 13 & 85 & 200 \\ 18000 & 13 & 85 & 200 \\ 18000 & 13 & 85 & 200 \\ 18000 & 13 & 85 & 200 \\ 18000 & 13 & 85 & 200 \\ 14400 & 13 & 0 & 175 \\ 18000 & 13 & 85 & 200 \\ 18000 & 13 & 85 & 200 \\ 18000 & 13 & 85 & 200 \\ 18000 & 13 & 85 & 200 \\ 14400 & 13 & 0 & 175 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 175 \\ 14400 & 13 & 0 & 175 \\ 14400 & 13 & 0 & 175 \\ 14400 & 13 & 0 & 175 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 175 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 175 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 175 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 175 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 175 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 17000 \\ 1800 & 13 & 89 & 200 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                   | 200       8350       7       100       200         0       8100       10       50       0         40       8500       10       50       88         156       9000       10       52       138         191       10000       10       55       165         200       11000       10       66       200         200       12000       10       76       200         200       13000       10       85       200         200       13500       10       89       200                                                                                                                                              |
| $ \begin{array}{c} \begin{array}{c} 6000 & 8 & 22 & 155 \\ 7000 & 8 & 44 & 170 \\ 8000 & 8 & 63 & 164 \\ 9000 & 8 & 80 & 150 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9000 & 9 & 39 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 75 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 75 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 75 & 0 \\ 10000 & 10 & 75 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 75 & 0 \\ 10000 & 10 & 75 & 200 \\ 10000 & 10 & 76 & 75 \\ 10880 & 9 & 100 & 123 \\ 10600 & 11 & 75 & 0 \\ 10500 & 10 & 65 & 200 \\ 10000 & 10 & 78 & 181 \\ 11300 & 11 & 80 & 142 \\ 11200 & 11 & 78 & 181 \\ 11350 & 10 & 89 & 0 \\ 11200 & 11 & 75 & 190 \\ 11290 & 11 & 74 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 130 & 164 \\ 12000 & 13 & 0 & 180 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 13 & 0 & 180 \\ 12000 & 13 & 0 & 180 \\ 12000 & 11 & 75 & 190 \\ 12000 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 0 & 100 \\ 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ 14400 & 13 & 85 & 200 \\ 14400 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ 14400 & 13 & 85 & 200 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 18 \\ 144$                                                                                                                | 0 8100 10 50 0<br>40 8500 10 50 88<br>156 9000 10 52 138<br>191 10000 10 55 165<br>200 11000 10 66 200<br>200 12000 10 76 200<br>200 13000 10 85 200<br>200 13500 10 89 200                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c} \begin{array}{c} 7000 & 8 & 44 & 170 \\ 8000 & 8 & 63 & 164 \\ 9000 & 8 & 80 & 150 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 9 & 100 & 10 & 0 & 94 & 200 \\ 9000 & 9 & 39 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 10 & 10 & 10 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 76 & 200 \\ 10000 & 10 & 11 & 76 & 200 \\ 10000 & 10 & 76 & 75 \\ 10000 & 10 & 76 & 75 \\ 10000 & 10 & 82 & 192 \\ 10000 & 10 & 123 \\ 11600 & 11 & 95 & 200 \\ 10500 & 10 & 65 & 200 \\ 11000 & 11 & 75 & 80 \\ 11000 & 11 & 75 & 80 \\ 11000 & 10 & 78 & 181 \\ 11350 & 10 & 89 & 0 \\ 11290 & 11 & 74 & 200 \\ 11290 & 11 & 74 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 130 \\ 11290 & 11 & 74 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 130 \\ 14400 & 13 & 0 & 186 \\ 17000 & 13 & 67 & 200 \\ 12000 & 11 & 75 & 190 \\ 15000 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ 15000 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 10000 & 13 & 85 & 200 \\ 100$                                                                                                                    | 40       8500       10       50       88         156       9000       10       52       138       138         191       10000       10       55       165       165         200       11000       10       66       200       12000         200       12000       10       76       200         200       13000       10       85       200         200       13500       10       89       200                                                                                                                                                                                                                |
| $ \begin{array}{c} \begin{array}{c} 8000 & 8 & 63 & 164 \\ 9000 & 8 & 80 & 150 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 8 & 100 & 120 \\ 9700 & 9 & 100 & 120 \\ 9900 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10000 & 10 & 11 & 76 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 95 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 95 & 200 \\ 10000 & 10 & 123 \\ 10600 & 11 & 75 & 0 \\ 10600 & 11 & 75 & 0 \\ 11000 & 10 & 76 & 75 \\ 10800 & 10 & 82 & 192 \\ 10880 & 9 & 100 & 123 \\ 10600 & 11 & 75 & 0 \\ 10600 & 11 & 75 & 0 \\ 10600 & 11 & 75 & 0 \\ 11000 & 10 & 78 & 181 \\ 11350 & 10 & 89 & 0 \\ 112000 & 11 & 86 & 180 \\ 11200 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 130 \\ 11200 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 13 & 0 & 180 \\ 10600 & 13 & 0 & 180 \\ 10600 & 13 & 0 & 186 \\ 17000 & 13 & 67 & 200 \\ 18000 & 13 & 85 & 200 \\ 18000 & 13 & 89 & 200 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 18 \\ 14400 & 13 & 0 & 180 \\ 17000 & 13 & 67 & 200 \\ 18000 & 13 & 89 & 200 \\ 14400 & 13 & 0 & 175 \\ 18000 & 13 & 85 & 200 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\ 14400 & 13 & 0 & 13 \\$                                                                                                               | 40       8500       10       50       88         156       9000       10       52       138       138         191       10000       10       55       165       165         200       11000       10       66       200       12000         200       12000       10       76       200         200       13000       10       85       200         200       13500       10       89       200                                                                                                                                                                                                                |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} 9000 & 8 & 80 & 150 \\ 9700 & 8 & 100 & 120 \\ \end{array} \begin{array}{c} 10500 & 10 & 85 & 200 \\ 9700 & 8 & 100 & 120 \\ \end{array} \begin{array}{c} 10000 & 10 & 85 & 200 \\ 10000 & 10 & 94 & 200 \\ 10000 & 10 & 94 & 200 \\ 9000 & 9 & 39 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10000 & 10 & 11 & 76 & 200 \\ 10000 & 9 & 74 & 186 \\ 10600 & 11 & 95 & 200 \\ 10880 & 9 & 100 & 123 \\ \end{array} \begin{array}{c} 11100 & 11 & 76 & 200 \\ 10600 & 11 & 95 & 200 \\ 10600 & 11 & 75 & 0 \\ 10000 & 10 & 78 & 181 \\ 11350 & 10 & 89 & 0 \\ 113000 & 11 & 86 & 180 \\ 11000 & 11 & 75 & 80 \\ 11000 & 11 & 75 & 80 \\ 11000 & 11 & 86 & 180 \\ 11000 & 11 & 86 & 180 \\ 11000 & 11 & 86 & 180 \\ 11000 & 11 & 86 & 180 \\ 11000 & 11 & 86 & 180 \\ 11000 & 11 & 86 & 180 \\ 11000 & 11 & 86 & 180 \\ 11000 & 11 & 86 & 180 \\ 112000 & 11 & 75 & 190 \\ 112000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 11 & 75 & 190 \\ 12000 & 13 & 0 & 164 \\ 16000 & 13 & 67 & 200 \\ 15000 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ 17000 & 13 & 85 & 200 \\ \end{array} \begin{array}{c} 10000 & 10 & 66 & 92 \\ 10000 & 10 & 66 & 92 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 88 & 178 \\ 14000 & 11 & 86 & 180 \\ 14000 & 10 & 100 & 200 \\ 14400 & 13 & 0 & 164 \\ 15000 & 13 & 0 & 181 \\ 14000 & 11 & 85 & 200 \\ 15000 & 11 & 92 & 200 \\ 14400 & 13 & 0 & 175 \\ 16000 & 13 & 51 & 200 \\ 15000 & 11 & 94 & 200 \\ 14400 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 156         9000         10         52         138         DATA           191         10000         10         55         165         TA           200         11000         10         66         200         A           200         12000         10         76         200           200         13000         10         85         200           200         13500         10         89         200                                                                                                                                                                                                     |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} 9700 & 8 & 100 & 120 \\ \end{array} \\ \begin{array}{c} 11000 & 10 & 94 & 200 \\ 9000 & 9 & 39 & 200 \\ 9000 & 9 & 58 & 200 \\ 10000 & 9 & 74 & 186 \\ 10000 & 10 & 110 & 11 & 76 & 200 \\ 10000 & 9 & 74 & 186 \\ 10880 & 9 & 100 & 123 \\ \end{array} \\ \begin{array}{c} 11100 & 11 & 0 & 11 & 76 & 200 \\ 11100 & 11 & 95 & 200 \\ 11100 & 11 & 95 & 200 \\ 11000 & 10 & 96 & 195 \\ 11100 & 11 & 75 & 0 \\ 11000 & 10 & 96 & 195 \\ \end{array} \\ \begin{array}{c} 10500 & 10 & 65 & 200 \\ 11000 & 10 & 78 & 181 \\ 11350 & 10 & 89 & 0 \\ 11350 & 10 & 89 & 0 \\ 11290 & 11 & 74 & 200 \\ 12000 & 11 & 75 & 190 \\ \end{array} \\ \begin{array}{c} 11290 & 11 & 74 & 200 \\ 12000 & 11 & 75 & 190 \\ 12000 & 13 & 0 & 164 \\ 15000 & 13 & 0 & 180 \\ 12000 & 13 & 0 & 180 \\ \end{array} \\ \begin{array}{c} 10500 & 10 & 65 & 200 \\ 11000 & 10 & 78 & 181 \\ 14500 & 11 & 95 & 200 \\ 15000 & 11 & 92 & 200 \\ 15000 & 11 & 92 & 200 \\ 14500 & 13 & 0 & 175 \\ 16000 & 13 & 51 & 200 \\ 15000 & 13 & 0 & 164 \\ 16000 & 13 & 67 & 200 \\ 15000 & 13 & 0 & 180 \\ 17000 & 13 & 85 & 200 \\ \end{array} \\ \begin{array}{c} 1000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 166 \\ 10000 & 10 & 68 & 178 \\ 14000 & 10 & 90 & 200 \\ 14400 & 13 & 0 & 164 \\ 15000 & 13 & 0 & 181 \\ 14000 & 11 & 85 & 200 \\ 16000 & 13 & 67 & 200 \\ 18000 & 13 & 89 & 200 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200120001076200200130001085200200135001089200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 13500 10 89 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14000 10 93 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200 13500 11 81 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 14000 11 85 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11800 11 00 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15000 11 93 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16000 13 66 185 17600 13 100 200 15000 13 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 186 14800 13 0 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 15000 13 0 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 15500 13 41 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10000 10 107 11100 10 100 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200 16000 13 58 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15000 12 71 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17000 13 76 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17000 12 85 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18000 13 91 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18000 12 94 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x00000 10 0x 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DO NOT USE<br>ANTENNAFOR FREQUENCIES BETWEENFOR FREQUENCIES BETWEEN<br>2000 KCS AND 3000 KCSCAPACITOR2000 KCS AND 3000 KCS2000 KCS AND 2700 KCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOR<br>FREQUENCIES<br>BETWEEN<br>2000 KCS AND<br>2600 KCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|         | <b>U</b> se 75<br>( | mmf<br>3 sect |      | acitor |       | ) mmf<br>(2 sect |                    | acitor | Use 50<br>( | mmf<br>2 sect |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acitor | <b>U</b> se 50<br>( | mmf<br>2 sect |     | acitor | Use 25<br>( | mmf<br>1 sec |      | acitor | Use 25 mmfd capacitor<br>(1 section) |
|---------|---------------------|---------------|------|--------|-------|------------------|--------------------|--------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|---------------|-----|--------|-------------|--------------|------|--------|--------------------------------------|
|         | Freq.               | С             | D    | Е      | Freq. | С                | D                  | Е      | Freq.       | С             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Е      | Freq.               | С             | D   | Е      | Freq.       | С            | D    | Е      |                                      |
|         | 2100                | 1             |      | 0      | 2100  | 1 - 2            |                    | 0      | 2150        | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0      | 2100                | 1 - 2         |     | 0      | 2050        | 1 - 2        |      | 0      |                                      |
|         | 2500                | 2 - 3         |      | 30     | 2500  | 3 - 4            |                    | 10     | 2500        | 2 - 3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22     | 2500                | $_{3-4}$      |     | 25     | 2500        | 3 - 4        |      | 33     |                                      |
|         | 3000                | 4 - 5         |      | 48     | 3000  | $_{3-4}$         | A NUMBER OF STREET | 44     | 3000        | 4 - 5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60     | 3000                | $_{4-5}$      |     | 66     | 3000        | 4 - 5        |      | 70     |                                      |
|         | 3500                | 5 - 6         |      | 64     | 3500  | 5 - 6            |                    | 70     | 3500        | 5 - 6         | 1884-177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85     | 3500                | 5 - 6         |     | 100    |             | 5-6          |      | 111    |                                      |
|         | 4000                | 6             |      | 80     | 4000  | 6 - 7            |                    | 90     | 4000        | 6 - 7         | ALC: NOT STREET, STREE | 110    | 4000                | 6 - 7         |     | 120    | 4000        | 6            |      | 132    |                                      |
|         | 5000                | 6 - 7         |      | 121    | 5000  | 7                |                    | 124    | 5000        | 7             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128    | 5000                | 7             | 38  | 144    | 5000        | 7            | 43   | 160    |                                      |
|         | 6000                | 7             | 54   | 138    | 6000  | 7                | 55                 | 144    | 6000        | 7             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 156    | 6000                | 7             |     |        | 5500        | 7            |      | 180    |                                      |
|         | 7000                | 7             | 71   | 152    | 7000  | 7                | 70                 | 173    | 7000        | 7             | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 184    | 6500                | 7             | 71  | 200    | 5900        | 7            | 60   |        |                                      |
|         | 8000                | 7             | 81   | 186    | 7790  |                  |                    |        | 7435        | 7             | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200    | 0000                | •             | • • |        | 0000        | •            | 00   |        |                                      |
|         | 8350                | 7             | 100  | 200    |       |                  |                    |        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200    | 6330                | 9             | 40  | 0      | 5800        | 9            | 27   | 0      |                                      |
|         |                     |               |      |        | 7650  | 9                | 60                 | 0      | 7200        | 9             | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | 7000                | 9             | 47  | 94     | 6000        | 9            | 30   | 42     |                                      |
|         | 8100                | 10            | 50   | 0      | 8000  | 9                | 64                 | 60     | 7500        | 9             | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49     | 8000                | 9             | 56  | 148    | 7000        | 9            | 42   | 138    |                                      |
| <b></b> | 8500                | 10            | 50   | 88     | 9000  | 9                | 69                 |        | 8000        | 9             | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112    | 9000                | 9             | • • |        | 8000        | 9            |      | 158    |                                      |
| 104     | 9000                | 10            | 52   | 138    | 10000 | 9                | 74                 |        | 9000        | 9             | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 142    | 10000               | 9             |     | 174    | 9000        | 9            |      | 165    |                                      |
|         | 10000               | 10            |      | 165    | 11000 | 9                |                    | 179    | 10000       | 9             | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160    | 11000               | 9             |     | 177    | 10000       | 9            |      | 170    |                                      |
|         | 11000               | 10            | 66   | 200    | 12000 | 9                |                    |        | 11000       | 9             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 176    | 12000               | 9             |     |        | 11000       | 9            |      | 173    |                                      |
|         | 12000               | 10            | 76   | 200    | 12500 |                  | 100                |        | 12000       | 9             | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178    | 12600               | 9             |     | 179    | 12000       |              | 100  |        |                                      |
|         | 13000               | 10            | 85   | 200    |       |                  |                    |        | 13000       | 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181    |                     | -             |     |        | 12200       |              | 100  |        |                                      |
|         | 13500               | 10            | 89   | 200    | 11000 | 10               | 69                 | 200    |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 11000               | 10            | 68  | 200    | x-= 0 0     | 0            |      | - • •  |                                      |
|         | 14000               | 10            | 93   | 200    | 12000 | 10               | 78                 | 200    | 10000       | 10            | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200    | 12000               | 10            | 76  | 200    | 12000       | 11           | 70   | 200    |                                      |
|         |                     |               |      |        | 13000 | 10               | 86                 | 200    | 11000       | 10            | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200    | 13000               | 10            | 85  | 200    | 13000       | 11           | 80   | 200    |                                      |
|         | 13500               | 11            | 81   |        | 14000 | 10               | 95                 | 200    | 12000       | 10            | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200    | 14000               | 10            | 100 | 180    | 14000       | 11           | 91   | 158    |                                      |
|         | 14000               | 11            | 85   | 200    | 14100 | 10               | 100                | 200    | 13000       | 10            | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200    | 14190               | 10            | 100 | 192    | 14400       | 11           | 100  | 110    |                                      |
|         | 14500               | 11            | 89   | 200    |       |                  |                    |        | 14000       | 10            | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200    |                     |               |     |        |             |              |      |        |                                      |
|         | 15000               | 11            | 93   | 200    | 13000 | 11               | 79                 | 200    | 14600       | 10            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200    | 14000               | 12            | 71  | 200    | 14000       | 12           | 75   | 200    |                                      |
|         |                     |               |      |        | 14000 | 11               | 86                 | 200    |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 14500               | 12            | 75  | 200    | 15000       | 12           | 82   | 75     |                                      |
|         | 14800               | 13            |      | 180    | 15000 | 11               |                    |        | 14500       | 13            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160    | 15000               | 12            |     | 200    | 16000       | 12           | 85   | 143    |                                      |
|         | 15000               | 13            |      | 188    | 15300 | 11               | 100                | 200    | 15000       | 13            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178    | 16000               | 12            | 88  | 150    | 17000       | 12           | 89   | 174    |                                      |
|         | 15500               | 13            |      | 200    |       |                  |                    |        | 16000       | 13            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 156    | 17000               | 12            | 94  | 108    | 18000       | 12           | 92   | 200    |                                      |
|         | 16000               | 13            |      | 200    | 15000 | 13               | 5                  | 200    | 17000       | 13            | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130    | 18000               | 12            | 100 | 157    |             |              |      |        |                                      |
|         | 17000               | 13            |      | 200    | 16000 | 13               | 60                 | 200    | 17700       | 13            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146    |                     |               |     |        |             |              |      |        |                                      |
|         | 18000               | 13<br>FO      |      | 200    | 17000 | 13               | 86                 | 164    |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                     |               |     |        |             |              |      |        |                                      |
|         |                     | FO            |      | -      | 18000 | 13               | 100                | 185    |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                     |               |     |        |             |              |      |        |                                      |
|         | FRE                 | -             |      |        |       |                  |                    |        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                     |               |     |        |             |              |      |        |                                      |
|         | B                   | ETW           | EEN  | 1      |       |                  |                    |        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                     |               |     |        |             |              |      |        |                                      |
|         | 2000                | ) KC          | S Al | ND     | FO    | R FR             | EQU                | JENC   | IES BET     | WEI           | EN 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000    | KCS AND             | 240           | 0 K | CS     | FC          | R I          | FRE  | QUEN   | ICIES BETWEEN                        |
|         |                     | 600           |      |        |       |                  | -                  |        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                     |               |     |        |             | 20           | 00 K | CS A   | ND 2200 KCS                          |
|         | -                   |               |      |        |       |                  |                    |        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                     |               |     |        |             |              |      |        |                                      |

# a. Overall Audio-Frequency Response (EITHER CARBON OR DYNAMIC

| Frequency            | 50% Mod.            | 90% Mod. |
|----------------------|---------------------|----------|
| 100 cps              | 7.6 db              | -7.0 db  |
| 200 cps              | 3.4 db              | 2.8 db   |
| $300  \mathrm{cps}$  | $-2.2  \mathrm{db}$ | —1.7 db  |
| $500  \mathrm{cps}$  | 0.7 db              | 0.4 db   |
| 1000  cps            | 0.0 db              | 0.0 db   |
| 2000 cps             | 0.2 db              | 0.3 db   |
| $3000  \mathrm{cps}$ | -0.7 db             | 0.9 db   |
| $4000  \mathrm{cps}$ | 1.6 db              | 1.8 db   |
| $5000  { m cps}$     | $-2.7  \mathrm{db}$ | 3.2 db   |

#### b. Audio Input

INPUT)

- Full Power (1160 v On Plates of P.A. and Mod. Tubes)—
  - CARBON Input—1.52 v required for  $90\,\%$  Modulation at 1000 cps
  - DYNAMIC Input—16.0 mv required for 90% Modulation at 1000 cps

## c. Audio Distortion

- Full Power (1160 v On Plates of P.A. and Mod. Tubes)—
  - CARBON Input 4.5% Distortion with 90% Modulation at 1000 cps
  - DYNAMIC Input 4.7% Distortion with 90% Modulation at 1000 cps

## TABLE IV-TYPICAL AUDIO-FREQUENCY DATA

Distortion measured on output of SIDE-TONE at Pos. 5 — 12% with 90% Modulation at 1000 cps

Full Power (1160 v On Plates of P.A. and Mod. Tubes)—
CARBON Input—8.8% Distortion
DYNAMIC Input—8.9% Distortion

#### d. Noise Level

Below 100% Modulation with input at 1000 cps—

Full Power (1160 v On Plates of P.A. and Mod. Tubes)---

- CARBON Input --44 db
- DYNAMIC Input -45 db

#### e. Sidetone Output

| Switch   | Out                | put         | Load       |
|----------|--------------------|-------------|------------|
| Position | CW                 | MCW         | Impedance  |
| 1        | 0.6 volt           | 0.75 volt   | 125  ohms  |
| <b>2</b> | 1.3  volt          | 1.6 volt    | 125  ohms  |
| <b>3</b> | $2.5 	ext{ volts}$ | 3.0  volts  | 125  ohms  |
| 4        | 5.0  volts         | 6.0 volts   | 125  ohms  |
| <b>5</b> | 8.8 volts          | 10.5  volts | 125  ohms  |
| 6        | 19.5  volts        | 23.5  volts | 2000  ohms |

Note: All of the above audio-frequency measurements were made with Control A in Position 2 at an r-f output frequency of 3.0 mc, with 150 ma of P.A. PLATE current and 12.0 ma of P.A. GRID current.

## TABLE V-TYPICAL OPERATING VOLTAGES AND CURRENTS

(All readings were taken at full power level)

Set EMISSION selector switch on VOICE position-Key "on"-No modulation

| 70 1            |                        | Pl. Vo                      | oltage                      | Pl. Cu      | rrent      | Screen     | Volts      | Grid V      | Volts                                  | Grid Cı                                | urrent     | Cath. V   | olts       |
|-----------------|------------------------|-----------------------------|-----------------------------|-------------|------------|------------|------------|-------------|----------------------------------------|----------------------------------------|------------|-----------|------------|
| Tube            | Fila-<br>ment<br>Vltg. | 3.0<br>Mc                   | 18.1<br>Mc                  | 3.0<br>Mc   | 18.1<br>Mc | 3.0<br>Mc  | 18.1<br>Me | 3.0<br>Mc   | 18.1<br>Mc                             | 3.0<br>Mc                              | 18.1<br>Mc | 3.0<br>Mc | 18.1<br>Mc |
| V101<br>(837)   | 11.5                   | 375                         | 380                         | 30          | 30         | 177        | 177        | 3.5         | 3.2                                    | 0.26                                   | 0.27       | 13.5      | 13.5       |
| V102<br>(1625)  | 11.7                   | 380                         | 375                         | 38          | 35         | 220        | 285        | 175         | —185                                   | 1.70                                   | 1.80       | 34        | 58         |
| V103<br>(1625)  | 12.5                   | 388                         | 388                         |             | 40         | 365        | 315        | ······      | —155                                   | ·····                                  | 1.55       |           | 57         |
| V104<br>(813)   | 11.7                   | CW<br>1260<br>VOICE<br>1220 | CW<br>1260<br>VOICE<br>1220 | 150         | 150        | 400        | 410        | 190         | 75                                     | 12.0                                   | 8.0        | 0         | 0          |
| V105<br>(811)   | 6.2                    | 1220                        | 1220                        | 16.5        | 16.5       |            |            | **          | **                                     | ······································ |            | 0         | 0          |
| V106<br>(811)   | 6.2                    | 1220                        | 1220                        | 16.5        | 16.5       |            |            | **          | **                                     |                                        |            | 0         | 0          |
| V201<br>(12SJ7) | 12.5                   | 100                         | 100                         | 0.6         | 0.6        | 32.0       | 32.0       | 0           | 0                                      |                                        |            | 1.4       | 1.4        |
| V202<br>(6V6GT) | 6.3                    | 187                         | 187                         | 30          | 30         | 197        | 197        | 0           | 0                                      |                                        |            | 8.7       | 8.7        |
| V203<br>(6V6GT) | 6.3                    | 188                         | 188                         | 30          | 30         | 197        | 197        | 0           | 0                                      |                                        |            | 8.7       | 8.7        |
| V301<br>(12SJ7) | 13.8                   | Cal.<br>4.2                 |                             | Cal.<br>0.8 |            | Cal.<br>98 |            | Cal.<br>3.8 |                                        |                                        |            | Cal.<br>0 |            |
| V302<br>(12SJ7) | 13.0                   | 14                          | 14                          |             |            | 14         | 14         | 0           | 0                                      |                                        |            | 0         | 0          |
| V401<br>(1625)* | 13.5                   | 410                         |                             | 50          |            | 210        | ·          | 8.0         | ************************************** |                                        |            | 19.3      |            |

106

\*These readings taken on L-F operation at 1000 Kc. \*\*Since modulator grid bias is obtained by utilizing the average voltage drop through the filaments of the Mod. tubes, it is impractical to measure this value directly. However, the effective value may be considered to be equal to half the filament voltage.

## TABLE VI

## VOLTAGE TO GROUND FROM VACUUM TUBE TERMINALS

USE 20,000 ohm/voltmeter on voltages less than 250 volts. USE 1,000 ohm/voltmeter on voltages above 250 volts. Set EMISSION selector switch on MCW position—key "on".

| Tube<br>Base<br>Term.<br>No. | V101<br>(837) | V102<br>(1625) | V103<br>(1625) | V104<br>(813) | V105<br>(811)                          | V106<br>(811)                          | V201<br>(12SJ7) | V202<br>(6V6GT) | V203<br>(6V6GT) | V301*<br>(12SJ7) | V302<br>(12SJ7) | V401**<br>(1625) |
|------------------------------|---------------|----------------|----------------|---------------|----------------------------------------|----------------------------------------|-----------------|-----------------|-----------------|------------------|-----------------|------------------|
| 1                            | 13.0          | 12.0           | 0              | 10.0          | 10.0                                   | 23                                     | 0               | 0               | NC              | 0                | 0               | 0                |
| 2                            | 0             | 0              | 0              | 375           | NC                                     | NC                                     | 0               | 20              | 26              | 0                | 32.0            | 0                |
| 3                            | 190           | 310            | 310            | 375           | 16                                     | 10                                     | 0               | 182             | 180             | 0.5              | 15.2            | 210              |
| 4                            | 5.4           |                |                | 24            | 16                                     | 16                                     | 0*              | 192             | 189             | -0.5             | 0               | 8.0              |
| 5                            | 0             | 145NC          |                | 0             | an                                     | *******                                | 1.35            | 0               | 0               | 0                | 0               | 19.3NC           |
| 6                            | 15.2          | 36             | 63.0           | 0             | ······································ |                                        | 32.3            | NC              | NC              | 108              | 13.3            | 19.3             |
| 7                            | 26.0          | 26.0           | 12.0           | 0             |                                        |                                        | 14.2            | 14              | 22.5            | 13.0             | 13.5            | 13.5             |
| 8                            | NC            | NC             | NC             | NC            |                                        | ······································ | 97              | 9               | 10.1            | 4.5              | 13.3            |                  |
| Тор<br>Сар                   | 390           | 375            | 375            | 1220          | 1220                                   | 1220                                   |                 |                 |                 |                  |                 | 410              |

DATA

Adjust for MCW Operation. Adjust transmitter for operation in range 6000 to 7200 Kc. for all readings except as below: \*Place switch S106 in the calibrate position for these readings.

\*\*Adjust transmitter for 1000 kc L-F operation with final amplifier fully loaded.

# TABLE VII

## VOLTAGE TO GROUND FROM CABLE CONNECTOR TERMINALS

USE 20,000 ohm/voltmeter on voltages less than 250.

USE 1,000 ohm/voltmeter on voltages above 250.

| Term.<br>No.  | H. F.<br>Osc. |      | .06<br>901 | *<br>J107 | J108 | J1<br>P3 |      | J112<br>P201 | J114<br>P401                            | J115<br>P101 | J116<br>P102 |
|---------------|---------------|------|------------|-----------|------|----------|------|--------------|-----------------------------------------|--------------|--------------|
|               |               | Loe. | Rem.       |           |      | Cal.     | MCW  |              |                                         |              |              |
| 1             | 195           | 0    | 0          | NC        | 405  | 16.5     | 15.5 | 11.5         | 0                                       | 315          | 0            |
|               | 28            | 0    | 0          | 0         | #    | 0        | 0    | 11.9         | 13.2                                    | 400          | 30.5         |
| $\frac{2}{3}$ | 13.5          | 0    | 0          | 29.5      | 29.7 | 415      | 0    | 18.7         | 403                                     | NC           | 0            |
| 4             | 14            | 0    | 0          | 2010      | 29.7 | 0        | Ő    | 18.5         | 200                                     | 29.5         | 0            |
| 5             |               | 0    | 0          | 0         | 0    | 415      | 400  | 0            | 47                                      | 42           | 410          |
| 6             |               | 0    | 0          | -         | 29.7 | 0        | 0    | 192          | 0                                       | 14           | 0            |
| 7             |               | 0    | 0          |           | NC   | Ő        | Ő    | 27.3         |                                         | 0            | 0            |
| 8             |               | 0    | Ő          |           | . 05 | 27.2     | 27.2 | 26.8         |                                         | 0            | Ő            |
| 8<br>9        |               | 0    | 0          |           | #    | 21.2     | 21.2 | 0            |                                         | 28           | 0            |
| 10            |               | 0    | 0          |           | 1240 |          |      | 0            |                                         | NC           | 0            |
| 11            |               | 0    | 0          |           | 1    |          |      | Ŭ            |                                         | 400          | 0            |
| 12            |               | 0    | 0          |           |      |          |      |              |                                         | 305          | 0            |
| 13            |               | 0    | Ő          |           |      |          |      |              |                                         | 000          | 405          |
| 14            |               | 27   | 27         |           |      |          |      |              |                                         |              | 0            |
| 15            |               | 0    | 0          |           |      |          |      |              |                                         |              | 30.0         |
| 16            |               | 27   | 27         |           |      |          |      |              |                                         |              |              |
| 17            |               | 0    | 12.5       |           |      |          |      |              |                                         |              |              |
| 18            |               | Key  | Open       |           |      |          |      |              | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - |              |              |
|               |               | 27   | 27         |           |      |          |      |              |                                         |              |              |
| 19            |               | 0    | 0          |           |      |          |      |              |                                         |              |              |
| 20            |               | 25   | 25         |           |      |          |      |              |                                         |              |              |
| <b>21</b>     |               | 0    | 0          |           |      |          |      |              |                                         |              |              |
| 22            |               | 0    | 0          |           |      |          |      |              |                                         |              |              |
| 23            |               |      | C          |           |      |          |      |              |                                         |              |              |
| 24            |               | N    | IC         |           |      |          |      |              |                                         |              |              |
| 25            |               |      | C          |           |      |          |      |              |                                         |              |              |
| 26            |               | **N  |            |           |      |          |      |              |                                         |              |              |
| 27            |               | 18 a | . c.       |           |      |          |      |              |                                         |              |              |

Adjust transmitter for MCW in range 6000 to 7200 Kc, Key down. (All stages operating) \*Adjust transmitter for L-F operation for these readings.

\*\*If Receiver disabling circuit is used #26 and #27 are equal.

# 0 for AC Power Unit—+400 v for DC Power Unit.

## TABLE VIII-RESISTANCE TO GROUND FROM VACUUM TUBE TERMINALS

Adjust transmitter for MCW operation in range 6000 to 7200 kc for all readings except as below:

Readings taken with all tubes in place and all power turned off.

| Tube<br>Base<br>Term.<br>No. | V101<br>(837) | V102<br>(1625) | V103<br>(1625) | V104<br>(813) | V105<br>(811) | V106<br>(811) | V201<br>(12SJ7) | V202<br>(6V6GT) | V203<br>(6V6GT) | V301*<br>(12SJ7) | V302<br>(12SJ7) | V401**<br>(1625) |
|------------------------------|---------------|----------------|----------------|---------------|---------------|---------------|-----------------|-----------------|-----------------|------------------|-----------------|------------------|
| 1                            | *3.8          | *4.4           | 0              | 0.3           | 0.2           | 0.4           | 0               | 0               | 0               | 0                | 0               | 0                |
| 2                            | 0             | inf            | inf            | 175           | inf           | inf           | 0               | 4.2             | 2.6             | 0                | 2.6             | inf              |
| 3                            | 1250          | 20,000         | 20,000         | 175           | 74            | 67            | 0               | 1550            | 1530            | 120,000          | 520,000         | 1250             |
| 4                            | 22,000        | 100,000        | 100,000        | 20,000        | 0.3           | 0.3           | 4000            | 1300            | 1280            | 225,000          | 47              | 15,000           |
| 5                            | 0             | 100,000        | 100,000        | 0             |               |               | 2200            | 470,000         | 100,000         | 0                | 0               | inf              |
| 6                            | inf           | 1000           | 1000           | 0             |               |               | 1 Meg           | inf             |                 | 570,000          | 520,000         | inf              |
| 7                            | 3             | *3             | *4.4           | 0             |               |               | 5               | 5               | 4.3             | 8.5              | 8.0             | 3.4              |
| 8                            |               |                |                |               |               |               | 160,000         | 250             | 250             | 500,000          | 520,000         |                  |
| Тор<br>Сар                   | 50            | 80             | 46             | 260           | 280           | 270           |                 |                 |                 |                  |                 | 105              |

\* Place switch S106 in the calibrate position for these readings.

\*\* Adjust transmitter for L-F operation for these readings.

# TABLE IX-RESISTANCE TO GROUND FROM CABLE CONNECTOR TERMINALS

All readings made with units removed from the transmitter or plugs and receptacles disconnected, but with tubes in place. The EMISSION selector switch in the MCW position. Control "A" on Position 1. Autotune positioned on 1. LOCAL-REMOTE switch in the LOCAL position.

| Term. | H-F          | J    | 106    | J1      | 07       | J108 |     | J111   | L   | J112 | J114 | J115    | TILC | D101 | D109 | Deal    | <b>D</b> 001                          | D.401 |
|-------|--------------|------|--------|---------|----------|------|-----|--------|-----|------|------|---------|------|------|------|---------|---------------------------------------|-------|
| No.   | Osc.         | Loc. | Rem.   | HF      | LF       | 3108 | C   | Т      | 0*  | J112 | J114 | 9119    | J116 | P101 | P102 | P201    | P301                                  | P401  |
| 1     | inf          | 180  | inf    | 0       | 0        | 6750 | inf | inf    | inf | inf  | 0    | 24,000  | inf  | inf  | inf  | inf     | inf                                   | 0     |
| 2     | inf          | 0.1  |        | inf     | inf      | inf  | inf | $\inf$ | inf | 0.4  | 5.5  | 6750    | inf  | inf  | inf  | inf     | inf                                   | 11    |
| 3     | inf          | 0.1  |        | inf     | 110      | 3.1  | 42  | $\inf$ | inf | 0.3  | 6750 | inf     | 0    |      | inf  | inf     | 190,000                               | inf   |
| 4     | inf          | 0.1  |        |         |          | 3.1  | 6.5 | $\inf$ | inf | inf  | 5000 | 17      | 0    | inf  | inf  | inf     | inf                                   | inf   |
| 5     |              | 0.1  | 0.1    |         | ı        | 0    | inf | inf    | inf | inf  | inf  | inf     | inf  | inf  | inf  | 2 to 16 | inf                                   | inf   |
| 6     |              | 0.1  |        | <b></b> |          | 1.5  |     | 0      | 0   | 5000 | inf  | inf     | inf  | inf  | inf  | inf     | 0                                     | inf   |
| 7     |              | 0.1  |        |         |          | 0.2  |     | 3.8    |     | 3.2  |      | 125     | inf  | inf  | inf  | 24      | 1 to 13                               |       |
| 8     |              | 0.1  |        |         |          | 0.1  | 2.9 | 2.9    | 2.9 | 0    |      | 45      | inf  | inf  | inf  | 0       | 30                                    |       |
| 9     | 170000 A 100 | 0.1  |        |         |          | inf  |     |        | -   | 0    |      | inf     | inf  | inf  | inf  | 0       |                                       |       |
| 10    |              | 0.1  | 0.1    |         |          | inf  |     |        |     | inf  |      | 0       | inf  |      | inf  | 325**   |                                       |       |
| 11    | ·            | 0.1  | 0.1    |         |          |      |     |        |     | 0    |      | 3.7     | inf  | inf  | inf  | 0       |                                       |       |
| 12    |              | inf  | 180    |         | <u> </u> |      |     |        |     | 6    |      | 18,000  | inf  | inf  | inf  | 6.5     |                                       |       |
| 13    |              | inf  | 0      |         |          |      |     |        |     |      |      |         | 6750 |      | inf  |         |                                       |       |
| 14    |              | 150  | 150    |         |          |      |     |        |     |      |      | ******* | 0.2  |      |      |         |                                       |       |
| 15    |              | inf  | inf    |         |          |      |     |        |     |      |      |         | 3.5  |      |      |         | · · · · · · · · · · · · · · · · · · · |       |
| 16    |              | 120  |        |         |          |      |     |        |     |      |      | ·       |      |      |      |         |                                       |       |
| 17    |              | inf  | 150    | w       |          |      |     |        |     |      |      |         |      |      |      |         |                                       |       |
| 18    |              | 0.1  | 0.1    |         |          |      |     | ****** | -   |      |      |         |      |      |      |         |                                       |       |
| 19    |              | 0    | 0      |         |          |      |     | •      |     |      |      |         |      |      |      |         |                                       |       |
| 20    |              | inf  | inf    |         |          |      |     |        |     |      |      |         |      |      |      |         |                                       |       |
| 21    |              | 0.1  | inf    |         |          |      |     |        |     |      |      |         |      |      |      |         |                                       |       |
| 22    |              | inf  | 0.1    |         |          |      |     |        |     |      |      |         |      |      |      |         |                                       |       |
| 23    |              | inf  | $\inf$ |         |          |      |     |        | -   |      |      |         | Ì    | ·    |      |         |                                       |       |
| 24    |              | inf  | inf    |         | •••••    |      |     |        |     |      |      |         |      |      |      |         |                                       |       |
| 25    |              | inf  | inf    |         |          |      |     |        |     |      |      |         |      |      |      |         |                                       |       |
| 26    |              | inf  | inf    |         |          |      |     |        |     |      |      |         |      |      |      |         |                                       |       |
| 27    |              | inf  | inf    |         |          |      |     |        | -   |      |      |         |      |      |      | ]       |                                       | ·     |

Loc-Local. Rem-Remote. Inf-Infinite Resistance. \*C-Calibrate. \*T-Tune. \*O-Operate. \*\*Microphone circuit selecting switch S202 in the CARBON position.

#### TABLE X-RESISTANCE MEASUREMENTS ON AUTOTUNE MOTOR

All resistance readings were made with all brushes removed from the machine.

AUTOTUNE MOTOR:

Collins Part No. NY-818C d.c. shunt wound motor 3.1 amps, 28 volts d.c., 1/20 H.P., 3900 rpm.

Resistance between commutator segment diametrically opposed = 1.26 ohms

Average resistance between adjacent commutator segments = 0.3 ohms

Field resistance, F1 to F2-17.8 ohms

#### Notes:

- 1. A short or low resistance to ground from either of terminal A1 or A2, with brushes removed and external wires disconnected, indicates a defective capacitor or brush holder.
- 2. A variation in resistance between adjacent commutator segments, with brushes removed indicates a defective armature.
- 3. A low resistance or short to ground from the commutator, indicates a defective armature.
- 4. A large discrepancy in field resistance or a short from F2 to ground indicates a defective field winding.



Fig. 39 NY818C-A Autotune Motor Schematic (Dwg. No. 500 0243 00A)

#### TABLE XI-GENERAL SPECIFICATIONS OF EQUIPMENT

1. Frequency Range: 300 Kc to 600 Kc. &

2000 Kc to 18,100 Kc.

#### 2. Frequency Bands:

The frequency range 300 Kc to 600 Kc is covered in three bands. The six positions of Control F together with the frequency range covered by each band are listed below:

| Position of Control F | Frequency Range     |
|-----------------------|---------------------|
| 1                     | 200 kc to 262 kc    |
| 2                     | 262 kc to 355 kc    |
| 3                     | 355  kc to  475  kc |
| 4                     | 475 kc to 695 kc    |
| 5                     | 695 kc to 1035 kc   |
| 6                     | 1035 kc to 1500 kc  |

Note that with the Type COL-47370 Loading Coil, operation of the output circuits is limited to the 300 to 600 kc range.

#### 3. Frequency Stability:

(a) Frequency Variation With Temperature Change:

|                                                    |        | % Frequen | cy Deviation |        |
|----------------------------------------------------|--------|-----------|--------------|--------|
| Temp. Change                                       | 2.0 mc | 2.4 mc    | 3.0 mc       | 6.0 mc |
| $-10^{\circ}$ C to $0^{\circ}$ C                   | 0.0006 | 0.0027    | 0.0011       | 0.0116 |
| $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$  | 0.0014 | 0.0027    | 0.0004       | 0.0147 |
| $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ | 0.0009 | 0.0044    | 0.0008       | 0.0123 |
| $20^{\circ}$ C to $30^{\circ}$ C                   | 0.0030 | 0.0018    | 0.0027       | 0.0124 |
| $30^{\circ}$ C to $40^{\circ}$ C                   | 0.0000 | 0.0042    | 0.0015       | 0.0109 |
| $40^\circ$ C to $50^\circ$ C                       | 0.0042 | 0.0040    | 0.0015       | 0.0126 |

# (b) Frequency Variation With Change in Humidity:

| (2) 21040000             |                                               | % Frequen          | cy Deviation       |                                                 |
|--------------------------|-----------------------------------------------|--------------------|--------------------|-------------------------------------------------|
| Humidity Change          | 2.0 mc                                        | 2.4 mc             | 3.0 mc             | 6.0 mc                                          |
| 30% to 95%<br>95% to 30% | $\begin{array}{c} 0.0073\\ 0.0046\end{array}$ | $0.0058 \\ 0.0000$ | $0.0097 \\ 0.0050$ | $\begin{array}{c} 0.0153 \\ 0.0133 \end{array}$ |

| 4. | Antenna | Requ | irements: |  |
|----|---------|------|-----------|--|
|----|---------|------|-----------|--|

| Frequency | Antenna<br>Reactance | Antenna<br>Resistance |  |  |
|-----------|----------------------|-----------------------|--|--|
| 300 kc    | -4500 ohms           | 20 ohms               |  |  |
| 400       |                      | 16                    |  |  |
| 500       |                      | 14                    |  |  |
| 600       | 2100                 | 12                    |  |  |
| 2.0 mc    | 500                  | 2.1                   |  |  |
| 3.0       | 200                  | 3.1                   |  |  |
| 4.0       | 0                    | 6.1                   |  |  |
| 5.5       | +380                 | 25.0                  |  |  |
| 7.0       | 0                    | 3500.0                |  |  |
| 9.0       | 350                  | 50.0                  |  |  |
| 11.5      | 0                    | 50.0                  |  |  |
| 13.5      | +350                 | 100.0                 |  |  |
| 15.5      | 0                    | 1500.0                |  |  |
| 18.1      | 350                  | 200.0                 |  |  |

# 5. Power Output:

| Frequency | Power<br>Output | Frequency | Power<br>Output |
|-----------|-----------------|-----------|-----------------|
| 0.2 mc    | 5.5 watts       | 2.0 mc    | 31.0 watts      |
| 0.3       | 14.0            | 3.0       | 60.0            |
| 0.4       | 18.0            | 4.0       | 80.0            |
| 0.5       | 24.0            | 5.5       | 90.0            |
| 0.6       | 24.0            | 7.0       | 90.0            |
| 0.7       | 27.0            | 9.0       | 90.0            |
| 0.8       | 45.0            | 11.5      | 90.0            |
| 1.0       | 75.0            | 13.5      | 90.0            |
| 1.3       | 80.0            | 15.5      | 75.0            |
| 1.5       | 65.0            | 18.1      | 65.0            |

#### 6. Input Impedance

The audio input circuit of the equipment is designed to match the output of either a carbon or dynamic microphone. A switch selects the proper input circuit to correspond to the type of microphone that is to be used. When the microphone circuit selector switch is in the CARBON position the input circuit will match a carbon microphone of approximately 40 ohms internal resistance. When the circuit selector switch is in the DYNAM-IC position the input circuit will match a dynamic microphone of approximately 200 ohms internal resistance.

#### 7. Power Source

Equipments supplied with the Type COL-211101 power units are designed to operate from a 115 volt 50/60 cps power source capable of supplying 4500 watts of power with good voltage regulation. In normal operation the equipment draws approximately 13.1 amps. at an 80% Power Factor.

Equipments supplied with the Type COL-

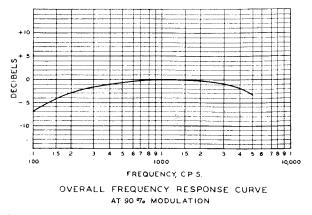



Fig. 40 Overall Frequency Response Curve (Dwg. No. 500 0230 00A)

211102 power units are designed to operate from a 115 volt d.c. power source.

#### 8. Modulation

Class B modulation is employed in the equipment. The push-pull modulators are capable of modulating the full-power r-f carrier at least 90% with VOICE emission.

| Navy<br>Type | Collins<br>Part |      |                                            |
|--------------|-----------------|------|--------------------------------------------|
| No.          | Number          | Qty. | Description                                |
| COL-52286    | 17H-2           | 1    | Radio Transmitter                          |
| COL-211101   | 413D-1          | *    | Motor Generator-Rectifier Power Unit       |
| COL-211102   | 413D-2          | *    | Dynamotor Assembly Power Unit              |
| COL-23410    | 314N-2          | 1    | Remote Control Unit                        |
| COL-47370    | 180H-3          | 1    | Antenna Loading Coil Unit                  |
|              | 65X-7           | 1    | Control Cable (Transmitter to Power Unit)  |
|              | 65X-8           | 1    | Power Cable (Transmitter to Power Unit)    |
|              | 65X-9           | 1    | Load Coil Cable (Transmitter to Load Coil) |
|              | 65X-10          | 1    | Remote Control Cable                       |
|              |                 |      | (Remote Unit to Power Unit)                |
| COL-40127    |                 | 1    | 200 Kc Quartz Crystal                      |
| COL-481628   | 195D-1          | 1    | Antenna Shunt Capacitor                    |

#### TABLE XII-EQUIPMENT SUPPLIED ON CONTRACT

\* One power unit only is supplied.

# TABLE XIII-EQUIPMENT REQUIRED FOR OPERATION

## BUT NOT SUPPLIED ON CONTRACT

- 1. Microphone—Carbon of 40 ohms Internal Resistance or Dynamic of 200 ohms Internal Resistance for RED coded circuit per Navy Specifications RE8944A.
  - (a) Cord—3 Conductor, Shielded.
  - (b) Cord Plug—3 Circuit, Tip  $\frac{3}{16}''$  dia. and  $1\frac{3}{16}''$  long.
- 2. Telegraph Key—Any Type.
  - (a) Key Cord—2 Conductor.
  - (b) Cord Plug—2 Circuit, Tip  $\frac{3}{16}''$  dia. and  $1\frac{3}{16}''$  long.
- Headphones—500 ohm Impedance.
   (a) Cord Plug—2 Circuit, Tip ¼" dia. and 1<sup>5</sup>/<sub>32</sub>" long.

| Unit Description                           | Navy Type<br>Designation | Collins<br>Type No. | Model TCZ    |  |
|--------------------------------------------|--------------------------|---------------------|--------------|--|
| Radio Transmitter                          | -52286                   | 17H-2               | X            |  |
| Remote Control Unit                        | COL-23410                | 314N-2              | $\mathbf{X}$ |  |
| Antenna Loading Coal<br>(300 Kc to 600 Kc) | COL-47370                | 180H-3              | X            |  |
| Antenna Shunt Capacitor                    | -481628                  | 195D-1              | $\mathbf{X}$ |  |
| Quartz Crystal Assembly (200 Kc)           | -40127                   |                     | X            |  |
| A.C. Power Unit                            | COL-211101               | 413D-1              | X            |  |
| D.C. Power Unit                            | COL-211102               | 413D-2              | X            |  |
| 27 Conductor Cable                         |                          | 65X-7               | X            |  |
| 10 Conductor Cable                         |                          | 65X-8               | X            |  |
| 2 Conductor Cable                          |                          | 65X-9               | X            |  |
| 27 Conductor Cable                         |                          | 65X-10              | Х            |  |

# TABLE XIV-INTERCHANGEABILITY OF UNITS

# VII APPENDIX

# Page No.

| Table | XV    | List of Major Units               | $_{-}118$ |
|-------|-------|-----------------------------------|-----------|
| Table | XVI   | List of Manufacturers             | _119      |
| Table | XVII  | Parts Lists by Symbol Designation | _123      |
| Table | XVIII | Spare Parts Lists                 | _158      |
|       |       | List for AC Equipment             | _158      |
|       |       | List for DC Equipment             | $_{-171}$ |
|       |       | Illustrations                     | _184      |
|       |       | Commercial Assemblies             | _253      |
| Table | XIX   | Tube Complement                   | _265      |
|       |       | Tube Specification Data Sheets    | _266      |
| Table | XX    | Applicable Color Codes            | _281      |
|       |       | Capacitor Code                    | $_{-}281$ |
|       |       | Resistor Code                     | _283      |
|       |       | Hookup Wire Code                  | _283      |

# TABLE XV—LIST OF MAJOR UNITS FOR MODEL TCZ RADIO TRANSMITTING EQUIPMENT

| Quan. | Symbol<br>Group |      | Navy Type<br>Designation | Collins<br>Type No. | Name of Major Unit   | Assembly<br>Dwg. No. |
|-------|-----------------|------|--------------------------|---------------------|----------------------|----------------------|
| 1     | 101 to          | 199  | COL-52286                | 17H-3               | Transmitter          | K351E                |
| 1     | 201 to          | 299  |                          |                     | Audio Amplifier      |                      |
| 1     | 301 to          | 399  |                          |                     | MCW-CFI              |                      |
| 1     | 401 to          | 499  |                          |                     | L-F Oscillator       |                      |
| 1     | 901 to          | 999  | COL-23410                | 314N-2              | Remote Control Box   | K1104C               |
| 1     | 1001 to         | 1099 | COL-47370                | 180H-3              | Loading Coil         | K1107C               |
| 1     | 1101 to         | 1199 | COL-481628               | 195D-1              | Antenna Capacitor    | 1370B                |
| 1     | 1501 to         | 1599 |                          | 65X-7               | Control Cable        | $500 \ 1496 \ 00D$   |
| 1 .   | 1601 to         | 1699 |                          | 65X-8               | Power Cable          | $500 \ 1497 \ 00D$   |
| 1     | 1701 to         | 1799 |                          | 65X-9               | Load Coil Cable      | 500 1498 00C         |
| 1     | 1801 to         | 1890 | COL-211101               | 413D-1              | A-C Power Unit       | K1082C               |
| 1     | 1901 to         | 1999 | COL-211102               | 413D-2              | D-C Power Unit       | K1084C               |
| 1     | 2301 to         | 2399 |                          | 65X-10              | Remote Control Cable | 500 4474 00D         |

#### TABLE XVI-LIST OF MANUFACTURERS

- 01W Waage Electric Company 125 Church Street New York, N. Y.
- 02S Sangamo Electric Company 1935 Funk Street Springfield, Illinois
- 05H Hammarlund Mfg. Co., Inc. 460 West 34th Street New York, N. Y.
- 05M P. R. Mallory and Co., Inc. 3029 East Washington St. Indianapolis 6, Indiana
- 05N National Company, Inc. 61 Sherman Street Malden, Massachusetts
- 05P Oak Manufacturing Company 1260 Clybourn Avenue Chicago 10, Illinois
- 06A Aerovox Corporation 740 Belleville Avenue New Bedford, Mass.
- 10C Cannon Electric Development Co. 3209 Humboldt Street Los Angeles, California
- 13M Marathon Electric Co. 4543 Ravenswood Avenue Chicago, Illinois
- 16A Alladin Radio Industries, Inc. 501 W. 35th Street Chicago, Illinois
- 21N National Fabricated Products Co. 2650 West Belden Avenue Chicago, Illinois
- 22A Allen-Bradley Company 136 West Greenfield Avenue Milwaukee 4, Wisconsin
- 24B Belden Manufacturing ompany P. O. Box 5070A Chicago, Illinois
- 25C Centralab 900 E. Keefe Avenue Milwaukee 1, Wisconsin

- 25P Ohmite Manufacturing Company 4835 West Flournoy Street Chicago, Illinois
- 28J International Resistance Co.
   401 North Broad Street
   Philadelphia, Pennsylvania
- 34S F. W. Sickles Company Box 920 Springfield 2, Massachusetts
- 35J International Telephone Devel.137 Varick StreetNew York, N. Y.
- 35M Meissner Mfg. Company Mt. Carmel, Illinois
- 35W Westinghouse Elec. & Mfg. Co. East Pittsburgh, Pennsylvania
- 36E Hugh H. Eby, Inc.18 W. Chelten Avenue Philadelphia, Pa.
- 40G General Electric Co. 840 S. Canal Street Chicago, Illinois
- 42J Isolantite Incorporated Belleville, New Jersey
- 45W Weston Elec. Instrument Corp. Newark, New Jersey
- 50X X-L Radio Laboratories 420 W. Chicago Avenue Chicago, Illinois
- 55C Chicago Transformer Corp. 3501 Addison Street Chicago 18, Illinois
- 60A American Phenolic Corporation 1830 South 54th Avenue Chicago, Illinois
- 60D Drake Manufacturing Company 1713 West Hubbard Street Chicago, Illinois
- 62S Soreng Manegold Company 1901 Clybourn Avenue Chicago, Illinois

## LIST OF MANUFACTURERS

- 64C Collins Radio Company 855 35th Street N.E. Cedar Rapids, Iowa
- 64S Solar Manufacturing Corp. Bayonne, New Jersey
- 65G G. M. Laboratories, Inc. 4314-26 North Knox Ave. Chicago, Illinois
- 65S Speer Resistor Corp. St. Mary's, Pennsylvania
- 66R Raytheon Production Corp. 55 Chapel Street Newton, Massachusetts
- 66S Sprague Specialties Company North Adams, Massachusetts
- 68S S. W. Inductor Company 1056-58 North Wood Street Chicago, Illinois
- 69S Spencer Thermostat Company 34 Forrest Street Attleboro, Massachusetts
- Jensen Radio Manufacturing Co.
   6601 S. Laramie Avenue Chicago 38, Illinois
- 75C Cornell-Dubilier Corporation 333 Hamilton Blvd. South Plainfield, New Jersey
- 77J E. F. Johnson Company Waseca, Minnesota
- 78L Littlefuse Incorporated 4757 North Ravenswood Ave. Chicago 40, Illinois
- 82C Coto-Coil Company, Inc.73 Willard AvenueProvidence, Rhode Island

- 84A Hart and Hegeman Division Arrow Hart and Hegeman Elec. Co. 103 Hawthorne Street Hartford, Connecticut
- 84C Cramer, The R. W. Co., Inc. Miller Street Centerbrook, Connecticut
- 85G Guardian Electric Mfg. Co. 1430 West Washington Blvd. Chicago 7, Illinois
- 88F Fractional Motors 1501 North Halsted Chicago, Illinois
- 89W Wirt Company 5221-27 Green Street Germantown, Philadelphia, Pa.
- 90B Bryant Elect. Company Barnum Station Bridgeport, Connecticut
- 90L Lord Manufacturing Company Erie, Pennsylvania
- 91J Howard B. Jones 2300 Wabansia Avenue Chicago, Illinois
- 96C Cutler-Hammer, Inc. 315 N. 12th St. Milwaukee, Wisconsin
- 96R Russell Electric Company 340 West Huron Street Chicago, Illinois
- 97E Electronic Laboratories, Inc. 122 West New York Street Indianapolis, Indiana
- 98E Emerson Electric Co. 324 4th Street Davenport, Iowa

#### PARTS LIST

#### Refer to Tables XVII and XVIII.

Component parts of the equipment are identified by means of symbol designations. Wherever it is required to reference a component, the same symbol designation is used. Thus, a part appearing on a simplified schematic, a complete circuit diagram, a wiring diagram, photograph or layout drawing, will always be identified by means of the same symbol designation. In addition, each component part is stamped with its corresponding symbol designation. These symbol designations identify the various component parts which appear in the following parts lists. No symbol designation is used to identify more than one part.

The alphabetical portion of symbol designations have been selected from the following list in accordance with the classification of the component parts concerned.

- (A) Structural parts, panels, frames, castings, etc.
- (B) Motors and other prime movers, selfsynchronous motors, etc.
- (C) Capacitors of all types.
- (CR) Dry Disc Rectifiers.
- (D) Dynamotors.
- (E) Miscellaneous electrical parts: Insulators, knobs, brushes, etc.
- (F) Fuses.
- (G) Generators, exciters, etc.
- (H) Hardware, screws, bolts, studs, pins, snapslides, etc.
- (I) Indicating devices (except meters and thermometers), pilot lamps, etc.
- (J) Jacks and receptacles (stationary).
- (K) Contactors, relays, circuit breakers, etc.
- (L) Inductors, R.F., and A.F.
- (M) Meters of all types, gauges, thermometers, etc.

- (N) Nameplates, dials, charts, etc.
- (O) Mechanical parts, bearings, shafts, couplings, gears, ferrules, flexible shafts, housings, etc.
- (P) Plugs.
- (Q) Diaphragms, (microphone, telephone, projectors, etc.).
- (R) Resistors, fixed and variable, potentiometers, etc.
- (S) Switches, interlocks, thermostats.
- (T) Transformers, R.F., and A.F., and power.
- (U) Hydraulic parts.
- (V) Vacuum and gaseous discharge tubes.
- (W) Wires, interconnecting cables, without plugs.
- (X) Sockets.
- (Y) Mechanical oscillators, crystals, magnetestriction tubes, etc.
- (Z) Impedance such as traps (wave), etc.

The numerical portion of the Symbol Designation has been assigned to identify the component part with a particular major unit assembly. The numerical portion of symbol designations begin with 101 for the first component part in each class (i.e., component part in each alphabetical class as described above) and run consecutively for the remaining component parts in a particular class. A different numerical series of numbers is used for each major unit of the equipment. The series 101 to 199 is reserved for the first major unit. The series 201 to 299 is reserved for the second major unit. The series 301 to 399 is reserved for the third major unit. In this manner, each major unit of the entire equipment is identified with a series of numerals to be used for the designation of component parts.

The list of Major Units, Table XV, gives a complete list of symbol designation numbers in correlation with the major units.

#### PARTS LIST

Only one Symbol Designation is assigned to cover component parts with multiple electrical or mechanical characteristics. However, since at times it is desirable to identify certain electrical or mechanical sections of these component parts, suffix letters are added when necessary. Thus, C121A, C121B, and C121C identify each section of triple capacitor C121 and K101A, K101B, K101C and K101D identify the relay coil and various contacts of relay K101.

The Spare Parts List Table XVIII is divided into two separate lists, one list for equipments employing the Navy Type COL-211101 Motor Generator-Rectifier Power Unit and one for equipments employing the Navy Type COL-211102 Dynamotor Assembly Power Unit.

## TABLE XVII-PARTS LIST BY SYMBOL DESIGNATION

# For Navy Model TCZ Radio Transmitting Equipment

## RADIO TRANSMITTER NAVY TYPE -52286

## MOTORS

|     | Symbol<br>Desig.     | Navy or<br>JAN Type<br>Number | Function                                                                                 | Description                                                                                                                                                                                                                                                                                                                                                             | Mfr's.     | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|-----|----------------------|-------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|-------------------------------------------|
|     | B101                 |                               | Autotune Motor                                                                           | 1/20 hp 28 v d-c Nominal 20 v<br>Min. 32 v Max.                                                                                                                                                                                                                                                                                                                         | 98E<br>88F | NY-818C-A<br>NY-818C-C     | 818C<br>818C                              |
|     |                      |                               |                                                                                          | CAPACITORS                                                                                                                                                                                                                                                                                                                                                              |            |                            |                                           |
|     | C101<br>C102         | -481677-1                     | Cap., H-F Osc. Grid Padding                                                              | .000185 mf $\pm 1\%$ 1000 TV                                                                                                                                                                                                                                                                                                                                            | 64C        | 841-001                    |                                           |
| 102 | C102<br>C102<br>C104 | Part 3 of -481678-1           | Refer to C102, C103, C104 below                                                          | Set of three matched ceramic<br>capacitors packaged as a set.<br>To be connected in the equipment<br>in accordance with the circuit at<br>the left to provide 413 mmf $\pm 1\%$<br>1000 TV, Temperature Coef-<br>ficient minus 48 Parts per Million<br>per degree C $\pm 5\%$<br>280 mmf $\pm 10\%$ 1000 TV<br>200 mmf $\pm 10\%$ 1000 TV<br>400 mmf $\pm 10\%$ 1000 TV | 64C        | Type 841                   | GA-1433C                                  |
|     | C104<br>C105         | 1 410 2 01 -101010-1          | Cap., H-F Osc. Cathode Bypass                                                            | .005 mf $\pm 5\%$ 2500 TV                                                                                                                                                                                                                                                                                                                                               | 75C<br>02S | 4LST<br>HLST               | 925N250K-J                                |
|     | C106                 |                               | Cap., H-F Osc. Filament Bypass                                                           | .006 mf $\pm 20\%$ 1000 TV                                                                                                                                                                                                                                                                                                                                              | 75C<br>02S | 4LS<br>HLS-10              | 910N260C-M                                |
|     | C107                 |                               | Cap., H-F Osc. Screen Bypass                                                             | .002 mf $\pm 20\%$ 1000 TV                                                                                                                                                                                                                                                                                                                                              | 75C<br>02S | 4LS<br>HLS-40              | 910N220C-M                                |
|     | C108<br>C109<br>C110 |                               | Cap., 1st Mult. Grid<br>Cap., 1st Mult. Cathode Bypass<br>Cap., 1st Mult. Scr. Sup. Fil. | .0005 mf $\pm 10\%$ 1500 TV<br>.002 mf $\pm 20\%$ 1500 TV<br>Same as C109                                                                                                                                                                                                                                                                                               | 02S<br>02S | BE-15<br>BE-15             | 915N350E-K<br>915N220E-M                  |
|     | C111<br>C112         | -481679                       | Cap., 1st Mult. Pl. Tuning<br>Cap., 2nd Mult. Grid Coupling                              | 6 Sect. Variable Ceramic Cap00025 mf $\pm 10\%$ 1500 TV                                                                                                                                                                                                                                                                                                                 | 25C<br>02S | 828-003<br>BE-15           | 917N6A3<br>915N325E-K                     |

123

# CAPACITORS (Cont.)

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                          | Description                                | Mfr's.     | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|-----------------------------------|--------------------------------------------|------------|----------------------------|-------------------------------------------|
| C113             |                               | Cap., 2nd Mult. Cathode Bypass    | Same as C109                               |            |                            |                                           |
| C114             |                               | Cap., 2nd Mult. Screen Sup. Fil.  | Same as C109                               |            |                            |                                           |
| C115             |                               | Cap., 2nd Mult. Pl. Tuning        | Same as C111                               |            |                            |                                           |
| C116             |                               | Cap., Power Amp. Grid Coupling    | Same as C108                               |            |                            |                                           |
| C117             |                               | Cap., Power Amp. Fil. Bypass      | Same as C106                               |            |                            |                                           |
| C118             |                               | Cap., Power Amp. Pl. Blocking     | .002 mf $\pm 20\%$ 7500 TV                 | 028        | A2LS                       | 975N220A-M                                |
| C119             |                               | Cap., Power Amp. Ser. Sup. Fil.   | .002 mf $\pm 20\%$ 2500 TV                 | 75C        | 4LS                        | 925N220C-M                                |
|                  |                               | • • • •                           |                                            | 02S        | HLS-25                     |                                           |
| C120A            |                               | Cap., Power Amp. Pl. Sup. Fil.    | .002 mf $\pm 20\%$ 5000 TV                 | 75C        | 4LS                        | 950N220C-M                                |
|                  |                               | • •                               |                                            | 028        | HLS-50                     |                                           |
| C120B            |                               | Cap., Power Amp., Pl. Sup. Fil.   | Same as C120A                              |            |                            |                                           |
| C121             |                               | C121A, C121B, & C121C             | 3 -0.1 mf $\pm 20\%$ 600 WV                | 75C        | DYRT-6111                  | 956NT01WX1-M                              |
|                  |                               |                                   |                                            | 64S        | 3XDMRTW61                  |                                           |
| C121A            |                               | Cap., Transient Suppressing       | Section of C121                            |            |                            |                                           |
| C121B            |                               | Cap., Transient Suppressing       | Section of C121                            |            |                            |                                           |
| C121C            |                               | Cap., Transient Suppressing       | Section of C121                            |            |                            |                                           |
| C122             |                               | C122A & C122B                     |                                            |            |                            |                                           |
| C122A            | -481690-10                    | Cap., Power Amp. Pl. Tank Padding | .00005 mf $\pm 10\%$ Ceramic               | 25C        | 850-002                    | 913N450C-K                                |
| C122B            |                               | Cap., Power Amp. Pl. Tank Padding | Same as C122A                              |            |                            |                                           |
| C124A            | -481691-5                     | Cap., P.A. Pl. Tank Padding       | .000067 mf ±5% Ceramic                     | 25C        | 850-003                    | 913N467C-J                                |
| C124B            |                               | Cap., P.A. Pl. Tank Padding       | Same as C124A                              |            |                            |                                           |
| C124C            |                               | Cap., P.A. Tank Pl. Padding       | Same as C124A                              |            | G 1 1010D                  | 10.00                                     |
| C125             |                               | Cap. Variable, P.A. Pl. Tuning    | Rotor Assembly                             | 64C        | GA-1342B                   | 1342B                                     |
|                  |                               |                                   | Stator Assembly—                           | 64C        | GA-1308A                   | 1308A<br>020N/78P M                       |
| C126             |                               | Cap., Low Voltage Supply Filter   | Cat: 2.0 mf $\pm 20\%$ 600 WV              | 75C        | KG-3020                    | 930N78B-M<br>915N260E-M                   |
| C127             | -481411-B-20                  | Cap., 2nd Mult. Pl. Supply Fil.   | $.006 \text{ mf} \pm 20\% 1500 \text{ TV}$ | 02S        | BE-15                      | 9191920015-WL                             |
| C128             |                               | Cap., P.A. Pl. Supply Fil.        | Same as C118                               |            |                            |                                           |
| C129             |                               | Cap., P.A. Pl. Tank Padding       | Same as C122A                              | 950        | 850-011                    | 913N425C-K                                |
| C130             | -481689-10                    | Cap., P.A. Tank Pl. Padding       | $.000025 \text{ mf} \pm 10\%$ Ceramic      | 25C<br>02S | BE-10                      | 910N380E-J                                |
| C131             |                               | Cap., 1st Mult. Pl. Sup. Fil.     | $.0008 \text{ mf} \pm 5\% 1000 \text{ TV}$ | 028<br>75C | 3WS                        | 909N240F-M                                |
| C132             |                               | Cap., Autotune Motor Spark Sup.   | .004 mf $\pm 20\%$ 600 TV                  | 02S        | JS                         | 202117401Wr                               |
| G1400            |                               | C A Later Mater Grand C           | Sama ag (122                               | 040        | 90                         |                                           |
| C133             |                               | Cap., Autotune Motor Spark Sup.   | Same as C132                               |            |                            |                                           |

124

# CAPACITORS (Cont.)

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                     | Description                | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|------------------------------|----------------------------|----------------|----------------------------|-------------------------------------------|
| C134             |                               | Cap., H-F Osc. Grid Trimming | Midget Variable            | 05P            |                            | 922N51                                    |
| C135             |                               | Cap., H-F Osc. Grid Trimming | Same as C134               |                |                            |                                           |
| C136             | -481681                       | Cap., P.A. Grid Trimming     | 13 mmf Variable Ceramic    | $25\mathrm{C}$ | 822-009                    | 917N101                                   |
| C137             |                               | Cap., H-F Noise Filter       | .0015 mf $\pm 10\%$ 900 TV | 64S            |                            | 909N215F-K                                |

## MISCELLANEOUS ELECTRICAL PARTS

# (See Figure 118)

|        | E101A | Brushes for Autotune Motor B101 | + & - Brush for NY-818C-A                                                          | 98E  |          | 234N130  |
|--------|-------|---------------------------------|------------------------------------------------------------------------------------|------|----------|----------|
| -      | E101C |                                 | (Two required)<br>+ & — Brush for NY-818-C                                         | 88F  | F-811    | 234N130B |
| с<br>л |       |                                 | (Two required)                                                                     |      |          |          |
|        | E102  | Receptacle for I101             | Mtg. Bracket for Bayonet Base                                                      | 60D  | 80       | 262N127  |
|        |       |                                 | Lamp, Type 80                                                                      |      |          |          |
|        | E103A | Insulating Feedthru Recept.     | $\frac{3}{8}$ " x $\frac{5}{8}$ " Ceramic Bushing Recpt.                           | 42J  | 1        | 190NBI19 |
|        | E103B | Insulating Feedthru Plug        | 3/8'' x 5/8'' Ceramic Bushing Plug                                                 | 42.J |          | 190NBI25 |
|        | E104  | Insulating Standoff             | 34'' Conical Standoff                                                              | 42J  | GS-10    | 190NSN7  |
|        | E105  | Insulating Standoff             | $\frac{1}{2}$ '' x 1'' Cyl. Standoff                                               | 42J  | 397-L1   | 190NSL3  |
|        | E106A | LOAD COIL Term. Feedthru        | $\frac{1}{2}^{\prime\prime}$ x $\frac{7}{8}^{\prime\prime}$ Ceramic Bushing Recpt. | 42J  |          | 190NBI21 |
|        | E106B |                                 | $\frac{1}{2}$ " x $\frac{7}{8}$ " Ceramic Bushing Plug                             |      |          | 190NBI26 |
|        | E107  | Insulating Feedthru             | 3/16" x 5%" Bushing Insert                                                         | 42J  |          | 190NBI7  |
|        | E108  | Antenna Feedthru Bowl           | 2-1/2" x 3-1/8" Bow                                                                | 42J  | YA-1685B | 1685B    |
|        | E109B | Insulating Feedthru Plug        | 3/8" x 5/8" Ceramic Bushing Plug                                                   | 42J  |          | 190NBI20 |
|        |       |                                 |                                                                                    |      |          |          |

## INDICATORS

| Transmitter Power Pilot Lamp | 28 v Clear Bulb Miniature | 40G | T3-1⁄4 |  |
|------------------------------|---------------------------|-----|--------|--|
|                              | Bayonet Base              |     |        |  |

262N327

125

I101

# JACKS AND RECEPTACLES

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                                 | Description                                                                 | Mfr's.             | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|------------------------------------------|-----------------------------------------------------------------------------|--------------------|----------------------------|-------------------------------------------|
| J101             |                               | THROTTLE SWITCH Cord Plug<br>Recept.     | 1 Cir. Jack for plugs with 1/4"<br>barrel                                   | 05 <b>M</b><br>21N | SC1A                       | 358N104                                   |
| J102             |                               | MICROPHONE Cord Plug Recept.             | 3 Circuit Jack                                                              | 05M<br>21N         | SCA2B                      | 358N105                                   |
| J103             |                               | KEY Cord Plug Recept.                    | Same as J101                                                                |                    |                            |                                           |
| J104             |                               | Sidetone #1 Receiver Cord<br>Plug Recpt. | Same as J101                                                                |                    |                            |                                           |
| J105             |                               | Sidetone #2 Recvr. Cord Plug Recpt.      | Same as J101                                                                |                    |                            |                                           |
| J106             |                               | Control Box Cable Conn. Plug<br>Recept.  | 27 Term. Wall Mtg. Recept.<br>Female Conn.                                  | 10C                | RNK-27-31SL                | 371N403R                                  |
| J107             |                               | Relay Supply Conn. Plug Recpt.           | 3 Term. Wall Mtg. Recpt. Female<br>Conn.                                    | 10C                | RWK-C3-31SL                | 371N105R                                  |
| J108             |                               | Dynamotor Conn. Plug Recept.             | 10 Term. Wall Mtg. Recept. Male<br>Conn.                                    | 10C                | FK-10-32S                  | 371N513                                   |
| J109             |                               | ANTENNA Connector                        | 5/8" Push Type Binding Post                                                 | 36E                |                            | 372N22A                                   |
| J110             |                               | <b>RECEIVER</b> Connector                | 5/8" Push Type Binding Post                                                 | 36E                |                            | 372N24A                                   |
| J111             |                               | 8Q-1 Unit Conn. Plug Recept.             | 8 Term. Conn. Socket                                                        | 91J                | 300                        | 366N208                                   |
| J112             |                               | 26S-1 Unit Conn. Plug Recpt.             | 12 Term. Socket Chassis Mtg.                                                | 91J                | 300                        | 366N212                                   |
| J113             |                               | GROUND Connecter                         | 5⁄8'' Push Type                                                             | 36E                |                            | 372N14A                                   |
| J114             |                               | Low Freq. Osc. Conn. Plug Recept.        | 6 Term. Socket Chassis Mtg.                                                 | 91J                | 300                        | 366N206                                   |
| J115             |                               | Multiplier Unit Conn. Plug Recept.       | 12 Term. Octal Style Cable Plug<br>Conn.                                    | 60A                | 70-12                      | 369-N17                                   |
| J116             |                               | K102 & S116 Conn Strip                   | 15 Term. Chassis Mtg. Conn.                                                 | 91J                | 300                        | 366N215                                   |
| J117             |                               | LOADING COIL Conn.                       | 1⁄2'' Push Type                                                             | 36E                |                            | 373N21A                                   |
| J118             |                               | ANT. CONDENSER Conn.                     | Same as J109                                                                |                    |                            |                                           |
|                  |                               |                                          | RELAYS                                                                      |                    |                            |                                           |
| K101             |                               | Relay, Autotune Motor Control            | 3 Pole Double Throw Circuit<br>Control Relay                                | 85G                | G-33177                    | 405 0009 00<br>405NB201A                  |
| K102             |                               | Relay, Keying                            | DT Mult. Contact SPDT                                                       | 85G                | G-32877                    | 410N19A                                   |
| K103             |                               | Relay, CW Emission                       | 2 PDT 1 PST Circuit Control Relay                                           | 85G                | G-32811                    | 410N17                                    |
| K104             |                               | Relay, VOICE Emission                    | 2 PDT Circuit Control Relay                                                 | 85G                | G-32734                    | 410N16                                    |
| K105             |                               | Relay, Output Circuit Selecting          | 1 PDT & 1 PNC with Mycalex<br>Insul. 1 PNO with Fiber Insul.<br>18-32 v d-c | 85G                | G-33304                    | 410N18                                    |

126

## **INDUCTORS** (See Figure 119)

| Symbol       | Navy or<br>JAN Type |                                    |                                                                | Mfr's.     | Mfr's.<br>Desig- | Contractor's<br>Drawing or |
|--------------|---------------------|------------------------------------|----------------------------------------------------------------|------------|------------------|----------------------------|
| Desig.       | Number              | Function                           | Description                                                    | Code       | nation           | Part Number                |
| L101         |                     | H-F Osc. Tuning Ind.               | Special precision wound Ind.                                   | 64C        | GA-671D          | 671D                       |
| L102         |                     | H-F Osc. Cathode R-F Choke         | Mult. Sect. 2.5 mh 0.125 amp<br>50 ohm                         | 05N<br>35M | R100-U           | 240N53                     |
| L103         |                     | H-F Osc. Screen R-F Choke          | Same as L102                                                   |            |                  |                            |
| L104         |                     | H-F Osc. Pl. Feed Choke            | 2 Sect. 208 $\mu h \pm 1\%$ 2 ohms<br>duo-lateral wound        | 68S        |                  | 240N60                     |
| L105         |                     | 1st Mult. Pl. Tuning Ind.          | Special precision wound Ind.                                   | 64C        | GA-1687B         | 1687B                      |
| L106         |                     | 2nd Mult. Pl. Tuning Ind.          | Special precision wound Ind.                                   | 64C        | GA-1686B         | 1686B                      |
| L107         |                     | P. A. Grid Feed Choke              | Mult. Sect. duo-lateral wound 2.5<br>mh 0.125 amp 35 to 50 ohm | 05N        | R100             | 240N2A                     |
| L108         |                     | P. A. Pl. Feed Choke               | 175 turns, close wound, single layer                           | 64C        | GA-1404C         | 1404C                      |
| L109         |                     | P. A. Pl. Feed Choke               | Mult. Sect. 6 mh 21 ohms                                       | 82C        |                  | 240N59                     |
| L110         |                     | Output Network Static Drain Choke  | Close Wound, Single Layer Type                                 | 64C        | GA-1395C         | 1395C                      |
| L112         |                     | P. A. Pl. Tank. Ind.               | Variometer                                                     | 64C        | GA-479D          | 479D                       |
| L113         |                     | Antenna Loading Ind.               | 43 turns, close wound, #14 tinned                              | 64C        | GA-1258C         | 1258C                      |
| L114         |                     | P. A. Pl. Tank Padding Ind.        | 16 turns, space wound, #16 tinned                              | 64C        | GA-1114A         | 1114A                      |
| L115         |                     | 1st Mult. Pl. Feed Choke           | Same as L102                                                   |            |                  |                            |
| L116         |                     | H. F. Noise Filter                 | Mult. Sect. duo-lateral wound<br>1.0 mh 0.3 amp 10 ohm         | 05N        | R-300U           | 240N58                     |
|              |                     |                                    | METERS                                                         |            |                  |                            |
| <b>M1</b> 01 |                     | Antenna Current Ammeter            | 0-0.25 amp R. F. Meter                                         | 40G<br>35W | DW44<br>NT-33    | 451ND0.25SN                |
| <b>M</b> 102 |                     | Voltage-Current Indicating Meter   | 0-1 ma DC Meter 2% Accy.                                       | 40G<br>35W | DW41<br>NX-33    | 450ND1SN                   |
|              |                     |                                    | PLUGS                                                          |            |                  |                            |
| P101         |                     | Multiplier Unit Conn. Plug<br>Mtg. | 12 Term. Octal Style Female Conn.<br>Chassis                   | 60A        | MIP              | 369N16                     |
| P102         |                     | K102 and S116 Conn. Plug           | Part of K102                                                   |            |                  |                            |

# RESISTORS

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Function                                           | Description                               | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------|----------------------------|-------------------------------------------|
|                  | antan (a).<br>Antan (a). |                                                    |                                           |                |                            |                                           |
| R101             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Resistor, H-F Osc. Grid                            | 22,000 ohm $\pm 10\%$ 1 w                 | 28J            | BT1-Navy                   | 729NG22M-K                                |
| R102             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Resistor, 1st Mult. Grid                           | 100,000 ohm $\pm 10\%$ 1 w                | 28J            | BT1-Navy                   | 729NG100M-K                               |
| R103             | -RC30BF470M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Resistor, 1st Mult. Grid<br>Parasitic Suppressor   | 47 ohm $\pm 20\%$ 1 w                     | 65S            |                            | 729NG47-M                                 |
| R104             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Resistor, 1st Mult. Screen<br>Parasitic Suppressor | Same as R103                              |                |                            |                                           |
| R105             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Resistor, 1st Mult. Screen                         | 20,000 ohm $\pm 10\%$ 25 w                | 25P            | 0218                       | 710NC20MA-K                               |
| R106             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., 2nd Mult. Grid Par. Suppr.                   | Same as R103                              |                |                            |                                           |
| <b>R107</b>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., 2nd Mult. Grid                               | Same as R102                              |                |                            |                                           |
| <b>R108</b>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., 2nd Mult. Scr. Par. Suppr.                   | Same as R103                              |                |                            |                                           |
| R109             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., 2nd Mult. Screen                             | Same as R105                              |                |                            |                                           |
| R110             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., P. A. Grid                                   | Same as R105                              |                |                            |                                           |
| R111             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., P. A. Grid Metering                          | 235 ohm ±2% 200 v                         | 28J            | WW3                        | 721NL235-G                                |
| R112             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., P. A. Scr. Par. Suppr.                       | Same as R103                              |                |                            |                                           |
| R113             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., Trans. Suppr.                                | 150 ohm ±20% 10 w                         | 25P            | BD                         | 710NA150B-M                               |
| R114             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., Trans. Suppr.                                | Same as R113                              |                |                            |                                           |
| R115             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., Motor Relay Spark Suppr.                     | $100 \text{ ohm } \pm 10\% 25 \text{ w}$  | 25P            |                            | 710NC100A-K                               |
| R116             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., Fil. Voltage Dropping                        | $1 \text{ ohm } \pm 10\% 10 \text{ w}$    | 25P            | BD                         | 710NA1A-K                                 |
| <b>R117</b>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., L. V. Supply Bleeder                         | 5000 ohm $\pm 10\%$ 25 w                  | 25P            | 0212                       | 710NC5MA-K                                |
| R118             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., L. V. Supply Bleeder                         | Same as R117                              |                |                            |                                           |
| R119             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., L. V. Supply Bleeder                         | Same as R117                              |                |                            |                                           |
| R120             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., L. V. Supply Bleeder                         | Same as R117                              |                |                            |                                           |
| R121             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., Filament Voltage Dropping                    | 0.8 ohm ±10% 50 w                         | 25P            |                            | 710ND0.8A-K                               |
| R123             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., Fil. Voltage Dropping                        | $12.6 \text{ ohm } \pm 10\% 25 \text{ w}$ | 25P            |                            | 710NC12.6A-K                              |
| R124             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., TUNE-P.A. Scr. Voltage<br>Dropping           | 25,000 ohm $\pm 10\%$ 25 w                | 25P            | 0219                       | 710NC25MA-K                               |
| <b>R128</b>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., M102 Meter Mult.                             | 4000 ohm $\pm 2\%$ 200 v                  | 28J            | WW3                        | 721NL4M-G                                 |
| R129             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., 2nd Mult. Cathode                            | $1000 \text{ ohm } \pm 10\% 10 \text{ w}$ | 26P            | BD                         | 710NA1MA-K                                |
| <b>R130</b>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., 1st Mult. Cathode                            | Same as R129                              |                |                            |                                           |
| R131             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., Osc. Cathode                                 | 350 ohm ±10% 10 w                         | 25P            | BD                         | 710NA350A-K                               |
| R132             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., M102 Meter Mult.                             | 50,000 ohm $\pm 2\%$ 200 v                | 28J            | WW3                        | 721NL50M-G                                |
| R133             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., Fil. Voltage Dropping                        | 50 ohm $\pm 10\%$ 10 w                    | 25P            |                            | 710NA50A-K                                |
| R134             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., Audio Amp. Input Term.                       | 75 ohm $\pm 10\% \frac{1}{2}$ w           | 28 J           | $BW_{2}^{1/2}$             | 707N75N-K                                 |
| R135             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., MCW Osc. Cathode                             | 10 ohm $\pm 10\% \frac{1}{2}$ w           | 28J            | $BW_{1/2}$                 | 707N10N-K                                 |
| R136             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Res., I101 Voltage Dropping                        | Same as R113                              |                |                            |                                           |

#### SWITCHES

ş

|   | Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                                                  | Description                      | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|---|------------------|-------------------------------|-----------------------------------------------------------|----------------------------------|----------------|----------------------------|-------------------------------------------|
|   | S101             |                               | Switch, H-F Osc. Grid Tank                                | Moving Switch Arm                | 64C            | GA-1445A                   | 1445A                                     |
|   | <b>C 1 1 1</b>   |                               | Padding Cap. Conn.                                        | Stationary Switch Arm            | 64C            | GA-2002A                   | 2002A                                     |
|   | S102             |                               | Switch, 1st Mult. Pl. Tank<br>Cap. Select.                | 18 Cont. single pi               | 64C            |                            | 500 0085 00                               |
|   | S103             |                               | Switch, 2nd Mult. Pl. Tank<br>Cap. Select.                | 7 cont. single pi                | 64C            |                            | 500 0206 00                               |
|   | S104             |                               | Switch, TEST                                              | Single pole NO 20 amp 24 v d-c   | 96C            | 8817                       | 260N110                                   |
|   | S105             |                               | Switch, Metered Circuit Select.                           | 2 circuit 3 pos. non-shorting    | 05P            | 0011                       | 259N139A                                  |
|   | S106             |                               | Switch, Power Level Select.                               | 5 circuit 3 pos. shorting        | 05P            |                            | 259N138A                                  |
|   | S107             |                               | Switch, LOCAL-REMOTE                                      | 4 circuit 2 pos. shorting        | 05P            |                            | 259N141A                                  |
|   | S108             |                               | Switch, Autotune CHANNEL Select.                          |                                  | 05P            |                            | 259N140A                                  |
|   | S109             |                               | Switch, Autotune Circuit Seeking                          | 1 circuit 12 pos. shorting       | 05P            | 25851-DH-1                 | 259N137                                   |
|   | S110             |                               | Switch, EMISSION Select.                                  | 3 circuit 4 pos. shorting        | 05P            |                            | 259N136B                                  |
| 5 | S111             |                               | Switch, Rear Limit                                        | Double Pole 1 NC 1 NO cont. leaf | 64C            | GA-1557B                   | 1557B                                     |
| > | S112             |                               | Switch, Forward Limit                                     | Single Pole 1 NC Contact leaf    | 64C            | Y-983A                     | 983A                                      |
|   | S113             |                               | S113A, S113B, S113C, S113D,<br>S113E, S113F, S113G, S113H | Mult. Section Sw. Assembly       | 64C            | 186P-1                     | 885C                                      |
|   | S113A            |                               | Switch, P.A. Tank Padding Cap.<br>Conn.                   | Single Cont. Sw. Arm Assembly    | 64C            | GA-1105A                   | 1105A                                     |
|   | S113B            |                               | Switch, P. A. Tuning Cap. Conn.                           |                                  | 64C            | GA-1083A                   | 1083A                                     |
|   | S113C            |                               | Switch, P. A. Tank Ind. Tap                               | Single Cont. Sw. Arm Assembly    | 64C            | GA-1109A                   | 1109A                                     |
|   | S113D            |                               | Switch, Keying Interlock                                  | Single Pole, 1 NO Contact Leaf   | 64C            | Y-1048A                    | 1048A                                     |
|   | S113E            |                               | Switch, Padding Ind. Conn.                                | Single Cont. Sw. Arm Assembly    | 64C            | GA-1082A                   | 1082A                                     |
|   | S113F            |                               | Switch, Padding Cap. Conn.                                | Single Contact Arm Assembly      | 64C            | GA-1079A                   | 1079A                                     |
|   | S113G            |                               | Switch, Padding Cap. Conn.                                | Same as S113F                    |                |                            |                                           |
|   | S113H            |                               | Switch, Padding Cap. Conn.                                | Same as S113F                    | ÷              |                            |                                           |
|   | S114             |                               | Switch, Osc. Circuit Selecting                            | DPST 2 NO 2 NC Cont. Leaf        | 64C            | Y-1136B                    | 1136B                                     |
|   | S115             |                               | Switch, 2nd Mult. Cath. Grndg.                            | Single Pole NO Contact Leaf      | 64C            | Y-981A                     | 981A                                      |
|   | S116             | 24163                         | Switch, Antenna Changeover                                | 8 amp 250 v a.c. SPDT Vacuum     | 40G            | GL34                       | 260N601                                   |
|   |                  |                               |                                                           | Cont.                            |                |                            |                                           |

#### TRANSFORMERS

#### (See Figure 120)

| Symbol<br>Desig.                             | Navy or<br>JAN Type<br>Number            | Function                                                                                                                    | Description                                                                                                                               | Mfr's.            | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|----------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|-------------------------------------------|
| <b>T</b> 101                                 |                                          | Transformer, Modulation                                                                                                     | Pri: 15,000 ohm CT 150 MA<br>Sec #1: 7300 ohm 4000 TV<br>Sec #2: 970 ohm 2500 TV<br>300-4000 cps ± 2 db                                   | 55C               | 7950                       | 677N252                                   |
| T102                                         |                                          | Transformer, Antenna Ammeter<br>Coupling                                                                                    | Variable R-F Coupling Transf.                                                                                                             | 64C               | GA-1716B                   | 1716B                                     |
|                                              |                                          |                                                                                                                             | TUBES                                                                                                                                     |                   |                            |                                           |
| V101<br>V102<br>V103<br>V104<br>V105<br>V106 | 837<br>1625<br>1625<br>813<br>811<br>811 | High Freq. Osc. Tube<br>1st Freq. Mult. Tube<br>2nd Freq. Mult. Tube<br>Power Amp. Tube<br>Modulator Tube<br>Modulator Tube | Type 837, Beam Pentode<br>Type 1625 Beam Pentode<br>Same as V102<br>Type 813, Beam Pentode<br>Transmitting Tube, Type 811<br>Same as V105 | * *<br>* *<br>* * | 837<br>1625<br>813<br>811  |                                           |
|                                              |                                          |                                                                                                                             | SOCKETS                                                                                                                                   |                   |                            |                                           |
| X101<br>X102<br>X103                         | -49366                                   | Socket for V101<br>Socket for V102<br>Socket for V103                                                                       | 7 term. base Iso.<br>Same as X101<br>Same as X101                                                                                         | 77J               | 227                        | 220N573                                   |
| X103<br>X104<br>X105<br>X106                 |                                          | Socket for V103<br>Socket for V104<br>Socket for V105<br>Socket for V106                                                    | 7 term. "Jumbo" Wafer Socket<br>4 prong low loss Ceramic<br>Same as X105                                                                  | 77J<br>77J        | 237<br>224                 | 220N571A<br>220N545                       |

#### AUDIO AMPLIFIER UNIT

#### CAPACITORS

| Symbol<br>Desig.     | Navy or<br>JAN Type<br>Number | Function                                                         | Description                                           | Mfr's.<br>Code     | Mfr's.<br>Desig-<br>nation           | Contractor's<br>Drawing or<br>Part Number |
|----------------------|-------------------------------|------------------------------------------------------------------|-------------------------------------------------------|--------------------|--------------------------------------|-------------------------------------------|
| C201                 |                               | Cap., Microphone Supply Fil.                                     | 20 mf +100% -10% 100 v                                | 75C<br>05 <b>M</b> | RVL-10051-1<br>SPO-38482             | 183N33A                                   |
| C202                 |                               | Cap., Audio Amp. Cathode Bypass                                  | Same as C201                                          |                    |                                      |                                           |
| C203                 |                               | Cap., Audio Amp. Scr. Bypass                                     | $0.05 \text{ mf} \pm 20\% 600 \text{ WV}$             | 75C                | TVC                                  | 930N66A-M                                 |
| C204<br>C205         |                               | Cap., Audio Driver Grid Coupl.                                   | $.006 \text{ mf} \pm 10\% 1500 \text{ TV}$            | 028                | BE-15                                | 915N260E-K                                |
| C205<br>C206         |                               | Cap., Audio Amp. Pl. Decoupl.                                    | .001 mf $\pm 10\%$ 1500 TV                            | 028                | BE-15                                | 915N210E-K                                |
| C208<br>C207<br>C208 |                               | Cap., Audio Driver Output Coupl.<br>Cap., Audio Dr. Cath. Bypass | .003 mf $\pm 10\%$ 1500 TV<br>Same as C201            | 025                | BE-15                                | 915N230E-K                                |
| C208<br>C209         |                               | Cap., Sidetone Amp. Cath. Coupl.                                 | Same as C201                                          |                    |                                      |                                           |
| C210                 |                               | Cap., Parasitic Suppressor<br>Cap., Parasitic Suppressor         | .01 +60% -20% 400 WV<br>Same as C209                  |                    | CN35A103                             | 934 0003 00                               |
| P201                 |                               | Audio Amp. Unit Conn. Plug                                       | <b>PLUGS</b><br>12 term. conn. chassis mtg.           | 91J                | P-312-AB                             | 365N212                                   |
|                      |                               |                                                                  | RESISTORS                                             |                    |                                      |                                           |
| R201                 |                               | Res., Microphone Current Lim.                                    | 220 ohm $\pm 5\%$ 1 w                                 | 22A                |                                      | 703NA220-J                                |
| R202                 |                               | Res., Microphone Current Lim.                                    | $100 \text{ ohm } \pm 5\% 1 \text{ w}$                | 22A                |                                      | 703NA100-J                                |
| R203                 |                               | Res., Microphone Output Coupl.                                   | 15,000 ohm $\pm 5\% \frac{1}{2}$ w                    | 28J                | BT <sup>1</sup> /2-Navy              | 729NE15M-J                                |
| R204                 |                               | Res., T201 Pri. Terminating                                      | Same as $R201$                                        | 205                | D1 72-11avy                          | (291NE1101M-J                             |
| R205                 |                               | Res., Audio Amp. Grid                                            | 470,000 ohm $\pm 10\% \frac{1}{2}$ w                  | · 28J              | BT <sup>1</sup> /2-Navy              | 729NE470M-K                               |
| R206                 |                               | Res., Audio Amp. Fil. Current<br>Dividing                        | 42 ohm $\pm 10\%$ 10 w                                | 25P                | BD                                   | 710NA42B-K                                |
| $\mathbf{R207}$      |                               | Res., Audio Amp. Cathode                                         | 2200 ohm $\pm 10\%$ 1 w                               | 28J                | BW1-Navy                             | 708N2200NA-K                              |
| R208                 |                               | Res., Audio Amp. Scr. Decoupl.                                   | 1 Meg. $\pm 10\% \frac{1}{2}$ w                       | 28J                | BT <sup>1</sup> / <sub>2</sub> -Navy | 729NE1Meg-K                               |
| R209                 |                               | Res., Audio Amp. Pl. Decoupl.                                    | $220,000 \text{ ohm } \pm 10\% \frac{1}{2} \text{ w}$ | 28J                | BT <sup>1</sup> / <sub>2</sub> -Navy | 729NE1Meg-K<br>729NE220M-K                |
| R210                 |                               | Res., Audio Driver Grid                                          | Same as $R205$                                        | 200                | D1 72-1949                           | (491N EZZUWI-K                            |

131

**١**٢..

# RESISTORS (Cont.)

| Symbol<br>Desig.     | Navy or<br>JAN Type<br>Number | Function                                                                                     | Description                                                                                                                  | Mfr's.         | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number    |
|----------------------|-------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|----------------------------------------------|
| R211<br>R212         |                               | Res., Sidetone Amp. Grid<br>Res., Sidetone Amp. Grid<br>Coupl.                               | 100,000 ohm $\pm 5\%$ $\frac{1}{2}$ w<br>470,000 ohm $\pm 5\%$ $\frac{1}{2}$ w                                               | 28J<br>28J     | BT½-Navy<br>BT½-Navy       | 729NE100 <b>M-</b> J<br>728NE470 <b>M-</b> J |
| R213<br>R214<br>R215 |                               | Res., Audio Driver Pl. Decoupl.<br>Res., Audio Driver Cathode<br>Res., Sidetone Amp. Cathode | 750,000 ohm ±5% ½ w<br>250 ohm ±10% 1 w<br>Same as R214                                                                      | 28J<br>28J     | BT½-Navy<br>BW1-Navy       | 729NE750M-J<br>708N250NA-K                   |
| R215<br>R216         |                               | Res., T201 Primary Term.                                                                     | 220 ohm $\pm 10\% \frac{1}{2}$ w                                                                                             | 28J            | BW1⁄2                      | 707N220N-K                                   |
|                      |                               |                                                                                              | SWITCHES                                                                                                                     |                |                            |                                              |
| S201                 |                               | Microphone Circuit Selector Sw.                                                              | DPDT Toggle 1 amp 250 v d-c or<br>3 amp 125 v d-c                                                                            | 84A            | 24003                      | 266N103A                                     |
| S202                 |                               | Sidetone Amp. Output Control<br>Switch                                                       | 1 P 6 Pos. 1 Sect. Shorting                                                                                                  | $05\mathbf{M}$ |                            | 259N149                                      |
|                      |                               |                                                                                              | TRANSFORMERS<br>(See Figure 120)                                                                                             |                |                            |                                              |
| T201                 |                               | Transformer, Audio Amp. Input<br>Coupling                                                    | Pri: 75 ohm<br>Sec: 125,000 ohm 100-5000 cps<br>1000 TV                                                                      | 55C            | 7823                       | 677N259                                      |
| T202                 |                               | Transformer, Audio Dr. Output<br>Coupling                                                    | Pri: 5000 ohm 30 ma 300-4000 cps<br>Sec: 2000 ohm 1500 TV                                                                    | $55\mathrm{C}$ | 7821                       | 677N253                                      |
| T203                 |                               | Fransformer, Sidetone Amp.<br>Output Coupling                                                | Pri: 4000 ohm 30 ma 1500 TV<br>300-4000 cps<br>Sec: Tapped 200 ohm 50 ohm<br>12.5 ohm 3.12 ohm 0.78 ohm<br>0.195 ohm 1500 TV | 55C            | 10082                      | 677N254                                      |

#### TUBES

| Symbol<br>Desig.     | Navy or<br>JAN Type<br>Number | Function                                                           | Description                                                    | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|----------------------|-------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------------|----------------------------|-------------------------------------------|
| V201<br>V202<br>V203 | 12SJ7<br>6V6GT<br>6V6GT       | Audio Preamplifier Tube<br>Audio Driver Tube<br>Sidetone Amplifier | 12SJ7, Triple-Grid Amp.<br>6V6GT, Beam Pentode<br>Same as V202 | * *            | 12SJ7<br>6V6GT             |                                           |

#### SOCKETS

| X201 | Socket for V201 | 8 term. octal tube socket | 60A | 88-8 | 220N185 |
|------|-----------------|---------------------------|-----|------|---------|
| X202 | Socket for V202 | Same as X201              |     |      |         |
| X203 | Socket for V203 | Same as X201              |     |      |         |

#### MCW-CFI UNIT

# CAPACITORS

| Symbol<br>Desig.               | Navy or<br>JAN Type<br>Number | Function                                                                                                                                      | Description                                                                                    | Mfr's.            | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|--------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------|----------------------------|-------------------------------------------|
| C301                           |                               | Cap., Calib. Osc. Suppr. Coupling                                                                                                             | .00001 mf $\pm 10\%$ 1000 TV                                                                   | 75C<br>02S<br>64S | 5WS<br>Type KS<br>Type MO  | 909N410GN-K                               |
| C302<br>C303<br>C304<br>C305   |                               | Cap., Calib. Osc. Suppr. Coupling<br>Cap., Calib. Osc. H.V. Sup. Fil.<br>Cap., Calib. Osc. Scr. Supply Fil.<br>Cap., Calib. Osc. Pl. Coupling | Same as C301<br>.5 mf $\pm 20\%$ 600 WV<br>Same as C203<br>Same as C303                        | 75C<br>64S        | DYR-6050<br>XDMR65         | 956NS08YX1-M                              |
| C308<br>C309<br>C309A<br>C309B |                               | Cap., Calib. Osc. Grid Coupl.<br>C309A, C309B<br>Cap., MCW Osc. Feedback Coupl.<br>Cap., MCW Osc. Grid Tank                                   | .001 mf $\pm 20\%$ 1000 TV<br>2-0.1 mf $\pm 20\%$ 600 WV<br>Section of C309<br>Section of C309 | 75C<br>75C        | 1RS<br>DYRT-6011           | 912N210AN-M<br>956ND01WX1-M               |
| C310<br>C311                   |                               | Cap., Calib. Osc. Pl. Decoupl.<br>Cap., Calib. Osc. Scr. Coupl.                                                                               | .0025 mf $\pm 20\%$ 1000 TV<br>Same as C203                                                    | 75C               | 1RS                        | 912N225AN-M                               |
|                                |                               |                                                                                                                                               | INDUCTORS<br>(See Figure 119)                                                                  |                   |                            |                                           |
| L302                           |                               | MCW Osc. Grid Tank Inductor                                                                                                                   | 0.25 mh 1000 cps 0.1 mf Cap.                                                                   | 55C               | 7822                       | 678N247                                   |
|                                |                               |                                                                                                                                               | PLUGS                                                                                          |                   |                            |                                           |
| P301                           |                               | MCW-CFI Unit Conn. Plug                                                                                                                       | 8 term. Plug Chassis Mtg.                                                                      | 91J               | 300                        | 365N208                                   |

#### RESISTORS

|    | Symbol<br>Desig.             | Navy or<br>JAN Type<br>Number | Function                                                                                                                   | Description                                                              | Mfr's.     | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |  |  |
|----|------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|----------------------------|-------------------------------------------|--|--|
|    | R301<br>R302<br>R202         |                               | Res., Calib. Osc. Suppr.<br>Res., Calib. Osc. H.V. Dropping<br>Res., Calib. Osc. Pl. Decoupl.                              | 100,000 ohm ±10% ½ w<br>10,000 ohm ±10% ½ w<br>Same as R205              | 28J<br>28J | BT½-Navy<br>BT½-Navy       | 729NE100M-K<br>729NE10M-K                 |  |  |
|    | R303<br>R304<br>R305<br>R307 |                               | Res., Calib. Osc. Screen<br>Res., Calib. Osc. Screen<br>Res., Calib. Osc. Grid                                             | 82,000 ohm ±10% ½ w<br>8200 ohm ±10% ½ w<br>Same as R209                 | 28J<br>28J | BT½-Navy<br>BT½-Navy       | 729NE82M-K<br>729NE8200-K                 |  |  |
|    | R308<br>R309<br>R310<br>R311 |                               | Res., MCW Osc. Pl. Decoupling<br>Res., MCW Osc. Cathode<br>Res., MCW Osc. Cathode<br>Res., Calib. Osc. Scr. Volt. Dividing | Same as R209<br>1500 ohm ±5% ½ w<br>2 to 15 ohm Rheostat<br>Same as R301 | 28J<br>89W | BT½-Navy                   | 729NE1500-J<br>381N901                    |  |  |
| -4 |                              |                               |                                                                                                                            | TUBES                                                                    | er<br>Fr   |                            |                                           |  |  |
| 20 | V301<br>V302                 | 12SJ7<br>12SJ7                | Calibration Osc. Tube<br>MCW Oscillator Tube                                                                               | 12SJ7 Triple-Grid Amp.<br>12SJ7 Same as V301                             |            | 12SJ7<br>12SJ7             |                                           |  |  |
|    |                              |                               |                                                                                                                            | SOCKETS                                                                  |            |                            |                                           |  |  |
|    | X301<br>X302<br>X303         |                               | Socket for V301<br>Socket for V302<br>Socket for Y301                                                                      | Same as X201<br>Same as X201<br>Same as X201                             |            |                            |                                           |  |  |
|    |                              | QUARTZ CRYSTALS               |                                                                                                                            |                                                                          |            |                            |                                           |  |  |
|    | ¥301                         | -40127                        | Calib. Osc. Quartz Crystal                                                                                                 | Quartz Crystal Mtd. in *<br>"Plug-in" Holder                             | 64C        | 146A-2                     | 520 10 <b>21 0</b> 0                      |  |  |
|    |                              |                               | MISCEI                                                                                                                     | LLANEOUS INDUCTORS                                                       |            |                            |                                           |  |  |
|    | Z301                         |                               | Calib. Osc. Grid Tank Circuit                                                                                              | 200 kc Osc. Coil Assembly                                                | 16A        |                            | 278N39                                    |  |  |
|    |                              |                               |                                                                                                                            |                                                                          |            |                            |                                           |  |  |

# L-F OSCILLATOR UNIT

# CAPACITORS

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                                                   | Description                                                                                                                                                                                                | Mfr's.         | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|-------------------------------------------|
| C401             |                               | Cap., L-F Osc. Scr. Bypass                                 | Same as C109                                                                                                                                                                                               | •              |                            |                                           |
| C402             |                               | Cap., L-F Osc. Cathode Coupling                            | .00005 mf $\pm 20\%$ 900 TV                                                                                                                                                                                | 02S<br>75C     | Type C<br>1WL              | 909N450C-M                                |
| C403             | <b>481685-2</b>               | Cap., L-F Osc. Feedback Coupl.                             | .0003 mf $\pm 2\%$ 1000 TV                                                                                                                                                                                 | 25C            | 816-035                    | 913N330-G                                 |
| C404             | -481688-1⁄2                   | Cap., L-F Osc. Feedback Coupl.                             | Set of three matched ceramic<br>capacitors packaged as a set. To<br>be connected in parallel to provide<br>$0.00083 \text{ mf} \pm \frac{1}{2}\%$ TC neg.,                                                 | 25C            | 816-044                    | 913NA1                                    |
| · .              |                               |                                                            | 150 parts per million per degree C $\pm$ 1587 PPM/ °C 500 WV                                                                                                                                               |                |                            |                                           |
| C405A            |                               | Cap., L-F Osc. Cathode Bypass                              | $.002 \text{ mf} \pm 1\% 500 \text{ TV}$                                                                                                                                                                   | 34S            |                            | 912N220H-F                                |
| C405B            |                               | Cap., L-F Osc. Cathode Bypass                              | Same as C405A                                                                                                                                                                                              |                |                            |                                           |
| C405C            |                               | Cap., L-F Osc. Cathode Bypass                              | .001 mf ±1% 500 TV                                                                                                                                                                                         | 34S            |                            | 912N210H-F                                |
| C406A            | -481684 - 2                   | Cap., L-F Osc. Cathode Coupl.                              | .000125 mf ±2% 1000 TV                                                                                                                                                                                     | 25C            | 814-106                    | 913 0001 00                               |
| C407             | -481687-1                     | Cap., L-F Osc. Grid Padding                                | Set of three matched ceramic<br>capacitors packaged as a set.<br>To be connected in parallel to<br>provide 0.00088 mf $\pm 1\%$ TC neg.,<br>32 parts per million per degree<br>C $\pm 15$ 61 PPM/°C 500 WV | 25C            | 816-043                    | 913NA2                                    |
| C408A            |                               | Cap., L-F Osc. Grid Padding                                | .0015 mf $\pm 1\%$ 500 TV                                                                                                                                                                                  | 34S            |                            | 912N215H-F                                |
| C408B            | -481682-2                     | Cap., L-F Osc. Grid Padding                                | .00015 mf $\pm 2\%$ 1000 TV                                                                                                                                                                                | $25\mathrm{C}$ | 810-250                    | 913N315N6.6-G                             |
| C408C            | -481685-2                     | Cap., L-F Osc. Grid Padding                                | Same as C403                                                                                                                                                                                               |                |                            |                                           |
| C409A            |                               | Cap., L-F Osc. Grid Padding                                | Same as C405A                                                                                                                                                                                              |                | 1                          |                                           |
| C409B<br>C409C   | 101000 0                      | Cap., L-F Osc. Grid Padding                                | $.0004 \text{ mf} \pm 1\% 500 \text{ TV}$                                                                                                                                                                  | 34S            |                            | 912N340H-F                                |
| C409C<br>C410A   | -481686-2<br>-481683-2        | Cap., L-F Osc. Grid Padding                                | $.00035 \text{ mf} \pm 2\% 1000 \text{ TV}$                                                                                                                                                                | 25C            | 816-041                    | 913N335N3.3-G                             |
| C410A<br>C410B   | -401000-2                     | Cap., L-F Osc. Grid Padding<br>Cap., L-F Osc. Grid Padding | $.00025 \text{ mf } \pm 2\% 1000 \text{ TV}$                                                                                                                                                               | 25C            | 810-290                    | 913N325N7-G                               |
| C410D<br>C410C   |                               | Cap., L-F Osc. Grid Fadding                                | Same as C405A<br>Same as C405A                                                                                                                                                                             |                |                            |                                           |
| C410C<br>C410D   |                               | Cap., L-F Osc. Grid Padding                                | Same as C405A<br>Same as C408A                                                                                                                                                                             |                |                            |                                           |
| C411             | -481680                       | C411A, C411B, C411C, C411D,<br>C411E                       | 5 Sect. Variable Ceramic Cond.                                                                                                                                                                             | 25C            | 826-003                    | 917N5A1                                   |

52 - 6 C. . .

136

APPENDIX

# CAPACITORS (Cont.)

|   | Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                         | Description                                       | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|---|------------------|-------------------------------|----------------------------------|---------------------------------------------------|----------------|----------------------------|-------------------------------------------|
|   | C411A            |                               | Cap., C410 Trimmer               | Section of C411                                   |                |                            |                                           |
|   | C411B            |                               | Cap., C406 Trimmer               | Section of C411                                   |                |                            |                                           |
|   | C411C            |                               | Cap., C409 Trimmer               | Section of C411                                   |                |                            |                                           |
|   | C411D            |                               | Cap., C408 Trimmer               | Section of C411                                   |                |                            |                                           |
|   | C411E            |                               | Cap., C407 Trimmer               | Section of C411                                   |                |                            |                                           |
|   | C412             | -481685-2                     | Cap., L-F Osc. Grid Coupling     | Same as C403                                      |                |                            |                                           |
|   |                  |                               | MISCELLA                         | NEOUS ELECTRICAL PARTS                            |                |                            |                                           |
|   |                  |                               |                                  | (See Figure 118)                                  |                |                            |                                           |
|   | E401             |                               | L-F Oscillator H. V. Feedthru    | 3/16'' x 5/8" Bushing Insert                      | 42J            | Type BI                    | 190NBI7                                   |
| ì | E402             |                               | L-F Oscillator Pl. Lead Standoff | $\frac{3}{8}'' \times \frac{1}{2}''$ Cyl Standoff | 42J            | 395-L-½                    | 190NSL5                                   |
|   |                  |                               |                                  |                                                   |                |                            |                                           |
|   |                  |                               |                                  | INDUCTORS                                         |                |                            |                                           |
|   |                  |                               |                                  | (See Figure 119)                                  |                |                            |                                           |
|   | L401             |                               | L-F Osc. Grid Tuning Inductor    | 45 turns close wound 48-38 litz wire              | 64C            | GA-1259C                   | 1259C                                     |
|   | L402             | 1                             | L-F Osc. Pl. Feed Choke          | 8 mh 0.125 amp 70 ohm                             | 05H<br>35M     | CH-8                       | 240N4A                                    |
|   | L403             |                               | L-F Osc. Cathode Choke           | Same as L102                                      | 000            |                            |                                           |
|   |                  |                               |                                  |                                                   |                |                            |                                           |
|   |                  |                               |                                  | PLUGS                                             |                |                            |                                           |
|   | P401             |                               | Low Freq. Osc. Conn. Plug        | 6 Term. Conn. Chassis Mtg.                        | 91J            | <b>Type 300</b>            | 365N206                                   |
|   |                  |                               |                                  |                                                   |                |                            |                                           |

#### RESISTORS

|     | Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                        | Description                       | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|-----|------------------|-------------------------------|---------------------------------|-----------------------------------|----------------|----------------------------|-------------------------------------------|
|     | R401             |                               | Resistor, L-F Osc. Grid         | 15,000 ohm $\pm 10\%$ 1 w         | 28J            | BT1-Navy                   | 729NG15M-K                                |
|     |                  |                               |                                 | SWITCHES                          |                |                            |                                           |
|     |                  |                               |                                 |                                   |                |                            |                                           |
|     | S401             |                               | L-F Osc. Freq. Range Sw.        | Rotor Assembly<br>Stator Assembly | 64C<br>64C     | GA-1021A<br>GA-1544B       | 1021A<br>1544B                            |
|     |                  |                               |                                 | TUBES                             |                |                            |                                           |
| 138 |                  |                               |                                 |                                   |                |                            |                                           |
| õõ  | V401             |                               | Low Freq. Osc.                  | Same as V102                      |                |                            |                                           |
| -   | жузь             | v                             |                                 | GOOVERS                           |                |                            |                                           |
|     |                  |                               |                                 | SOCKETS                           |                |                            |                                           |
|     | X401             |                               | Socket for V401                 | Same as X101                      |                |                            |                                           |
|     |                  |                               |                                 |                                   |                |                            |                                           |
|     |                  |                               | D.                              | UMMY LFO UNIT                     | ,              |                            |                                           |
|     | P402             |                               | Dummy Low Freq. Osc. Conn. Plug | Same as P401                      |                |                            |                                           |
|     | R402             |                               | Filament Substitute Resistor    | 27 ohm $\pm 5\%$ 20 w             | 28J            | DG                         | 710 0001 00                               |
|     |                  |                               |                                 |                                   |                |                            |                                           |

#### NAVY TYPE COL-23410 REMOTE CONTROL UNIT

#### MISCELLANEOUS ELECTRICAL PARTS

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                                | Description                                                         | Mfr's.<br>Code    | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|-----------------------------------------|---------------------------------------------------------------------|-------------------|----------------------------|-------------------------------------------|
| E901             |                               | Pilot Light Mounting                    | Miniature Bayonet                                                   | 60D               | CAT. 80                    | 262N127                                   |
|                  |                               |                                         | PILOT LAMPS                                                         |                   |                            |                                           |
| 1901             |                               | Bulb                                    | 28 v 0.17 amp bayonet base<br>clear bulb                            | <b>40</b> G       | T3 ¼                       | 262N327                                   |
| 5                |                               | J                                       | ACKS AND RECEPTACLES                                                |                   |                            |                                           |
| J901             |                               | Headphone Jack                          | Single circuit jack for $\frac{1}{4}$ " plug                        | 05M<br>21N        | SC1A                       | 358N104                                   |
| J902<br>J903     |                               | Audio Input Terminal<br>Microphone Jack | 2 conn. term. strip<br>3 circuit jack for plug with<br>3/16" barrel | 64C<br>05M<br>21N | SCA2B                      | GA-2031A<br>358N105                       |
| J904             |                               | Key Jack                                | Same as J901                                                        | •                 |                            |                                           |
|                  |                               |                                         | PLUGS                                                               |                   |                            |                                           |
| P901             |                               | Cable connector                         | 27 term. wall mounting recept.<br>10 amp contacts                   | 10C               | К                          | 371N405                                   |

#### RESISTORS

|   | Symbol<br>Desig. | Navy or<br>JAN Type<br>Number                                        | Function                                    | Description                                                                         | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|---|------------------|----------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|----------------|----------------------------|-------------------------------------------|
|   | R901<br>R902     | -RC31BF182K<br>-631874-2<br>only with two<br>RC21BE511M<br>resistor. | Headphone Series Resistor<br>Volume Control | 1800 ohm ±20% 1 w Metallized<br>"T" Pad Attenuator 500 ohm                          | 28J<br>28J     | BT1-Navy<br>CSMPD          | 729NG1800-M<br>380N201                    |
|   |                  |                                                                      |                                             |                                                                                     | *              |                            |                                           |
|   |                  |                                                                      |                                             | SWITCHES                                                                            |                |                            | . •                                       |
|   |                  |                                                                      |                                             |                                                                                     |                |                            |                                           |
|   | S901             | -24003                                                               | Phones-Speaker Switch                       | DPDT Toggle Switch black nickel<br>plated 1 amp 250 v d.c.                          | 84A            | 20905-GH                   | 266N103                                   |
| 4 | S902             |                                                                      | Channel-Selector Switch                     | 1 circuit, non-shorting 11 pos.<br>1 deck with stops at Pos 1 and<br>11 with detent | 05P            |                            | 259N142A                                  |
|   | S903             |                                                                      | Emission Selector Switch                    | 3 circuit, shorting, 4 pos. 2 deck<br>with stops at Pos. 4 and 12 with<br>detent    | 05P            |                            | 259N136A                                  |
|   |                  |                                                                      |                                             | detent                                                                              |                |                            |                                           |
|   |                  |                                                                      |                                             | TRANSFORMERS<br>(See Figure 120)                                                    |                |                            |                                           |
|   | T901             |                                                                      | Speaker Transformer                         | 500 ohm to 6 ohm matching Transf.                                                   | 70J            |                            | 667S705A                                  |
|   |                  |                                                                      |                                             |                                                                                     |                |                            |                                           |
|   |                  |                                                                      |                                             | LOUD SPEAKERS                                                                       |                |                            |                                           |
|   | LS901            |                                                                      | Speaker                                     | 5" permanent magnet 6 ohm voice coil                                                | 70J            | PM5C                       | 271N220                                   |
|   |                  |                                                                      |                                             |                                                                                     |                |                            |                                           |

APPENDIX

### NAVY TYPE COL-47370 LOADING COIL

### CAPACITORS

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function             | Description                                 | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|----------------------|---------------------------------------------|----------------|----------------------------|-------------------------------------------|
| C1001            |                               | Ammeter Series Cond. | .0007 mf $\pm 5\%$ 5000 v de Mica Cond.     | 75C<br>02S     | 6LS<br>F2                  | 906N370A-J                                |
| C1002            |                               | Relay Bypass         | .01 mf $\pm 20\%$ 500 1000 tv               | 75C<br>02S     | 4L<br>H-10                 | 910N110G-M                                |
| C1003            |                               | Relay Bypass         | Same as C1002                               | 025            | 14 10                      |                                           |
| • • •<br>•       |                               | MISCELLA             | ANEOUS ELECTRICAL PARTS<br>(See Figure 118) | Ma             |                            |                                           |

| 4              |                                                                     | (500 - 19410 - 140)                                                |     |          |          |
|----------------|---------------------------------------------------------------------|--------------------------------------------------------------------|-----|----------|----------|
| E1001          | -                                                                   | $\frac{3}{8}$ " x $\frac{5}{8}$ " Bushing recept. Ceramic          | 25C |          | 190NBI24 |
| E1002<br>E1003 | Ceramic Bushing on Feedthru Bowl<br>Input Termiual Feedthru Bushing | Same as E1001 $\frac{1}{2}$ " x $\frac{7}{8}$ " Bushing Receptacle | 42J |          | 190NBI21 |
| E1004          | Input Terminal Feedthru Bushing                                     | Ceramic $\frac{1}{16}$ Ceramic Bushing Plug Ceramic                | 42J |          | 190NBI22 |
| E1005          | Meter Shock Mount                                                   | Rubber Meter Mount for 2.2''<br>meter body                         | 90L | J-1665-1 | 200N535  |
| E1006<br>E1007 | Antenna Feedthru Bowl                                               | Ceramic bowl<br>Same as E1006                                      |     |          | NX-5747  |
| 131001         |                                                                     | bame as 11000                                                      |     |          |          |

141

# JACKS AND RECEPTACLES

| J1001<br>J1002 | Relay Power Connector<br>Input Binding Post            | 3 term. wall mtg. recept. male<br>Push type binding post | 10C<br>50X | WK-C3-32S<br>BI Special | 371N104<br>372N21 |
|----------------|--------------------------------------------------------|----------------------------------------------------------|------------|-------------------------|-------------------|
| J1003          | Ground Connection                                      | Push type binding post top engraved<br>with "GND"        |            | BI Special              | 372N13X-1         |
| J1004<br>J1005 | Transmitter Conn. Binding Post<br>Antenna Binding Post | Push Type binding post<br>Same as J1004                  | 50X        | BI Special              | 372N25            |

# RELAYS

|     | Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                            | Description                                             | Mfr's.     | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|-----|------------------|-------------------------------|-------------------------------------|---------------------------------------------------------|------------|----------------------------|-------------------------------------------|
|     | K1001            |                               | Antenna Changeover Relay            | SPDT Vacuum Relay 28 v d.c.<br>60 ohm                   | 85G        | G32881                     | 410N21                                    |
|     |                  |                               | INDUC                               | TORS AND REACTORS                                       |            |                            |                                           |
|     | L1001            |                               | Static Drain Choke                  | Radio Frequency Choke 6 mh 21<br>ohm d.c. resistance    | 82C        |                            | 240N59                                    |
| ŧ   | L1002            |                               | Loading Variometer                  | Special variable inductance                             | 64C        |                            | Dwg. 1118C                                |
| 142 |                  | а<br>1                        |                                     | METERS                                                  | :          |                            |                                           |
|     | M1001            | -22438                        | R. F. Ammeter                       | Thermo-ammeter 3 amp scale $2-\frac{1}{2}$ " round case | 45W        | 507                        | 457N114                                   |
|     |                  |                               | ME                                  | CHANICAL PARTS                                          |            |                            |                                           |
|     | O1001            |                               | Brake Plate Assembly                |                                                         | 64C        |                            | Dwg. 1255B                                |
|     |                  |                               |                                     | PLUGS                                                   |            |                            |                                           |
|     | P1001            |                               | Relay Power Connector Plug          | 2 term. chassis mount socket                            | 91J        | S-302-AB                   | 366N202                                   |
|     |                  |                               |                                     | SWITCHES                                                |            |                            |                                           |
|     | S1001<br>S1002   |                               | Inductance Switch<br>K1001 Contacts | 4 pos. non-shorting type<br>SPST Vacuum Contacts        | 64C<br>40G | GI.34                      | Dwg. 1108C<br>260N601                     |

#### ANTENNA SHUNT CAPACITOR NAVY TYPE -481628

# CAPACITORS

| Symbol<br>Desig.        | Navy or<br>JAN Type<br>Number | Function                                                          | Description                                                      | Mfr's. | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|-------------------------|-------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|--------|----------------------------|-------------------------------------------|
| C1101<br>C1102<br>C1103 |                               | Cap., Antenna Shunt<br>Cap., Antenna Shunt<br>Cap., Antenna Shunt | 25 mmf $\pm 10\%$ 10,000 v Eff<br>Same as C1101<br>Same as C1101 | 06A    | 1860-201                   | 914N1X6-K                                 |

#### 65X-7 EXTERNAL CONTROL CABLE

#### (Transmitter to Power Unit)

#### PLUGS

| Syn<br>Des | ig. Number | Function         | Description                                                       | Mfr's. | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------|------------|------------------|-------------------------------------------------------------------|--------|----------------------------|-------------------------------------------|
| P15        | 01         | Female Plug      | 27 term. 90 degree angle plug con-<br>nector. Female 10 amp cont. | 10C    | NK-27-23C<br>11/16         | 371N406                                   |
| P15        | 02         | Male Plug        | 27 term. straight plug male<br>connector. 10 amp contacts         | 10C    | RNK-27-22C<br>11/16        | 371N404R                                  |
|            |            |                  | CABLES                                                            |        |                            |                                           |
| W1         | 501        | Connecting Cable | 27 conductor control cable<br>flameproof, 10½" long               | 24B    |                            | 424N271                                   |

#### 65X-8 EXTERNAL POWER CABLE

#### (Transmitter to Power Unit)

#### PLUGS

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function              | Description                                                                              | Mfr's. | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|-----------------------|------------------------------------------------------------------------------------------|--------|----------------------------|-------------------------------------------|
| P1601            |                               | Female Connector Plug | 10 term. straight plug conn. 2-15 amp<br>cont. and 8-10 amp cont.                        | 10C    | FK 10-21C<br>9/16          | 371N514                                   |
| P1602            |                               | Male Connector Plug   | 10 term. 90 degree angle plug<br>connector. male 2-15 amp cont.<br>and 8-10 amp contacts | 10C    | RFK 10-24C<br>9/16         | 371N512R                                  |
|                  |                               |                       | CABLES                                                                                   |        | ,                          |                                           |
| W1601            |                               | Connecting Cable      | 10 Cond. power cable flameproof<br>2 #14, 1 #18 and 7 #22 cond.,<br>10½" long            | 24B    |                            | 424N101                                   |

#### 65X-9 EXTERNAL RELAY POWER CABLE

#### (Load Coil to Transmitter)

#### MISCELLANEOUS ELECTRICAL PARTS

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                                       | Description                                 | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|------------------------------------------------|---------------------------------------------|----------------|----------------------------|-------------------------------------------|
| E1701<br>E1702   |                               | P1701 Reducer Bushing<br>P1702 Reducer Bushing | Split rubber bushing<br>Same as E1701       | 10C            | Р                          | 371N111                                   |
|                  |                               |                                                | PLUGS                                       |                |                            |                                           |
| P1701            |                               | Load Box Connector Plug                        | 90 degree angle plug 3 terminal female      | 10C            | WK-C3-23C<br>7/16          | 371N109                                   |
| P1702            |                               | Transmitter Connector Plug                     | 3 terminal straight plug conn. Male         | 10C            | <b>RWK-C3-22C</b><br>7/16  | 371N110R                                  |
|                  |                               |                                                | CABLES                                      |                | • .                        |                                           |
| W1701            |                               | Connecting Cable                               | 10 ft. length of 2 conductor shielded cable | 24B            | #8422                      | 425N025                                   |

146

APPENDIX

#### NAVY TYPE COL-211101 POWER UNIT

#### MOTORS

|     | Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                                      | Description                                                    | Mfr's.     | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|-----|------------------|-------------------------------|-----------------------------------------------|----------------------------------------------------------------|------------|----------------------------|-------------------------------------------|
|     | B1801            |                               | Generator Driving Motor                       | 115 v 50/60 cycle motor ½ h. p.<br>3450 rpm                    | 13M        |                            | 230N18                                    |
|     |                  |                               |                                               | CAPACITORS                                                     |            |                            |                                           |
|     | C1801            |                               | Audio Coupling Cond.                          | 2 mf $\pm 20\%$ 400 v dc foil-paper<br>liquid impregnant cond. | 75C        |                            | 954NS4U-M                                 |
|     | C1802            |                               | Keying Supply Filter Cond.                    | 8 mf $\pm 20\%$ 800 v dc foil-paper<br>liquid impregnant cond. | 75C        | KG-4080                    | 930N19-M                                  |
| 147 | C1803            |                               | 400 volt Supply Filter Cond.                  | Same as C1802                                                  |            |                            |                                           |
| -1  | C1804            |                               | 400 volt Supply Filter Cond.                  | Same as C1802                                                  |            |                            |                                           |
|     | C1805            |                               | High Voltage Supply Filter Cond.              | 4 mf $\pm 20\%$ 2000 v dc foil-paper<br>oil-filled cond.       | 75C        | TJU-20040                  | 930N40-M                                  |
|     | C1806            |                               | High Voltage Supply Filter Cond.              | Same as C1805                                                  |            |                            |                                           |
|     | C1807            |                               | Generator Noise Filter Cond.                  | .01 mf $\pm 20\%$ 1000 v dc Mica Cond.                         | 75C<br>02S | 4L<br>H-10                 | 910N110G-M                                |
|     | C1808            |                               | C1808A, C1808B                                |                                                                |            |                            |                                           |
|     | C1808A           |                               | Ripple Filter Cond.                           | 20 mf 100 WV Electrolytic                                      | 75C        |                            | 183N33-A                                  |
|     | C1808B           |                               | Ripple Filter Cond.                           | Same as C1808A                                                 |            |                            |                                           |
|     | C1809            |                               | Generator Noise Filter Cond.                  | Same as C1807                                                  |            |                            |                                           |
|     | C1810            |                               | Ripple Filter Cond.<br>Generator Noise Filter | Same as C1801                                                  |            |                            |                                           |
|     | C1811<br>C1812   |                               | Generator Noise Filter                        | Same as C1807<br>Same as C1807                                 |            |                            |                                           |
|     | C1812            |                               | Generator Noise Filter                        | Same as C1807                                                  |            |                            |                                           |
|     | C1813            |                               | Capacitor, Motor Start                        | Replacement Cap. for Motor                                     | 13M        | 107-129-MFD-4207           | 234 0041 00                               |
|     | 01014            |                               | Supuction, motor start                        | Teplacement Cup. for Motor                                     | 10101      | 101-120-111 12-1201        | 204 0041 00                               |
|     |                  |                               | DR                                            | Y DISC RECTIFIERS                                              |            |                            |                                           |
|     | CR1801           |                               | Dry Disc Rectifier                            | Selenium dry disc rectifier<br>110 v d.c. 0.3 amp output       | 35J        | 3B8C1                      | 353N25                                    |

# MISCELLANEOUS ELECTRICAL PARTS

(See Figure 118)

|        | Navy or  |                                                 |                                                         |        | Mfr's. | Contractor's |
|--------|----------|-------------------------------------------------|---------------------------------------------------------|--------|--------|--------------|
| Symbol | JAN Type |                                                 |                                                         | Mfr's. | Desig- | Drawing or   |
| Desig. | Number   | Function                                        | Description                                             | Code   | nation | Part Number  |
| E1801  |          | H. V. Output Conn.                              | Ceramic Bushing 3/8" x 5/8"                             | 42J    | 979A   | 190NBI19     |
| E1802  |          | H. V. Output Conn.                              | Ceramic Bushing Plug 5/8" x 5/8"                        | 42J    |        | 190NBI20     |
| E1803  |          | Rectifier Plate Feedthru                        | Ceramic Bushing $\frac{1}{2}'' \ge \frac{7}{8}''$       | 42J    |        | 190NBI21     |
| E1804  |          | Rectifier Plate Feedthru                        | Same as E1803                                           |        |        |              |
| E1805  |          | Rectifier Plate Feedthru                        | Same as E1803                                           |        |        |              |
| E1806  |          | Rectifier Plate Feedthru                        | Same as E1803                                           |        |        |              |
| E1807  |          | Rectifier Plate Feedthru                        | Ceramic Bushing Plug 1/2"x 7/8"                         | 42J    |        | 190NBI22     |
| E1808  |          | Rectifier Plate Feedthru                        | Same as E1807                                           |        |        |              |
| E1809  |          | Rectifier Plate Feedthru                        | Same as E1807                                           |        |        |              |
| E1810  |          | Rectifier Plate Feedthru                        | Same as E1807                                           |        |        |              |
| E1811  |          | Bracket for Filament Power<br>Pilot Light       | Pilot Light Mounting for<br>miniature bayonet base bulb | 60D    | 30     | 262N123      |
| E1812  |          | Bracket for Remote Carrier<br>Cont. Pilot Light | Same as E1811                                           |        |        |              |
| E1813  |          | Jewel for E1811                                 | Red Jewel                                               | 60D    |        | 262 2160 00  |
| E1814  |          | Jewel for E1812                                 | Green Jewel                                             | 60D    |        | 262 2180 00  |
|        |          |                                                 | FUSES                                                   |        |        |              |
| F1801  |          | Main Power Fuse                                 | 30 amp 250 v Ferrule type<br>renewable element          |        |        | 264N230A     |
| F1802  |          | Main Power Fuse                                 | Same as F1801                                           |        |        |              |
| F1803  |          | Keying Supply Fuse                              | 1 amp 250 v 11/32 dia. 1-1/2" long                      |        |        | AA199A       |
| F1804  |          | Motor Fuse                                      | 15 amp 250 v 11/32 dia. 1-½'' long                      |        |        | AA199K       |
| F1805  |          | 28 Volt Supply Fuse                             | 15 amp 250 v 11/32 dia. 1-1/2" long                     |        |        | AA199K       |
| F1806  |          | 14 Volt Supply Fuse                             | 3 amp 250 v Cartridge 11/32'' dia.<br>1-½'' long        |        |        | AA199C       |
| F1807  |          | 400 Volt Supply Fuse                            | Same as F1806                                           |        |        |              |
| F1808  |          | H.V. Supply Fuse                                | Same as F1804                                           |        |        |              |
|        |          |                                                 |                                                         |        |        |              |

#### GENERATORS

|   | Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                                             | Description                                                | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|---|------------------|-------------------------------|------------------------------------------------------|------------------------------------------------------------|----------------|----------------------------|-------------------------------------------|
|   | G1801            |                               | Low Voltage Generator                                | 28 and 14 v dual voltage d.c.<br>generator                 | 88F            | G-100                      | 231N604                                   |
|   |                  |                               |                                                      | PILOT LAMPS                                                |                |                            |                                           |
|   | <b>I</b> 1801    |                               | Pilot Light Bulb                                     | Miniature Bayonet Base 12-16 v<br>0.10 amp bulb            | 40G<br>66R     | T-3¼                       | 262N326                                   |
|   | 11802            |                               | Pilot Light Bulb                                     | Same as I1801                                              | 0010           |                            |                                           |
|   |                  |                               | ĮACI                                                 | KS AND RECEPTACLES                                         |                |                            |                                           |
| 4 |                  |                               | 5                                                    |                                                            |                |                            |                                           |
| 5 | J1801            |                               | 27 Contact Cable Connector                           | 27 contact wall mtg. plug<br>10 amp contacts               | 10C            | NK-27-32S                  | 371N401                                   |
|   | J1802            |                               | 10 Contact Cable Connector                           | 10 contact wall mtg. female<br>recept. 2-15 amp & 8-10 amp | 10C            | RFK-10-31SL                | 371N511R                                  |
|   | J1803            |                               | Remote Control and Remote<br>Transmitter Connector   | 27 Terminal Connector                                      | $64\mathrm{C}$ |                            | YA-1545B                                  |
|   | J1804            |                               | Part of J1803                                        | 10 Terminal Connector                                      | $64\mathrm{C}$ |                            | YA-1545B                                  |
|   | J1805            |                               | <b>RADIOPHONE Bay</b> Connector                      | 21 Terminal Connector                                      | 64C            |                            | YA-1546B                                  |
|   | J1806<br>J1807   |                               | Motor Connector Socket<br>Generator Connector Socket | 4 prong connector socket<br>Same as J1806                  | 64C            | GA-1726A                   | GA-1726A                                  |
|   |                  |                               |                                                      | RELAYS                                                     |                |                            |                                           |
|   | K1801            |                               | Fil. Control Relay                                   | 3 pole NO 115 v a.c. 60 cps                                | 85G            |                            | 405NB204A                                 |
|   | K1801<br>K1802   |                               | Carrier Control Relay                                | 2PNO 7.2 to 14 v d.c.                                      | 85G            | G33402                     | 405NB205A                                 |
|   | K1802<br>K1803   |                               | Keying Relay                                         | DPDT 115 v d.c. Relay 2275 ohm<br>resistance               | 65G            | JD115RR                    | 405NB208                                  |
|   | K1804            |                               | Time Delay Relay                                     | SPST 1 NO Contact 110 v 60 eps                             | $84\mathrm{C}$ | TD 2/30S                   | 402N18                                    |
|   | K1805            |                               | Power Control Delay Relay                            | 2 PNO 115 v a.c. 60 cps                                    | 65G            | JA115AA                    | 405 NB207                                 |
|   | K1806            |                               | Plate Power Control Relay                            | 2 PNO 28 v d.c.                                            | 65G            | JD28AA                     | 405NB206                                  |
|   |                  |                               |                                                      |                                                            |                |                            |                                           |

# INDUCTORS AND REACTORS

# (See Figure 119)

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                       | Description                              | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|--------------------------------|------------------------------------------|----------------|----------------------------|-------------------------------------------|
| L1801            |                               | 400 Volt Supply Filter Reactor | 6 hy 0.3 amp reactor 40 ohm d.c.<br>Res. | $55\mathrm{C}$ |                            | 678N239                                   |
| L1802            |                               | 400 Volt Supply Filter Reactor | Same as L1801                            |                |                            |                                           |
| L1803            |                               | H.V. Supply Filter Reactor     | 6 hy 0.4 amp 48.4 ohm d.c.               | 55C            |                            | 678N151                                   |
| L1804            |                               | H.V. Supply Filter Reactor     | Same as L1803                            |                |                            |                                           |
| L1805            |                               | R. F. Choke                    | Air Core R.F. Choke .012 mh              | 97E            |                            | 240N54                                    |
|                  |                               |                                |                                          | 05M            | <b>RF-583</b>              |                                           |
| L1806            |                               | R. F. Choke                    | Same as L1805                            |                |                            |                                           |
| L1807            |                               | 14 Volt Supply Filter Reactor  | 0.15 hy 1 amp Reactor 1 ohm d.c.<br>Res. | 55C            |                            | 678N260                                   |
| L1808            |                               | R. F. Choke                    | Same as L1805                            |                |                            |                                           |
| L1809            |                               | R. F. Choke                    | Same as L1805                            |                |                            |                                           |
|                  |                               |                                |                                          |                |                            |                                           |

#### MECHANICAL COUPLERS

| O1801 | Coupler, Motor-Generator | 1/2" ID 2-1/8" long    | 90L | J-1211-3   | 15N306  |  |
|-------|--------------------------|------------------------|-----|------------|---------|--|
|       |                          |                        |     |            |         |  |
|       |                          |                        |     |            |         |  |
|       |                          |                        |     |            |         |  |
|       |                          | PLUGS                  |     |            |         |  |
|       |                          |                        |     |            |         |  |
| P1801 | Motor Connector Plug     | 4 prong connector plug | 91J | P-4-AB1/16 | 363N204 |  |
| P1802 | Generator Connector Plug | Same as P1801          |     |            |         |  |

#### RESISTORS

| Navy or<br>JAN Type<br>Number              | Function                                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mfr's.<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mir's.<br>Desig-<br>nation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drawing or<br>Part Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                            | Relay Current Limiting Res.<br>Keying Supply Bleeder                                                                                                 | 63 ohm±5% 200 w Ferrule Type Res.<br>2500 ohm ±5% 15 w Ferrule Type<br>Res.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66S<br>66S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 733NXA63-J<br>733NXF2500-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                            | Meter Shunt<br>H.V. Supply Bleeder                                                                                                                   | 13.3 ohm ±2% 1 w wire wound<br>31,500 ohm ±10% 200 w Ferrule<br>Type Res.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28J<br>66S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 721NL13.3-G<br>733 0331 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                            | 400 Volt Supply Bleeder<br>Pilot Light Dropping Resistor<br>Rectifier Heater<br>Rectifier Heater                                                     | 20,000 ohm $\pm 5\%$ 70 w Ferrule Type<br>1000 ohm $\pm 5\%$ 25 w Ferrule Type<br>660 w 110 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66S<br>66S<br>01W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 733NXC20M-J<br>733NXE1M-J<br>711 0003 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Rectifier Heater Same as K1807<br>SWITCHES |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                            | Local-Remote Switch<br>Local Power On-Off Switch                                                                                                     | 7 NO and 1 NC Key Switch<br>SPST Toggle Black Nickel Plate<br>3 amp 125 v<br>Same as \$1802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20994-ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AC102H<br>266N101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| -24003<br>-24015                           | Emergency On-Off Switch<br>Control Wire Selector Switch<br>Panel Interlock Switch<br>Heater Thermoswitch adj. to<br>$+15^{\circ}$ to $+20^{\circ}$ C | DPDT 3 amp 125 v black nickel<br>Push Toggle NO Contacts<br>10 amp 115 v 0-400° F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84A<br>84A<br>40F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20905-GH<br>3592-N<br>731RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 266N103<br>266N105<br>292N24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                            |                                                                                                                                                      | TRANSFORMERS<br>(See Figure 120)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                            | Audio Transformer                                                                                                                                    | 200, 400, 600 ohm to 42, 60, 82, 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $55\mathrm{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 677N261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                            | Rectifier Filament Transformer                                                                                                                       | 2.5 v 10 amp output 115 v 50/60<br>cps tapped primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $55\mathrm{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 672N264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| :                                          | Rectifier Filament Transformer                                                                                                                       | 2.5 v 10 amp output 115 v 50/60<br>cps tapped primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 672N266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                            | JAN Type<br>Number<br>-24003                                                                                                                         | JAN Type<br>NumberFunctionRelay Current Limiting Res.<br>Keying Supply BleederMeter Shunt<br>H.V. Supply Bleeder400 Volt Supply Bleeder<br>Pilot Light Dropping Resistor<br>Rectifier Heater<br>Rectifier Heater-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015-24003<br>-24015 <td>JAN Type<br/>Number       Function       Description         Relay Current Limiting Res.<br/>Keying Supply Bleeder       63 ohm ±5% 200 w Ferrule Type Res.<br/>2500 ohm ±5% 15 w Ferrule Type Res.<br/>2500 ohm ±5% 15 w Ferrule Type Res.<br/>2500 ohm ±5% 200 w Ferrule Type Res.<br/>2500 ohm ±5% 25 w Ferrule Type Res.<br/>20,000 ohm ±5% 25 w Ferrule Type Res.</td> <td>JAN Type<br/>NumberFunctionMfr's.<br/>CodeNumberFunction<math>Code</math>Relay Current Limiting Res.<br/>Keying Supply Bleeder<br/>H.V. Supply Bleeder<br/>Pilot Light Dropping Resistor<br/>Rectifier Heater<math>G3 \ ohm \pm 5\% \ 200 \ w Ferrule Type</math><br/>Res.<math>G3 \ ohm \pm 5\% \ 200 \ w Ferrule Type</math><br/>Res.<math>G3 \ ohm \pm 5\% \ 200 \ w Ferrule Type</math><br/>Res.<math>G3 \ ohm \pm 2\% \ 1 \ wire \ wound</math><br/><math>28J</math><br/><math>31,500 \ ohm \pm 10\% \ 200 \ w Ferrule Type</math><br/><math>6GS</math><br/><math>7 \ Vp \ Res.</math><math>G6S \ 70 \ w Ferrule Type</math><br/><math>6GS</math><br/><math>7 \ W \ Ferrule Type</math><br/><math>6GS</math><br/><math>1000 \ ohm \pm 5\% \ 70 \ w \ Ferrule Type</math><br/><math>6GS</math><br/><math>1000 \ ohm \pm 5\% \ 70 \ w \ Ferrule Type</math><br/><math>6GS</math><br/><math>1000 \ ohm \pm 5\% \ 70 \ w \ Ferrule Type</math><br/><math>6GS</math><br/><math>660 \ w \ 110 \ w</math><br/>Same as R1807<math>SWITCHES</math>-24003<br/>-24015Local-Remote Switch<br/>Local Power On-Off Switch<br/>Panel Interlock Switch<br/>Heater Thermoswitch adj. to<br/><math>+15^\circ \ to \ +20^\circ C</math>7 NO and 1 NC Key Switch<br/>SPST Toggle Black Nickel Plate<br/><math>3 \ amp \ 125 \ v \ black \ nickel</math><br/><math>84A</math><br/><math>10 \ amp \ 115 \ v \ 0.400^\circ \ F.</math><math>84A</math><br/><math>10 \ amp \ 115 \ v \ 0.400^\circ \ F.</math><math>84A</math><br/><math>10 \ amp \ 115 \ v \ 0.400^\circ \ F.</math>-24003<br/>-24015Audio Transformer<br/>Rectifier Filament Transformer<br/>Rectifier Filament Transformer<br/>Rectifier Filament Transformer<br/>Rectifier Filament Transformer<math>200, 400, 600 \ ohm to \ 42, \ 60, \ 82, \ 106 \ 55C</math><math>200, 400, 600 \ ohm to \ 42, \ 60, \ 82, \ 106 \ 55C</math></td> <td>JAN Type<br/>NumberMir's.Design<br/>actionNumberFunctionDescriptionCodenationRelay Current Limiting Res.<br/>Keying Supply Bleeder63 ohm <math>\pm 5\%</math> 200 w Ferrule Type<br/>Res.668668Meter Shunt<br/>H.V. Supply Bleeder31,500 ohm <math>\pm 2\%</math>, 1 w wire wound<br/>28,128,1WW3400 Volt Supply Bleeder<br/>Pilot Light Dropping Resistor<br/>Rectifier Heater20,000 ohm <math>\pm 5\%</math> 25 w Ferrule Type<br/>866866866820,000 ohm <math>\pm 5\%</math> 25 w Ferrule Type<br/>1000 ohm <math>\pm 5\%</math> 25 w Ferrule Type<br/>8668668wW3-24003Local-Remote Switch<br/>Local Power On-Off Switch<br/>240157 NO and 1 NC Key Switch<br/>SPST Toggle Black Nickel Plate<br/>3 amp 125 v<br/>Same as S180220904-ET<br/>3 amp 125 v black nickel<br/>Push Toggle NO Contacts<br/>84A20905-GH<br/>3592-N-24003Audio Transformer<br/>Rectifier Filament Transformer<br/>Rectifier Filament Transformer200, 400, 600 ohm to 42, 60, 82, 10655C<br/>ohms matching trans.<br/>2.5 v 10 amp output 115 v 50/6055C</td> | JAN Type<br>Number       Function       Description         Relay Current Limiting Res.<br>Keying Supply Bleeder       63 ohm ±5% 200 w Ferrule Type Res.<br>2500 ohm ±5% 15 w Ferrule Type Res.<br>2500 ohm ±5% 15 w Ferrule Type Res.<br>2500 ohm ±5% 200 w Ferrule Type Res.<br>2500 ohm ±5% 25 w Ferrule Type Res.<br>20,000 ohm ±5% 25 w Ferrule Type Res. | JAN Type<br>NumberFunctionMfr's.<br>CodeNumberFunction $Code$ Relay Current Limiting Res.<br>Keying Supply Bleeder<br>H.V. Supply Bleeder<br>Pilot Light Dropping Resistor<br>Rectifier Heater $G3 \ ohm \pm 5\% \ 200 \ w Ferrule Type$<br>Res. $G3 \ ohm \pm 5\% \ 200 \ w Ferrule Type$<br>Res. $G3 \ ohm \pm 5\% \ 200 \ w Ferrule Type$<br>Res. $G3 \ ohm \pm 2\% \ 1 \ wire \ wound$<br>$28J$<br>$31,500 \ ohm \pm 10\% \ 200 \ w Ferrule Type$<br>$6GS$<br>$7 \ Vp \ Res.$ $G6S \ 70 \ w Ferrule Type$<br>$6GS$<br>$7 \ W \ Ferrule Type$<br>$6GS$<br>$1000 \ ohm \pm 5\% \ 70 \ w \ Ferrule Type$<br>$6GS$<br>$1000 \ ohm \pm 5\% \ 70 \ w \ Ferrule Type$<br>$6GS$<br>$1000 \ ohm \pm 5\% \ 70 \ w \ Ferrule Type$<br>$6GS$<br>$660 \ w \ 110 \ w$<br>Same as R1807 $SWITCHES$ -24003<br>-24015Local-Remote Switch<br>Local Power On-Off Switch<br>Panel Interlock Switch<br>Heater Thermoswitch adj. to<br>$+15^\circ \ to \ +20^\circ C$ 7 NO and 1 NC Key Switch<br>SPST Toggle Black Nickel Plate<br>$3 \ amp \ 125 \ v \ black \ nickel$<br>$84A$<br>$10 \ amp \ 115 \ v \ 0.400^\circ \ F.$ $84A$<br>$10 \ amp \ 115 \ v \ 0.400^\circ \ F.$ $84A$<br>$10 \ amp \ 115 \ v \ 0.400^\circ \ F.$ -24003<br>-24015Audio Transformer<br>Rectifier Filament Transformer<br>Rectifier Filament Transformer<br>Rectifier Filament Transformer<br>Rectifier Filament Transformer $200, 400, 600 \ ohm to \ 42, \ 60, \ 82, \ 106 \ 55C$ $200, 400, 600 \ ohm to \ 42, \ 60, \ 82, \ 106 \ 55C$ | JAN Type<br>NumberMir's.Design<br>actionNumberFunctionDescriptionCodenationRelay Current Limiting Res.<br>Keying Supply Bleeder63 ohm $\pm 5\%$ 200 w Ferrule Type<br>Res.668668Meter Shunt<br>H.V. Supply Bleeder31,500 ohm $\pm 2\%$ , 1 w wire wound<br>28,128,1WW3400 Volt Supply Bleeder<br>Pilot Light Dropping Resistor<br>Rectifier Heater20,000 ohm $\pm 5\%$ 25 w Ferrule Type<br>866866866820,000 ohm $\pm 5\%$ 25 w Ferrule Type<br>1000 ohm $\pm 5\%$ 25 w Ferrule Type<br>8668668wW3-24003Local-Remote Switch<br>Local Power On-Off Switch<br>240157 NO and 1 NC Key Switch<br>SPST Toggle Black Nickel Plate<br>3 amp 125 v<br>Same as S180220904-ET<br>3 amp 125 v black nickel<br>Push Toggle NO Contacts<br>84A20905-GH<br>3592-N-24003Audio Transformer<br>Rectifier Filament Transformer<br>Rectifier Filament Transformer200, 400, 600 ohm to 42, 60, 82, 10655C<br>ohms matching trans.<br>2.5 v 10 amp output 115 v 50/6055C |  |  |  |

# TRANSFORMERS (Cont.)

| Symbol<br>Desig.                 | Navy or<br>JAN Type<br>Number | Function                                                                                         | Description                                                                | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|----------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|----------------------------|-------------------------------------------|
| T1804                            |                               | Low Voltage Plate Transformer                                                                    | 1000 v CT 0.212 amp Sec. 115 v 50/60 cps Pri.                              | $55\mathrm{C}$ |                            | 672N265                                   |
| T1805                            |                               | High Voltage Plate Transformer                                                                   | 2800 v CT 0.247 amp Sec. 115 v<br>50/60 cps tapped primary                 | 55C            |                            | 672N263                                   |
| T1806                            |                               | Key Power-Supply Transformer                                                                     | 135 v 0.3 amp Sec. 115 v 50/60<br>cps tapped Primary                       | 55C            |                            | 674N262                                   |
|                                  |                               |                                                                                                  | VACUUM TUBES                                                               |                |                            |                                           |
| V1801<br>V1802<br>V1803<br>V1804 |                               | Low Voltage Rect.<br>Low Voltage Rect.<br>High Voltage Rect.<br>High Voltage Rect.               | Mercury Vapor Rectifier<br>Same as V1801<br>Same as V1801<br>Same as V1801 |                |                            | 866/866A                                  |
|                                  |                               | :                                                                                                | SOCKETS                                                                    |                |                            |                                           |
| X1805<br>X1806<br>X1807<br>X1808 |                               | Rectifier Tube Socket<br>Rectifier Tube Socket<br>Rectifier Tube Socket<br>Rectifier Tube Socket | 4 prong ceramic<br>Same as X1805<br>Same as X1805<br>Same as X1805         | 77J            | 224                        | 220N545                                   |
| X1809<br>X1810                   |                               | Heater Socket<br>Heater Socket                                                                   | Ceramic Receptacle<br>Same as X1809                                        | 90B            | 4063                       | 265N101                                   |

# NAVY TYPE COL-211102 115 V. D.C. POWER UNIT

### CAPACITORS

|        | Symbol<br>Desig.        | Navy or<br>JAN Type<br>Number | Function                        | Description                                                | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|--------|-------------------------|-------------------------------|---------------------------------|------------------------------------------------------------|----------------|----------------------------|-------------------------------------------|
|        | C1901                   |                               | Audio Coupling Capacitor        | 2 mf $\pm 20\%$ 400 v d.c. foil paper<br>liquid impregnant | $75\mathrm{C}$ |                            | 954NS4U-M                                 |
|        | C1902                   |                               | Spark Suppressor Capacitor      | Same as C1901                                              |                |                            |                                           |
|        | C1903                   |                               | 400 Volt Supply Filter Cap.     | 8 mf $\pm 20\%$ 800 v d.c. foil paper<br>liquid impregnant | 75C            | KG4080                     | 930N19-M                                  |
|        | C1904                   |                               | 400 Volt Supply Filter Cap.     | Same as C1903                                              |                |                            |                                           |
|        | C1905                   |                               | High Voltage Supply Filter Cap. | 4 mf $\pm 20\%$ 2000 v d.c. foil paper<br>oil-filled       | 75C            | TJU-20040                  | 930N40-M                                  |
|        | C1906                   |                               | High Voltage Supply Filter Cap. | Same as C1905                                              |                |                            |                                           |
|        | C1907                   | -48312-B-20                   | 400 Volt Noise Filter           | Dual 0.1 mf $\pm 20\%$ 600 WV                              | 75C            |                            | 956ND01W-M                                |
| L<br>F | C1908                   |                               | High Voltage Noise Filter       | Same as C1907                                              |                |                            |                                           |
| 5      | C1909                   |                               | Spark Suppressor Capacitor      | Same as C1901                                              |                |                            |                                           |
|        | C1910                   |                               | Motor Noise Filter Cap.         | .01 mf $\pm 20\%$ 1000 v d.c. Mica                         | $75\mathrm{C}$ | 4L                         | 910N110G-M                                |
|        | <b>C</b> + <b>C</b> + + |                               |                                 |                                                            | 028            | H-10                       |                                           |
|        | C1911                   |                               | 400 Volt Filter                 | $0.1 \text{ mf } \pm 20\% 600 \text{ WV}$                  | $75\mathrm{C}$ |                            | 956NS01Y-M                                |
|        | C1912                   |                               | High Voltage Noise Filter       | $0.1 \text{ mf } \pm 20\% 1500 \text{ WV}$                 | $75\mathrm{C}$ |                            | 930 0012 00                               |
|        | C1913                   |                               | Motor Noise Filter Capacitor    | Same as C1910                                              |                |                            |                                           |
|        | C1914                   |                               | Noise Filter Capacitor          | Same as C1910                                              |                |                            |                                           |
|        | C1915                   |                               | Ripple Filter Capacitor         | Same as C1901                                              |                |                            |                                           |
|        | C1916                   |                               | High Voltage Noise Filter       | Same as C1912                                              |                |                            |                                           |
|        | C1917                   |                               | 28 Volt Noise Filter            | 4.0 mf $\pm 20\%$ 50 WV                                    | $75\mathrm{C}$ |                            | 930 0013 00                               |
|        | C1918                   |                               | Noise Filter Capacitor          | Same as C1910                                              |                |                            |                                           |
|        | C1919                   |                               | C1919A and C1919B               |                                                            |                |                            |                                           |
|        | C1919A                  |                               | Ripple Filter Capacitor         | 20 mf 100 WV Electrolytic<br>                              | $75\mathrm{C}$ |                            | 183N33-A                                  |
|        | C1919B                  |                               | <b>Ripple Filter Capacitor</b>  | Same as C1919A                                             |                |                            |                                           |
|        | C1920                   |                               | Line Filter                     | $2 \text{ mf} \pm 10\% 600 \text{ WV}$                     |                |                            | 930N78B-K                                 |
|        | C1921                   |                               | Line Filter                     | Same as C1920                                              |                |                            |                                           |
|        | C1922                   |                               | C1922A, C1922B                  | Same as C1907                                              |                |                            |                                           |
|        | C1922A                  |                               | Line Filter                     | Part of C1922                                              |                |                            |                                           |
|        | C1922B                  |                               | Line Filter                     | Part of C1922                                              |                |                            |                                           |
|        |                         |                               |                                 |                                                            |                |                            |                                           |

#### **DYNAMOTORS**

|    | Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                     | Description                                                   | Mfr's.<br>Code | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|----|------------------|-------------------------------|------------------------------|---------------------------------------------------------------|----------------|----------------------------|-------------------------------------------|
|    | D1901            |                               | 14 v d.c. at 1.2 amp output  |                                                               | 88F            | D-102                      | 231N48                                    |
|    | D1902            |                               | High Voltage Dynamotor       | 115 v d.c. input 400 v d.c700<br>amp 1150 v d.c350 amp output | 88F            | D-101                      | 231N49                                    |
|    |                  |                               | MISCELLA                     | NEOUS ELECTRICAL PARTS                                        |                |                            |                                           |
|    |                  |                               |                              | (See Figure 118)                                              |                |                            |                                           |
|    | E1901            |                               | H. V. Output Connector       | Ceramic Bushing ¾'' x ⅔''                                     | 42J            | 979A                       | 190NBI19                                  |
|    | E1902            |                               | H. V. Output Connector       | Ceramic Bushing Plug 5⁄8'' x 5⁄8''                            | 42J            |                            | 190NBI20                                  |
|    | E1903            |                               | H. V. Feedthru               | Same as E1901                                                 |                |                            |                                           |
| n. | E1904            |                               | H. V. Feedthru               | Same as E1902                                                 |                |                            |                                           |
| •  | E1905            |                               | 400 Volt Feedthru            | Same as E1901                                                 |                |                            |                                           |
|    | E1906            |                               | 400 Volt Feedthru            | Same as E1902                                                 |                |                            |                                           |
|    | E1907            |                               | Pilot Light Bracket          | Bracket for Miniature Bayonet<br>Base Bulb                    | 60D            | 30                         | 262N123                                   |
|    | E1908            |                               | Pilot Light Bracket          | Same as E1907                                                 |                |                            |                                           |
|    |                  |                               |                              | FUSES                                                         |                |                            |                                           |
|    | F1901            |                               | Power Line Fuse              | 30 amp 250 v Ferrule Type<br>Renewable Element                |                |                            | 264N230A                                  |
|    | F1902            |                               | Power Line Fuse              | Same as F1901                                                 |                |                            |                                           |
|    | F1903            |                               | D1901 Dynamotor Primary Fuse | 15 amp 250 v 11/32'' dia. 1-½'' long                          |                |                            | AA199K                                    |
|    | F1904            |                               | D1902 Dynamotor Primary Fuse | Same as F1903                                                 |                |                            |                                           |
|    | F1905            |                               | 28 Volt Supply Fuse          | Same as F1903                                                 |                |                            | 1 1 1 0 0 0                               |
|    | F1906            |                               | 14 Volt Supply Fuse          | 3 amp 250 v 11/32'' dia.1-1/2'' long                          | -              | 2104                       | AA199C                                    |
|    | F1907            |                               | 400 Volt Supply Fuse         | High Voltage Aircraft Type<br>1 amp 1000 V                    | 78L            | 2104                       | 264N704                                   |
|    | F1908            |                               | 1150 Volt Supply Fuse        | High Voltage Aircraft Type<br>1 amp 2500 V                    | 78L            | 2109                       | 264N709                                   |

#### PILOT LAMPS

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function         | Description                                 | Mfr's.     | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|------------------|---------------------------------------------|------------|----------------------------|-------------------------------------------|
| 11901            |                               | Pilot Light Bulb | Miniature Bayonet Base<br>12-16 V. 0.10 amp | 40G<br>66R | T3-1⁄4                     | 262N326                                   |
| I1902            |                               | Pilot Light Bulb | Same as I1901                               | oon        |                            |                                           |

# JACKS AND RECEPTACLES

|             | J1901 | 27 Contact Cable Connector                         | 27 Cont. Wall Mtg. Plug 10 amp<br>Cont.                         | 10C | NK-27-32S   | 371N401      |
|-------------|-------|----------------------------------------------------|-----------------------------------------------------------------|-----|-------------|--------------|
|             | J1902 | 10 Contact Cable Connector                         | 10 Cont. Wall Mtg. Female Recept.<br>2-15 amp 8-10 amp contacts | 10C | RFK-10-31SL | 371N511R     |
| 1<br>1<br>1 | J1903 | Remote Control and Remote<br>Transmitter Connector | 27 Term. Connector                                              | 64C |             | GA-1545B     |
|             | J1904 | Part of J1903                                      | 10 Term. Connector                                              | 64C |             | GA-1545B     |
|             | J1905 | RADIOPHONE Box Connector                           | 21 Term. Connector                                              | 64C |             | GA-1546B     |
|             | J1906 | H. V. Dynamotor Connector Socket                   | 6 Contact Socket                                                | 64C |             | 500 2072 00A |
|             | J1907 | L. V. Dynamotor Connector Socket                   | Same as J1906                                                   |     |             |              |

#### RELAYS

| K1901 | Fil. Control Relay        | 3 Pole NO 115 V d.c.           | 85G |         | 405NB203A |
|-------|---------------------------|--------------------------------|-----|---------|-----------|
| K1902 | Carrier Relay             | 2 PNO 7.2 to 14 V d.c.         | 85G | G33402  | 405NB205A |
| K1903 | Keying Relay              | DPDT 115 V d.c. relay 2275 ohm | 65G | JD115RR | 405NB208  |
|       |                           | Res.                           |     |         |           |
| K1904 | Plate Power Control Relay | 2 PNO 28 V d.c.                | 65G | JD28AA  | 405NB206  |

#### INDUCTORS AND REACTORS

# (See Figure 119)

| Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                           | Description                              | Mfr's.         | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------|------------------------------------|------------------------------------------|----------------|----------------------------|-------------------------------------------|
| L1901            |                               | 14 Volt Supply Filter Reactor      | 0.15 hy 1 amp reactor 1 ohm d.c.<br>Res. | $55\mathrm{C}$ |                            | 678N260                                   |
| L1902            |                               | 400 Volt Supply Filter Reactor     | 6 hy 0.3 amp reactor 40 ohm d.c. Re      | s. 55C         |                            | 678N239                                   |
| L1903            |                               | High Voltage Supply Filter Reactor | 6 hy 0.4 2mp 48.4 d.c. Res.              | 55C            |                            | 678N151                                   |
| L1904            |                               | Radio Frequency Choke              | Air Core R. F. Choke 22 microh.          | 97E            |                            | 240N54                                    |
|                  |                               | · •                                |                                          | 05M            | <b>RF583</b>               |                                           |
| L1905            |                               | Radio Frequency Choke              | Same as L1904                            |                |                            |                                           |
| L1906            |                               | Radio Frequency Choke              | Same as L1904                            |                |                            |                                           |
| L1907            |                               | Radio Frequency Choke              | Same as L1904                            |                |                            |                                           |
| L1908            |                               | Radio Frequency Choke              | Same as L1904                            |                |                            |                                           |
| L1909            |                               | Radio Frequency Choke              | Same as L1904                            |                |                            |                                           |
| L1910            |                               | Radio Frequency Choke              | Same as L1904                            |                |                            |                                           |
| L1911            |                               | Radio Frequency Choke              | Same as L1904                            |                |                            |                                           |
| L1912            |                               | 400 V Noise Filter Choke           | 1 mh 0.300 amp 10 ohm                    | 05N            | R300U                      | 240N58                                    |
| L1913            |                               | 400 V Noise Filter Choke           | Same as L1912                            |                |                            |                                           |
| L1914            |                               | 400 V Noise Filter Choke           | Same as L1912                            |                |                            |                                           |
| L1915            |                               | H. V. Noise Filter Choke           | Same as L1912                            |                |                            |                                           |
| L1916            |                               | H. V. Noise Filter Choke           | Same as L1912                            |                |                            |                                           |
| L1917            |                               | H. V. Noise Filter Choke           | Same as L1912                            |                |                            |                                           |
| L1918            |                               | H. V. Noise Filter Choke           | Same as L1912                            |                |                            |                                           |
| L1919            |                               | Line Filter Choke                  | Same as L1904                            |                |                            |                                           |
| L1920            |                               | Line Filter Choke                  | Same as L1904                            |                |                            |                                           |
|                  |                               |                                    |                                          |                |                            |                                           |
|                  |                               |                                    |                                          |                |                            |                                           |
|                  |                               |                                    | PLUGS                                    |                |                            |                                           |
|                  |                               |                                    |                                          | 21 B           |                            |                                           |
| P1901            |                               | H. V. Dynamotor Connector Plug     | 6 Prong Plug                             | 91J            | SS-6-AB<br>1/16            | 363N206                                   |
| P1902            |                               | L. V. Dynamotor Connector Plug     | Same as P1901                            |                | -/ **                      |                                           |

APPENDIX

#### RESISTORS

|     | Symbol<br>Desig. | Navy or<br>JAN Type<br>Number | Function                      | Description                                                        | Mfr's. | Mfr's.<br>Desig-<br>nation | Contractor's<br>Drawing or<br>Part Number |
|-----|------------------|-------------------------------|-------------------------------|--------------------------------------------------------------------|--------|----------------------------|-------------------------------------------|
|     | R1901            |                               | Relay Current Limiting Res.   | 63 ohm $\pm 5\%$ 200 w Ferrule Type                                | 66S    |                            | 733NXA63-J                                |
|     | R1902            |                               | Arc Suppressor Resistor       | 200 ohm $\pm 20\%$ 2 w wire wound res.                             | 28J    |                            | 709N200N-M                                |
|     | R1903            |                               | Meter Shunt                   | 13.3 ohm $\pm 2\%$ 1 w wire wound res.                             | 28J    | WW3                        | 721NL13.3-G                               |
|     | R1904            |                               | Arc Suppressor Resistor       | Same as R1902                                                      |        |                            |                                           |
|     | R1905            |                               | Pilot Light Dropping Resistor | 1000 ohm $\pm 5\%$ 25 w Ferrule Type                               | 66S    |                            | 733NXE1M-J                                |
|     |                  |                               |                               | SWITCHES                                                           |        |                            |                                           |
|     | S1901            |                               | Local-Remote Switch           | 7 NO & 1 NC Key Switch                                             |        |                            | AC102H                                    |
|     | S1902            |                               | Local Power Switch            | SPST Toggle 3 amp 125 v Black<br>Nickel Plate                      | 84A    | 20994-ET                   | 266N101                                   |
|     | S1903            |                               | Emergency Switch              | Same as S1902                                                      |        |                            |                                           |
| غسغ | S1904            |                               | Control Wire Selector         | Same as S1902                                                      |        |                            |                                           |
| 157 | S1905            |                               | Panel Interlock Switch        | Push Toggle NO Contacts                                            | 84A    | 3592-N                     | 266N105                                   |
|     |                  |                               |                               | TRANSFORMERS<br>(See Figure 120)                                   |        |                            | . ·                                       |
|     | T1901            |                               | Audio Coupling Transformer    | 200, 400, 600 ohms to 42, 60, 82, 106<br>ohms Matching Transformer | 55C    |                            | 677N261                                   |
|     |                  |                               | 6                             | 5X-10 REMOTE CABLE                                                 |        |                            |                                           |
|     |                  |                               | (Remo                         | te Control Unit to Power Unit)                                     |        |                            |                                           |
|     |                  |                               |                               | PLUGS                                                              |        |                            |                                           |
|     | P2301            |                               | Cable Connector               | 27 terminal straight connector                                     | 10C    | NK-27-21C 11/16            | 371N402                                   |
|     |                  |                               |                               | CABLES                                                             |        |                            |                                           |
|     | W2301            |                               | Multi-Conductor Wire          | 27 conductor wire 10' long                                         | 24B    |                            | 424N271                                   |

### TABLE XVIII-TCZ SPARE PARTS LIST BY SYMBOL DESIGNATION

# FOR A-C EQUIPMENT

#### MOTORS

|   | Carton<br>Number | Quan.         | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                                                                                               | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br><u>Mod.</u> | Contractor's<br>Drawing or<br>Part Number |
|---|------------------|---------------|-------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------|--------------|----------------------------|---------------------------------|-------------------------------------------|
|   | 160<br>79        | $\frac{1}{2}$ |                               | B101<br>B1801                          | 1/20 hp 28 v d-c<br>1 set B1801 Motor Bearing                                                             | 8                            | 98E<br>13M   | NY-818C-A<br>ND8706        |                                 | 818C<br>234 0039 00                       |
|   |                  |               |                               |                                        | CAPACITORS                                                                                                |                              |              |                            |                                 |                                           |
|   | 167              | 1             | 481677-1<br>481678-1          | C101<br>C102, C103, C104               | .000185 mf $\pm 1\%$ 1000 TV<br>Set of 3 matched Ceramic<br>Capacitors Total 413<br>mmf $\pm 1\%$ 1000 TV | }                            | 64C          |                            |                                 | GA-1433C                                  |
| 1 | 73               | 1             |                               | C105                                   | $.005 \text{ mf } \pm 5\% 2500 \text{ TV}$                                                                | )                            | 75C<br>02S   | 4LST<br>HLST               | :                               | 925N250K-J                                |
|   | 72               | 1             |                               | C106, C117                             | .006 mf $\pm 20\%$ 1000 TV                                                                                |                              | 75C<br>02S   | 4LS<br>HLS-10              | :                               | 910N260C-M                                |
|   | 72               | 1             |                               | C107                                   | .002 mf $\pm 20\%$ 1000 TV                                                                                |                              | 75C<br>02S   | 4LS<br>HLS-10              | 1                               | 910N220C-M                                |
|   | 73               | 1             |                               | C108, C116                             | $.0005 \text{ mf} \pm 10\% 1500 \text{ TV}$                                                               |                              | 02S          | BE-15                      |                                 | 915N350E-K                                |
|   | 72               | 3             | -482111-B-20                  | C109, C110, C113, C114,<br>C401        | .002 mf $\pm 20\%$ 1500 TV                                                                                |                              | 02S          | BE-15                      |                                 | 915N220E-M                                |
|   | 66               | 1             |                               | C111, C115                             | 6 Section Variable Ceramic Cap.                                                                           |                              | 25C          | 828-003                    | :                               | 917N6A3                                   |
|   | 73               | 1             |                               | C112                                   | $.00025 \pm 10\% 1500 \text{ TV}$                                                                         |                              | 02S          | BE-15                      |                                 | 915N325E-K                                |
|   | 24               | 1             |                               | C118                                   | .002 mf $\pm 20\%$ 7500 TV                                                                                |                              | 02S          | A2LS                       | 1                               | 975N220A-M                                |
|   | 73               | 1             |                               | C119                                   | .002 mf $\pm 20\%$ 2500 TV                                                                                |                              | 75C<br>02S   | 4LS<br>HLS-25              | 1                               | 925N220C-M                                |
|   | 74               | 1             |                               | C120A, C120B                           | .002 mf $\pm 20\%$ 5000 TV                                                                                |                              | 75C<br>02S   | 4LS<br>HLS-50              |                                 | 950N220C-M                                |
|   | 23               | 1             |                               | C121A, C121B, C121C                    | 3-0.1 mf $\pm 20\%$ 600 WV                                                                                |                              | 75C<br>64S   | DYRT-6111<br>3XDMR<br>TW61 | :                               | 956NT01WX1-M                              |
|   | 140              | 2             |                               | C122A, C122B, C129                     | .00005 mf $\pm 10\%$ Ceramic                                                                              |                              | 25C          | 850-002                    | 1                               | 913N450C-K                                |

158

ы

# FOR A-C EQUIPMENT

# CAPACITORS (Cont.)

| Carton<br>Number | Quan.    | Navy or<br>JAN Type<br>Number                       | All Symbol<br>Designations<br>Involved | Description                                                                        | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code   | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|------------------|----------|-----------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------|------------------------------|----------------|----------------------------|--------------------------|-------------------------------------------|
|                  |          | <ul> <li>Ko over verser effektigte state</li> </ul> |                                        |                                                                                    |                              | 0.50           | 050.000                    |                          | ADDIACT C                                 |
| 140              | <b>2</b> |                                                     | C124A, C124B, C124C                    | .000067 mf $\pm 5\%$ Ceramic                                                       |                              | 25C            | 850-003                    |                          | 13N467C-J<br>30N78B-M                     |
| 31               | 1        |                                                     | C126                                   | $2.0 \text{ mf} \pm 20\% 600 \text{ WV}$                                           |                              | 75C            | KG-3020                    |                          | 15N260E-M                                 |
| 73               | 1        |                                                     | C127                                   | .006 mf $\pm 20\%$ 1500 TV                                                         |                              | 028            | BE-15                      |                          | 13N425C-K                                 |
| 140              | 1        | 481689-10                                           | C130                                   | .000025 mf $\pm 10\%$ Ceramic                                                      |                              | 25C            | 850-001<br>DE 10           |                          |                                           |
| 72               | 1        |                                                     | C131                                   | .0008 mf $\pm 5\%$ 1000 TV                                                         |                              | 028            | BE-10                      |                          | 10N380E-J                                 |
| 70               | 1        |                                                     | C132, C133                             | .004 mf $\pm 20\%$ 600 TV                                                          |                              | 75C            | 3WS                        |                          | 09N240F-M                                 |
|                  |          |                                                     |                                        |                                                                                    |                              | 02S            | JS                         |                          |                                           |
| 173              | 1        |                                                     | C134, C135                             | Midget Variable                                                                    |                              | 05P            |                            |                          | 22N51                                     |
| 140              | 1        | 481681                                              | C136                                   | 13 mmf Variable Ceramic                                                            |                              | 25C            | 822-009                    |                          | 017N101                                   |
| 70               | 1        |                                                     | C137                                   | .0015 mf $\pm 10\%$ 900TV                                                          |                              | 64S            |                            | ę                        | 009N215F-K                                |
|                  |          |                                                     |                                        |                                                                                    |                              | 02S            |                            |                          |                                           |
| 12.18            | 3, 14 3  |                                                     | C201, C202, C207, C208,                | 20  mf + 100% - 10% 100%                                                           | v                            | 75C            | RVL-10051-1                | 1                        | <b>83N33A</b>                             |
| , , ,            | ,        |                                                     | C1808A, C1808B                         | , .                                                                                |                              | 05M            | SPO 38482                  |                          |                                           |
| 30               | 2        |                                                     | C203, C304, C311                       | .05 mf $\pm 20\%$ 600 WV                                                           |                              | 75C            | TVC                        | ç                        | 30N66A-M                                  |
| 73               | 1        |                                                     | C204                                   | .006 mf $\pm 10\%$ 1500 TV                                                         |                              | 02S            | BE-15                      | ç                        | 15N260E-K                                 |
| 72               | 1        |                                                     | C205                                   | .001 mf $\pm 10\%$ 1500 TV                                                         |                              | 02S            | BE-15                      | ę                        | 015N210E-K                                |
| 73               | 1        |                                                     | C206                                   | .003 mf $\pm 10\%$ 1500 TV                                                         |                              | 028            | BE-15                      | ę                        | 915N230E-K                                |
| 70               | 1        |                                                     | C301, C302                             | .00001 mf $\pm 10\%$ 1000 TV                                                       |                              | 75C            | 5WS                        | ę                        | 009N410GN-K                               |
| 10               | 1        |                                                     | 0001, 0002                             |                                                                                    |                              | 02S            | KS                         |                          |                                           |
| 22               | 1        |                                                     | C303, C305                             | .5 mf $\pm 20\%$ 600 WV                                                            |                              | 75C            | DYR-6050                   | ç                        | 956NS08YX1-M                              |
| 1                | 1        |                                                     | 0300, 0000                             | .0 mit 120 /0 000 m t                                                              |                              | 64S            | X-DMR65                    |                          |                                           |
| 70               | 1        |                                                     | C308                                   | .001 mf $\pm 20\%$ 1000 TV                                                         |                              | 75C            | 1RS                        | ç                        | 012N210AN-M                               |
| 21               |          |                                                     | C309A, C309B                           | $2-0.1 \text{ mf} \pm 20\% 600 \text{ WV}$                                         |                              | 75C            | DYRT6011                   |                          | 956ND01WX1-M                              |
|                  | 1        |                                                     |                                        | $220.1 \text{ mm} \pm 20\% 000 \text{ mV}$<br>.0025 mf $\pm 20\% 1000 \text{ TV}$  |                              | 75C            | 1RS                        |                          | 012N225AN-M                               |
| 70               | 1        |                                                     | C310                                   | $.0025 \text{ mf} \pm 20\% 1000 \text{ TV}$<br>.00005 mf $\pm 20\% 900 \text{ TV}$ |                              | 028            | Type "C"                   |                          | 909N450C-M                                |
| 70               | 1        |                                                     | C402                                   | $.00005 \text{ m} \pm 20\% 900 1 \text{ v}$                                        |                              | 75C            | 1ype 0<br>1WL              |                          | 00114000 112                              |
|                  | 0        | 1010050                                             | G100 G100G G110                        | 0000                                                                               |                              | 25C            | 816-035                    |                          | 913N330-G                                 |
| 71               | 2        | 481685-2                                            | C403, C408C, C412                      | .0003 mf $\pm 2\%$ 1000 TV                                                         |                              |                | 816-044                    |                          | 913NA1                                    |
| 102              | 1        | 481688-1⁄2                                          | C404                                   | Set of 3 matched Ceramic                                                           |                              | $25\mathrm{C}$ | 816-044                    | •                        | 7191NA1                                   |
|                  |          |                                                     |                                        | Capacitors Total 0.00083                                                           |                              |                |                            |                          |                                           |
|                  |          |                                                     |                                        | mf $\pm \frac{1}{2}\%$ 500 WV                                                      |                              | 0.10           |                            |                          | MONDOOLT IN                               |
| 71               | 3        |                                                     | C405A, C405B, C409A,<br>C410B, C410C   | .002 mf $\pm 1\%$ 500 TV                                                           |                              | 34S            |                            | į                        | 912N220H-F                                |

159

£.

APPENDIX

#### FOR A-C EQUIPMENT

# CAPACITORS (Cont.)

|   | Carton<br>Numbei               | Quan.    | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved                | Description                                                                | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code   | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|---|--------------------------------|----------|-------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|----------------|----------------------------|--------------------------|-------------------------------------------|
|   | All Book has a report to bails |          |                               |                                                       |                                                                            |                              |                |                            |                          |                                           |
|   | 70                             | 1        |                               | C405C                                                 | .001 mf ±1% 500 TV                                                         |                              | 34S            |                            | ç                        | 912N210H-F                                |
|   | 70                             | 1        | 481684-2                      | C406A                                                 | .000125 mf $\pm 2\%$ 1000 TV                                               |                              | 25C            | 814-106                    | ç                        | 913 0001 00                               |
|   | 102                            | 1        | 481687-1                      | C407                                                  | Set of 3 matched Ceramic<br>Capacitors Total<br>.00088 mf $\pm 1\%$ 500 WV |                              | 25C            | 816-043                    | 9                        | 913NA2                                    |
|   | 70                             | 1        |                               | C408A, C410D                                          | .0015 mf $\pm 1\%$ 500 TV                                                  |                              | 34S            |                            | 9                        | 912N215H-F                                |
|   | 71                             | 1        |                               | C408B                                                 | $.00015 \text{ mf} \pm 2\% 1000 \text{ TV}$                                |                              | 25C            | 810-250                    |                          | 913N315N6.6-G                             |
|   | 70                             | 1        |                               | C409B                                                 | .0004 mf $\pm 1\%$ 500 TV                                                  |                              | 34S            |                            |                          | 912N340H-F                                |
|   | 71                             | 1        | 481686-2                      | C409C                                                 | .00035 mf $\pm 2\%$ 1000 TV                                                |                              | 25C            | 816-041                    | 9                        | 913N335N3.3-G                             |
|   | 71                             | 1        | 481683-2                      | C410A                                                 | .00025 mf $\pm 2\%$ 1000 TV                                                |                              | 25C            | 810-290                    |                          | 913N325N7-G                               |
| - | 172                            | 1        | 481680                        | C411                                                  | 5 Section Variable Ceramic<br>Cap.                                         |                              | 25C            | 826-003                    | :                        | 917N5A1                                   |
|   | 41                             | 1        |                               | C1001                                                 | .0007 mf $\pm 5\%$ 5000 WV                                                 |                              | 75C<br>02S     | 6LS<br>F2                  | 9                        | 906N370A-J                                |
|   | 74                             | 4        |                               | C1002, C1003, C1807,<br>C1809, C1811, C1812,<br>C1813 | .01 mf $\pm 20\%$ 1000 TV                                                  |                              | 75C<br>02S     | 4L<br>H-10                 | \$                       | 910N110G-M                                |
|   | 158, 159                       | 2        |                               | C1101, C1102, C1103                                   | 25 mmf $\pm 10\%$ 10,000 v cf                                              | f.                           | 06A            | 1860-201                   | 9                        | 914N1X6-K                                 |
|   | 42                             | 1        |                               | C1801, C1810                                          | $2 \text{ mf } \pm 20\% 400 \text{ WV}$                                    |                              | 75C            |                            |                          | 954NS4U-M                                 |
|   | 165, 166                       | <b>2</b> |                               | C1802, C1803, C1804                                   | 8 mf $\pm 20\%$ 800 WV                                                     |                              | 75C            | KG-4080                    | :                        | 930N19-M                                  |
|   | 164                            | 1        |                               | C1805, C1806                                          | 4 mf $\pm 20\%$ 2000 WV                                                    |                              | 75C            | TJU-20040                  | :                        | 930N40-M                                  |
|   | 168                            | 1        |                               | C1814                                                 | Motor Capacitor                                                            |                              | $13\mathbf{M}$ | 107-129<br>MFD-4207        | :                        | 234 0041 00                               |

#### MISCELLANEOUS ELECTRICAL PARTS

| 123 | 20 | E101A        | + and $-$ Brush for NY- | <b>98</b> E |   | <b>234M</b> 130 |
|-----|----|--------------|-------------------------|-------------|---|-----------------|
|     |    |              | 818C-A Autotune Motor   |             |   |                 |
| 25  | 4  | E1701, E1702 | Split rubber bushing    | 10C         | Р | 371N111         |

-160 APPENDIX

# FOR A-C EQUIPMENT

#### FUSES

| Carton              | Qual                                                     | Navy or<br>JAN Type<br>1. Number | All Symbol<br>Designations<br>Involved                                                 | Description                                                                                                                                                                                                                                                                        | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code                                                | Mfr's.<br>Desig-<br>nation                                                                                      | Spcl.<br>Tol. or<br><u>Mod.</u>                                                   | Contractor's<br>Drawing or<br>Part Number                                                                                                                                                                                                                                                                               |
|---------------------|----------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 81 10<br>97 10                                           |                                  | F1801, F1802<br>F1803                                                                  | 30 amp fuse link<br>1 amp 250 v 11/32'' dia.<br>1½'' long                                                                                                                                                                                                                          |                              |                                                             |                                                                                                                 |                                                                                   | 264N230B<br>AA199A                                                                                                                                                                                                                                                                                                      |
| 10                  | 00 10                                                    |                                  | F1804, F1805, F1808                                                                    | 15 amp 250 v $11/32''$ dia.<br>$1\frac{1}{2}''$ long                                                                                                                                                                                                                               |                              |                                                             |                                                                                                                 | 1                                                                                 | AA199K                                                                                                                                                                                                                                                                                                                  |
| ç                   | 98 10                                                    |                                  | F1806, F1807                                                                           | 3 amp 250 v 11/32'' dia.<br>1½'' long                                                                                                                                                                                                                                              |                              |                                                             |                                                                                                                 | 1                                                                                 | AA199C                                                                                                                                                                                                                                                                                                                  |
|                     |                                                          |                                  |                                                                                        | GENERATORS                                                                                                                                                                                                                                                                         |                              |                                                             |                                                                                                                 |                                                                                   |                                                                                                                                                                                                                                                                                                                         |
| ייי<br>קייי<br>קייי | 21     10       22     10       22     10       51     1 |                                  | G1801<br>G1801<br>G1801<br>G1801<br>G1801<br>G1801<br>G1801<br>G1801<br>G1801<br>G1801 | Brush Holder<br>Brush Holder<br>Brush Holder Cap<br>Brush Holder Cap<br>Bearing for G1801<br>Positive 14 v brush for G18<br>Negative 14 v brush for<br>G1801<br>Positive 28 v brush for<br>G1801<br>Negative 28 v brush for<br>G1801<br>Armature for G1801<br>Field Coil for G1801 | 01                           | 88F<br>88F<br>88F<br>88F<br>88F<br>88F<br>88F<br>88F<br>88F | B-104<br>BLT105<br>BHC-101<br>BHC-103<br>CWC88013<br>BR106+<br>BR106-<br>BR105+<br>BR105-<br>ARM-106<br>FCA-106 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 234       0006       00         234       0042       00         234       0008       00         234       0009       00         234       0010       00         234       0021       00         234       0022       00         234       0027       00         234       0028       00         234       0038       00 |
|                     |                                                          |                                  |                                                                                        | PILOT LIGHTS                                                                                                                                                                                                                                                                       |                              |                                                             |                                                                                                                 |                                                                                   |                                                                                                                                                                                                                                                                                                                         |
| 8                   | 30 2                                                     |                                  | I101, I901                                                                             | 28 v Clear Bulb, miniature<br>bayonet base                                                                                                                                                                                                                                         |                              | 40G                                                         | T3-1⁄4                                                                                                          | 2                                                                                 | 62N327                                                                                                                                                                                                                                                                                                                  |
| 8                   | 30 2                                                     |                                  | I1801, I1802                                                                           | 12-16 v miniature bayonet<br>base                                                                                                                                                                                                                                                  |                              | 40G                                                         | T-3-1⁄4                                                                                                         | 2                                                                                 | 62N326                                                                                                                                                                                                                                                                                                                  |

.

# FOR A-C EQUIPMENT

# JACKS AND RECEPTACLES

| Carton<br>Number | J       | Navy or<br>JAN Type | All Symbol<br>Designations            | <b>D</b>                                       | Navy<br>Spec. or | Mfr.       | Mfr's.<br>Desig- | Spcl.<br>Tol. or | Contractor's<br>Drawing or<br>Dept Number |
|------------------|---------|---------------------|---------------------------------------|------------------------------------------------|------------------|------------|------------------|------------------|-------------------------------------------|
| 04               | Quan. N | Number              | Involved                              | Description                                    | Dwg. No.         | Code       | nation           | Mod.             | Part Number                               |
| 169              | 4       |                     | J101, J103, J104, J105,<br>J901, J904 | 1 circuit jack for plugs with<br>1⁄4′′′ barrel | 1                | 05M<br>21N | SC1A             | c<br>t           | 358N104                                   |
| 170              | 4       |                     | J102, J903                            | 3 circuit jack                                 |                  | 05M<br>21N | SCA2B            | Ę                | 358N105                                   |
| 130              | 4       |                     | J106                                  | 27 term. female connector                      |                  | 10C        | RNK-27-31SL      | 9                | 371N403R                                  |
| 106              | 4       |                     | J107                                  | 3 term. female conn. wall n                    | ntg.             | 10C        | RWK-C3-31SL      | ę                | 71N105R                                   |
| 113              | 4       |                     | J108                                  | 10 term. male conn. wall m                     | tg.              | 10C        | FK-10-32S        | ę                | 371N513                                   |
| 103              | 4       |                     | J111                                  | 8 term. conn. socket                           |                  | 91J        | 300              | ê                | 366N208                                   |
| 104              | 4       |                     | J112                                  | 12 term. socket chassis mtg                    | <b>ζ.</b>        | 91J        | 300              | í.               | 366N212                                   |
| 83               | 4       |                     | J114                                  | 6 term. chassis mtg. socket                    |                  | 91J        | 300              | e<br>e           | 366N206                                   |
| 105              | 4       |                     | J115                                  | 12 term. octal style cable plug conn.          |                  | 60A        | 70-12            | e<br>e           | 369N17                                    |
| 109              | 4       |                     | J116                                  | 15 term chassis mtg. conn.                     |                  | 91J        | 300              | 8                | 366N215                                   |
| 40               | 4       |                     | J1001                                 | 3 term. wall mtg. recept.<br>male              |                  | 10C        | WK-C3-32S        | ŝ                | 371N104                                   |
| 111              | 4       |                     | J1801                                 | 27 term. wall mtg. conn.                       |                  | 10C        | NK-27-32S        | 9                | 371N401                                   |
| 133              | 4       |                     | J1802                                 | 10 term. wall mtg. conn.                       |                  | 10C        | RFK-10-31SL      |                  | 371N511R                                  |
| 119              | 4       |                     | J1806, J1807                          | 4 term. conn. socket                           |                  | 64C        | GA1726A          | (                | GA-1726A                                  |
|                  |         |                     |                                       |                                                |                  |            |                  |                  |                                           |

162

#### RELAYS

| 114       | 4 | K101         | 3 pole double throw relay                     | 85G | G-33177 | 405NB201A      |
|-----------|---|--------------|-----------------------------------------------|-----|---------|----------------|
| <b>26</b> | 4 | K102, K1001A | Coil 28 v 30 ohm (2 re-                       | 85G |         | 409N37         |
|           |   |              | quired for each relay)                        |     |         |                |
| 84        | 4 | K102         | Stationary Contact (long)                     | 85G |         | <b>409N3</b> 8 |
|           |   |              | $\frac{1}{8}$ " dia. fine silver              |     |         |                |
| 85        | 4 | K102         | Stationary Contact (short)                    | 85G |         | 409N39         |
|           |   |              | $\frac{1}{8}^{\prime\prime}$ dia. fine silver |     |         |                |

# FOR A-C EQUIPMENT

# RELAYS (Cont.)

| Carton<br>Number |             | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                                                       | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------|-------------------------------|----------------------------------------|-------------------------------------------------------------------|------------------------------|--------------|----------------------------|--------------------------|-------------------------------------------|
| 86               | 4           |                               | K102                                   | Movable Contact NO ½"<br>dia. fine silver                         |                              | 85G          |                            | 4                        | 409N40                                    |
| 87               | 4           |                               | K102                                   | Movable Contact NC $\frac{1}{8}$ " dia. fine silver               |                              | 85G          |                            | 4                        | l09N41                                    |
| 88               | 4           |                               | K102                                   | Movable Contact NO-NC<br>½'' fine silver                          |                              | 85G          |                            | 4                        | 109N42                                    |
| 89               | 4           |                               | K103                                   | Movable Contact and sprin<br>3/16" dia. fine silver               | g                            | 85G          |                            | 4                        | 109N44                                    |
| 90               | 4           |                               | K103                                   | Movable Auxiliary Contact $\frac{1}{8}$ " dia.                    |                              | 85G          |                            | 4                        | 409N45                                    |
| <br>91           | 4           |                               | K103                                   | Stationary Contact NO<br>3/16" dia. fine silver                   |                              | 85G          |                            | 4                        | 409N46                                    |
| 92               | 4           |                               | K103                                   | Stationary Contact NC 3/16" dia. fine silver                      |                              | 85G          |                            | 4                        | 409N47                                    |
| 93               | 4           |                               | K103                                   | Stationary Auxiliary<br>Contact ½' diameter                       |                              | 85G          |                            | 4                        | 409N48                                    |
| 19               | 1           |                               | K103                                   | Relay Coil 28 v d-c 125 ohr                                       | n                            | 85G          | SP-222-W                   | 4                        | 409N51                                    |
| 18               | ĩ           |                               | K104                                   | Relay Coil 28 v d-c 150 ohr                                       |                              | 85G          | SP-220-W                   |                          | 409N43                                    |
| 94               | $\tilde{4}$ |                               | K104                                   | Movable Contact 3/16''<br>dia. fine silver                        |                              | 85G          |                            |                          | 409N49                                    |
| 95               | 4           |                               | K104                                   | Stationary Relay Contact<br>Bracket and Insulation<br>Board Assy. |                              | 85G          | BBA-61                     | 4                        | 109N50                                    |
| 137              | 1           |                               | K105                                   | 28 v d-c 1 PDT, 1 PNC,<br>and 1 PNO Contacts                      |                              | 85G          | G33304                     | 4                        | 10N18                                     |
| 115              | 1           |                               | K1801                                  | 115 v a.c. 60 cps 3 PNO<br>Cont.                                  |                              | 85G          | G33396                     | 4                        | 405NB204A                                 |
| 116              | 1           |                               | K1802                                  | 12 v d-c coil 2 PNO Cont.                                         |                              | 85G          | G333402                    | 4                        | 05NB205A                                  |
| 65               | 1           |                               | K1803                                  | 115 v d-c coil 2 PDT                                              |                              | 65G          | 12706                      |                          | 05NB208                                   |
| 136              | 1           |                               | K1804                                  | Time delay relay 115 v 60<br>cps coil 1 NO Contact                |                              | 84C          | TD2/30S                    |                          | 02N18                                     |

163

1.1.1

10 A

# FOR A-C EQUIPMENT

# RELAYS (Cont.)

|        | Carton<br>Number | Quan | Navy or<br>JAN Type<br>. Number | All Symbol<br>Designations<br>Involved | Description                                                       | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code   | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br><u>Mod.</u> | Contractor's<br>Drawing or<br>Part Number |
|--------|------------------|------|---------------------------------|----------------------------------------|-------------------------------------------------------------------|------------------------------|----------------|----------------------------|---------------------------------|-------------------------------------------|
|        | 64               | 1    |                                 | K1805                                  | 115 v 60 cps coil 2 PNO<br>cont.                                  |                              | 65G            | 12709                      | 4                               | 05NB207                                   |
|        | 63               | 1    |                                 | K1806                                  | 28 v d-c coil 2 PNO cont.                                         |                              | 65G            | 12708                      | 4                               | 05NB206                                   |
|        |                  |      |                                 | INI                                    | DUCTORS AND READ<br>(See Figure 119)                              | TORS                         |                |                            |                                 |                                           |
|        | 108              | 2    |                                 | L102, L103, L115, L403                 | Mult. Sect. 2.5 mh 0.125 ar                                       | np                           | 05N<br>35M     | R100-U                     | 2                               | 240N53                                    |
| L<br>9 | 16               | 1    |                                 | L104                                   | 2 sect. 208 mh ±1% 2 ohm<br>duo-lateral wound                     | I                            | 68S            |                            | 2                               | 40N60                                     |
|        | 108              | 1    |                                 | L107                                   | Mult. Sect. duo-lateral<br>wound 2.5 mh 0.125 amp<br>35 to 50 ohm |                              | 05N            | R100                       | 2                               | 40N2A                                     |
|        | 8                | 1    |                                 | L108                                   | 175 turns close wound<br>single layer                             |                              | $64\mathrm{C}$ | GA-1404C                   |                                 | 3A-1404C                                  |
|        | 30               | 1    |                                 | L109, L1001                            | Mult. Sect. 6 mh 21 ohm                                           |                              | 82C            |                            |                                 | 40N59                                     |
|        | 5                | 1    |                                 | L110                                   | Close wound single layer                                          |                              | 64C            | GA-1395C                   |                                 | FA-1395C                                  |
|        | 108              | 1    |                                 | L116                                   | 3 sect. 1 mh duo-lateral<br>wound                                 |                              | 35M            | R-300U                     |                                 | 40N58                                     |
|        | 15               | 1    |                                 | L402                                   | 8 mh 0.125 amp 70 ohm                                             |                              | 05H            | CH-8                       |                                 | 40N4A                                     |
|        | 27, 28           | 2    |                                 | L1805, L1806, L1808,<br>L1809          | .012 mh choke                                                     |                              | 97E<br>05M     | RF-583                     | 2                               | 40N54                                     |
|        |                  |      |                                 |                                        |                                                                   |                              |                |                            |                                 |                                           |
|        |                  |      |                                 |                                        | METERS                                                            |                              |                |                            |                                 |                                           |
|        | 176              | 1    |                                 | M101                                   | 0-0.25 amp r.f. meter                                             |                              | 40G<br>35W     | DW44<br>NT-33              | 4                               | 51ND0.25SN                                |
|        | 175              | 1    |                                 | M102                                   | 0-1 ma d-c meter 2%<br>accuracy                                   |                              | 40G<br>35W     | DW41<br>NX-33              | 4                               | 50ND1SN                                   |
|        | 177              | 1    | -22438                          | M1001                                  | 3 amp Thermo-ammeter                                              |                              | 45W            | 507                        | 4                               | 57N114                                    |

### FOR A-C EQUIPMENT

#### PLUGS

|   | Carton<br>Number |   | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                                       | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spel.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|---|------------------|---|-------------------------------|----------------------------------------|---------------------------------------------------|------------------------------|--------------|----------------------------|--------------------------|-------------------------------------------|
|   | 110              | 4 |                               | P101                                   | 12 term. octal style female<br>conn. chassis mtg. |                              | 60A          | M1P                        | ŝ                        | 869N16                                    |
|   | 127              | 4 |                               | P201                                   | 12 term. conn. chassis mtg.                       |                              | 91J          | P-312-AB                   | 9                        | 865N212                                   |
|   | 126              | 4 |                               | P301                                   | 8 term. plug chassis mtg.                         |                              | 91J          | 300                        | ę                        | 865N208                                   |
|   | 125              | 4 |                               | P401                                   | 6 term. conn. chassis mtg.                        |                              | 91J          | 300                        | ę                        | 865N206                                   |
|   | 112              | 4 |                               | P901                                   | 27 term. wall mtg. recpt.                         |                              | 10C          | K                          | Ę                        | 871N405                                   |
|   | 82               | 4 |                               | P1001                                  | 2 term. chassis mtg. socket                       |                              | 91J          | S-302-AB                   | í.                       | 366N202                                   |
|   | 132              | 4 |                               | P1501                                  | 27 term. 90 degree plug<br>conn. female           |                              | 10C          | NK-27-23-11/16             | Ĩ                        | 371N406                                   |
| 4 | 131              | 4 |                               | P1502                                  | 27 term. straight plug<br>conn. male              |                              | 10C          | RNK-27-<br>22C11/16        | i.                       | 871N404R                                  |
| R | 135              | 4 |                               | P1601                                  | 10 term. straight plug conn.                      |                              | 10C          | FK10-21-9/16               | 3                        | 71N514                                    |
|   | 134              | 4 |                               | P1602                                  | 10 term. 90 degree angle<br>plug connector        |                              | 10C          | RFK10-24C 9/16             | 90                       | 71N512R                                   |
|   | 128              | 4 |                               | P1701                                  | 3 term. 90 degree angle<br>female plug connector  |                              | 10C          | WK-C3-<br>23C 7/16         | , ê                      | 371N109                                   |
|   | 129              | 4 |                               | P1702                                  | 3 term. straight plug conn.                       |                              | 10C          | RWK-C3-22C 7/16            | 9                        | 871N110R                                  |
|   | 124              | 4 |                               | P1801, P1802                           | 4 prong connector plug                            |                              | 91J          | P-4-AB1/16                 | e<br>e                   | 863N204                                   |

#### RESISTORS

| 69<br>69<br>69           | 1<br>1<br>3        | -RC30BF470M | R101<br>R102, R107<br>R103, R104, R106,R108,                 | 22,000 ohm ±10% 1 w<br>100,000 ohm ±10% 1 w<br>47 ohm ±20% 1 w                      | 28J<br>28J<br>65S        | BT1-Navy<br>BT1-Navy | 729NG22M-K<br>729NG100M-K<br>729NG47-M                  |
|--------------------------|--------------------|-------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------|----------------------|---------------------------------------------------------|
| 139<br>101<br>138<br>139 | $2 \\ 1 \\ 2 \\ 1$ |             | R112<br>R105, R109, R110<br>R111<br>R113, R114, R136<br>R115 | 20,000 ohm ±10% 25 w<br>235 ohm ±2% 200 v<br>150 ohm ±20% 10 w<br>100 ohm ±10% 25 w | 25P<br>28J<br>25P<br>25P | 0218<br>WW3<br>BD    | 710NC20MA-K<br>721NL235-G<br>710NA150B-M<br>710NC100A-K |
| 138                      | 1                  |             | R116                                                         | 1 ohm $\pm 10\%$ 10 w                                                               | $25\mathrm{P}$           | BD                   | 710NA1A-K                                               |

## FOR A-C EQUIPMENT

### RESISTORS (Cont.)

| Carton<br>Number | Quar     | Navy or<br>JAN Type<br>n. Number | All Symbol<br>Designations<br>Involved | Description                                     | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation           | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|------------------|----------|----------------------------------|----------------------------------------|-------------------------------------------------|------------------------------|--------------|--------------------------------------|--------------------------|-------------------------------------------|
| 139              | 2        |                                  | R117, R118, R119, R120                 | 5000 ohm $\pm 10\%$ 25 w                        |                              | 25P          | 0212                                 |                          | 710NC5MA-K                                |
| 4                | 1        |                                  | R121                                   | $0.8 \text{ ohm } \pm 10\% 50 \text{ w}$        |                              | 25P          |                                      |                          | 710ND0.8A-K                               |
| 139              | 1        |                                  | R123                                   | $12.6 \text{ ohm } \pm 10\% 25 \text{ w}$       |                              | 25P          |                                      |                          | 710NC12.6A-K                              |
| 139              | 1        |                                  | R124                                   | 25,000 ohm $\pm 10\%$ 25 w                      |                              | 25P          | 0219                                 |                          | 710NC25MA-K                               |
| 101              | 1        |                                  | R128                                   | 4000 ohm $\pm 2\%$ 200 v                        |                              | 28J          | WW3                                  |                          | 721NL4M-G                                 |
| 138              | 1        |                                  | R129, R130                             | 1000 ohm $\pm 10\%$ 10 w                        |                              | 25P          | BD                                   |                          | 710NA1MA-K                                |
| 138              | 1        |                                  | R131                                   | $350 \text{ ohm } \pm 10\% 10 \text{ w}$        |                              | 25P          | BD                                   | ,                        | 710NA350-K                                |
| 101              | 1        |                                  | R132                                   | 50,000 ohm $\pm 2\%$ 200 v                      |                              | 28J          | WW3                                  | ,                        | 721NL50 <b>M-</b> G                       |
| 138              | 1        |                                  | R133                                   | 50 ohm $\pm 10\%$ 10 w                          |                              | 25P          |                                      | ,                        | 710NA50A-K                                |
| 67               | 1        |                                  | R134                                   | 75 ohm $\pm 10\% \frac{1}{2}$ w                 |                              | 28J          | BW1/2                                | '                        | 707N75N-K                                 |
| 67               | 1        |                                  | R135                                   | 10 ohm $\pm 10\% \frac{1}{2}$ w                 |                              | 28J          | $BW_{2}^{1/2}$                       | 1                        | 707N10N-K                                 |
| 67               | 1        |                                  | R201, R204                             | 220 ohm $\pm 5\%$ 1 w                           |                              | 22A          |                                      | ,                        | 703NA220-J                                |
| 67               | 1        |                                  | R202                                   | $100 \text{ ohm } \pm 5\% 1 \text{ w}$          |                              | 22A          |                                      | ,                        | 703NA100-J                                |
| 68               | 1        |                                  | R203                                   | 15,000 ohm $\pm 5\% \frac{1}{2}$ w              |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE15M-J                                |
| 68               | 2        |                                  | R205, R210, R303                       | 470,000 ohm $\pm 10\% \frac{1}{2}$ w            |                              | 28J          | BT <sup>1</sup> /2-Navy              | *                        | 729NE470M-K                               |
| 138              | 1        |                                  | R206                                   | 42 ohm $\pm 10\%$ 10 w                          |                              | 25P          | BD                                   | ,                        | 710NA42B-K                                |
| 67               | 1        |                                  | $\mathbf{R207}$                        | $2200 \text{ ohm } \pm 10\% 1 \text{ w}$        |                              | 28J          | BW1-Navy                             | -                        | 708N2200NA-K                              |
| 69               | 1        |                                  | R208                                   | $1 \text{ Meg } \pm 10\% \frac{1}{2} \text{ w}$ |                              | 28J          | BW1-Navy                             |                          | 729NE1MEG-K                               |
| 68               | <b>2</b> |                                  | R209, R307, R308                       | 220,000 ohm $\pm 10\%$ $\frac{1}{2}\mathrm{w}$  |                              | 28J          | BT ½-Navy                            |                          | 729NE220M-K                               |
| 68               | 1        |                                  | R211                                   | 100,000 ohm $\pm 5\%$ ½ w                       |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE100M-J                               |
| 68               | 1        |                                  | R212                                   | 470,000 ohm $\pm 5\% \frac{1}{2}$ w             |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE470M-J                               |
| 68               | 1        |                                  | R213                                   | 750,000 ohm $\pm 5\%$ ½ w                       |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE750M-J                               |
| 67               | 1        |                                  | R214, R215                             | 250 ohm $\pm 10\%$ 1 w                          |                              | 28J          | BW1-Navy                             |                          | 708N250NA-K                               |
| 67               | 1        |                                  | R216                                   | 220 ohm $\pm 10\% \frac{1}{2}$ w                |                              | 28J          | $BW_{1/2}^{1/2}$                     |                          | 707N220N-K                                |
| 68               | 1        |                                  | R301, R311                             | 100,000 ohm $\pm 10\% \frac{1}{2}$ w            |                              | 28J          | BT <sup>1</sup> /2-Navy              |                          | 729NE100M-K                               |
| 67               | 1        |                                  | R302                                   | 10,000 ohm $\pm 10\% \frac{1}{2}$ w             |                              | 28J          | BT <sup>1</sup> /2-Navy              |                          | 729NE10M-K                                |
| 68               | 1        |                                  | R304                                   | 82,000 ohm $\pm 10\% \frac{1}{2}$ w             |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE82M-K                                |
| 67               | 1        |                                  | R305                                   | 8200 ohm $\pm 10\% \frac{1}{2}$ w               |                              | 28J          | BT <sup>1</sup> /2-Navy              |                          | 729NE8200-K                               |
| 67<br>17         | 1        |                                  | R309                                   | 1500 ohm $\pm 5\% \frac{1}{2}$ w                |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE1500-J                               |
| 17               | 1        |                                  | R310                                   | 2-15 ohm Rheostat                               |                              | 89W          |                                      |                          | 381N901                                   |
| 69<br>69         | 1        | D (101 D D1 001                  | R401                                   | 15,000 ohm $\pm 10\%$ 1 w                       |                              | 28J          | BT1-Navy                             |                          | 729NG15M-K                                |
| 69               | 1        | -RC31BF182K                      | R901                                   | 1800 ohm 1 w $\pm 20\%$                         |                              | 28J          | BT1-Navy                             |                          | 729NG1800-M                               |

166

### FOR A-C EQUIPMENT

## RESISTORS (Cont.)

| Carton<br>Number | Navy or<br>JAN Type<br>Quan. Number | All Symbol<br>Designations<br>Involved |                                              | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------------|----------------------------------------|----------------------------------------------|------------------------------|--------------|----------------------------|--------------------------|-------------------------------------------|
| 171              | 1 -631874-2                         | R902                                   | 500 ohm "T" pad attenuato                    | r                            | 28J          | CSMPD                      |                          | 80N201<br>33NXA63-J                       |
| 10               | 1                                   | <b>R1801</b>                           | 63 ohm ±5% 200 w<br>Ferrule Type             |                              | 66S          |                            |                          |                                           |
| 2                | 1                                   | R1802                                  | 2500 ohm $\pm 5\%$ 15 w<br>Ferrule Type      |                              | 66S          |                            | 7                        | 33NXF2500-J                               |
| 101              | 1                                   | R1803                                  | 13.3 ohm $\pm 2\%$ 1 w                       |                              | 28J          | WW3                        | 7                        | 21NL13.3-G                                |
| $\frac{101}{11}$ | 1<br>1                              | R1804                                  | $31,500 \text{ ohm } \pm 10\% 200 \text{ w}$ |                              | 66S          |                            |                          | 33 0331 00                                |
|                  | 1                                   | R1805                                  | $20,000 \text{ ohm } \pm 5\% 70 \text{ w}$   |                              | 66S          |                            |                          | 33NXC20M-J                                |
| 3<br>1           | 1                                   | R1805                                  | 1000 ohm $\pm 5\%$ 25 w                      |                              | 66S          |                            |                          | 733NXE1M-J                                |
|                  |                                     |                                        | SWITCHES                                     |                              |              |                            |                          |                                           |
| 75               | 1                                   | S101                                   | Moving Switch Arm                            |                              | 64C          | GA-1445A                   |                          | GA-1445A                                  |
| 75               | 1                                   | 0101                                   | Stationary Switch Arm                        |                              | 64C          | GA-2002A                   |                          | GA-2002A                                  |
| 33               | 1                                   | S102                                   | 18 contact single pi                         |                              | 64C          |                            |                          | 500 0085 00B                              |
| 33<br>34         | 1                                   | S103                                   | 7 contact single pi                          |                              | 64C          |                            |                          | 500 0206 00B                              |
| 45               | 1                                   | S104                                   | Single pole NO 20 amp                        |                              | 96C          | 8817                       | 2                        | 260N110                                   |
| 40               | 1                                   |                                        | 24 v d-c                                     |                              |              |                            |                          |                                           |
| 58               | 1                                   | $\mathbf{S105}$                        | 2 circuit 3 pos. non-shorting                | g                            | 05P          |                            |                          | 259N139A                                  |
| 57               | 1                                   | S106                                   | 5 circuit 3 pos. shorting                    |                              | 05P          |                            |                          | 259N138A                                  |
| 60               | 1                                   | S107                                   | 4 circuit 2 pos. shorting                    |                              | 05P          |                            | -                        | 259N141A                                  |
| 59               | 1                                   | S108                                   | 1 circuit 12 pos. non-shortir                | ng                           | 05P          |                            |                          | 259N140A                                  |
| 56               | 1                                   | S109                                   | 1 circuit 12 pos. shorting                   |                              | 05P          | 25851 - DH - 1             |                          | 259N137A                                  |
| 55               | 1                                   | S110                                   | 3 circuit 4 pos. shorting                    |                              | 05P          |                            |                          | 259N136B                                  |
| 53               | 1                                   | S111                                   | Double pole 1 NC 1 NO                        |                              | 64C          | GA-1557B                   | ,                        | GA-1557B                                  |
|                  |                                     |                                        | Contact Leaf                                 |                              |              | TT 000 I                   |                          | V7 009 A                                  |
| 50               | 1                                   | S112                                   | Single pole 1 NC contact le                  | af                           | 64C          | Y-983A                     |                          | Y-983A                                    |
| 43               | 1                                   | S113C                                  | Single contact Sw. arm Ass                   | у.                           | 64C          | GA-1074A                   |                          | GA-1074A                                  |
| 51               | 1                                   | S113D                                  | Single pole 1 NO contact le                  | af                           | 64C          | Y-1048A                    |                          | Y-1048A                                   |
| 52               | 1                                   | S114                                   | DPST 2 NO 2 NC contact                       |                              | 64C          | Y-1136B                    |                          | Y-1136B                                   |
|                  |                                     |                                        | leaf                                         |                              |              |                            |                          |                                           |

## FOR A-C EQUIPMENT

### SWITCHES (Cont.)

| ٤.                        |       |                               |                                        | SWITCHES (Cont.)                                  |                              |              |                            |                          |                                           |
|---------------------------|-------|-------------------------------|----------------------------------------|---------------------------------------------------|------------------------------|--------------|----------------------------|--------------------------|-------------------------------------------|
| Carton<br>Number          | Quan. | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                                       | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
| 49                        | 1     |                               | S115                                   | Single pole NO contact leaf                       | •                            | 64C          | Y-981A                     | r                        | 7-981A                                    |
| 36, 37,<br>38, 3 <b>9</b> | 4     |                               | S116, S1002                            | 8 amp 250 v a-c SPDT<br>Vacuum contact            |                              | 40G          | GL34                       |                          | 60N601                                    |
| 48                        | 1     |                               | S201                                   | DPDT Toggle 1 amp 250<br>v d-c or 3 amp 125 v d-c |                              | 84A          | 24003                      | 2                        | 66N103A                                   |
| 62                        | 1     |                               | S202                                   | 1 P. 6 pcs. 1 sect. shorting                      |                              | 05M          |                            | 9                        | 59N149                                    |
| 35                        | 1     |                               | S401                                   | Rotor Assembly                                    |                              | 64C          | GA-1021A                   |                          | A-1021A                                   |
|                           |       |                               |                                        | Stator Assembly                                   |                              | 64C          | GA-1544B                   |                          | A-1544B                                   |
| 47                        | 1     | -24003                        | S901, S1804                            | DPDT Toggle 1 amp<br>250 v d-c                    |                              | 84A          | 20905-GH                   |                          | 66N103                                    |
| 61                        | 1     |                               | S902                                   | 11 pos. 1 circuit single pi<br>non-shorting       |                              | 05P          |                            | 2                        | 59N142A                                   |
| 54                        | 1     |                               | S903                                   | 4 pos. 3 circuit 2 pi shorting                    | <del>,</del>                 | 05P          |                            | 9                        | 59N136A                                   |
| 178                       | 1     |                               | S1001                                  | 4 pos. non-shorting                               | 5                            | 64C          |                            |                          | A-1108C                                   |
| 174                       | 1     |                               | S1801                                  | 7 NO 1 NC Key Switch                              |                              | 040          |                            |                          | C102H                                     |
| 46                        | 1     |                               | S1802, S1803                           | SPST Toggle 3 amp 125 v                           |                              | 84A          | 20994-ET                   |                          | 66N101                                    |
|                           |       |                               |                                        | TUBES                                             |                              |              |                            |                          |                                           |
| 150                       | 1     |                               | V101                                   | Type 837, Beam pentode                            |                              | * *          | 837                        | 2                        | 56.837                                    |
| 151, 152,<br>153          | 3     |                               | V102, V103, V401                       | Type 1625, Beam Pentode                           |                              | * *          | 1625                       |                          | 56.1625                                   |
| 149                       | 1     |                               | V104                                   | Type 813, Beam pentode                            |                              | * *          | 813                        | 9                        | 56.813                                    |
| 147, 148                  | 2     |                               | V105, V106                             | Type 811, Triode                                  |                              | * *          | 811                        |                          | 56.811                                    |
| 141, 142,<br>143          | 3     |                               | V201, V301, V302                       | 12SJ7, Triple Grid Amp.                           |                              | * *          | 811<br>12SJ7               |                          | 55.12SJ7                                  |
| 145, 146                  | 2     |                               | V202, V203                             | 6V6GT Beam Pentode                                |                              | * *          | 6V6GT                      | 91                       | 55.6V6GT                                  |
| 154, 155,<br>156, 157     | 4     |                               | V1801, V1802,V1803,V1804               |                                                   |                              | * *          | 866A                       |                          | 56.866A                                   |

# FOR A-C EQUIPMENT

### SOCKETS

|          |       |                               |                                           | SOCKETS                                    |                              |              |          |                          |                                           |
|----------|-------|-------------------------------|-------------------------------------------|--------------------------------------------|------------------------------|--------------|----------|--------------------------|-------------------------------------------|
| Carton   | Quan. | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved    | Description                                | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Desig-   | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
| 107      |       | -49366                        | X101, X102, X103, X401                    | 7 terminal base, Iso.                      |                              | 77J          | 227      | 2                        | 20N573                                    |
| 120      | 4     |                               | X104                                      | 7 term. "Jumbo" wafer<br>socket            |                              | 77J          | 237      | 2                        | 20N571A                                   |
| 32       | -     |                               | X105, X106, X1805, X1806,<br>X1807, X1808 |                                            |                              | 77J          | 224      | 2                        | 20N545                                    |
| 29       | 4     |                               | X201, X202, X203, X301,<br>X302, X303     | 8 term. octal tube socket                  |                              | 60A          | 88-8     | 2                        | 220N185                                   |
| 1        |       |                               |                                           | CRYSTALS                                   |                              |              |          |                          |                                           |
| 0<br>144 | 1     | -40127                        | Y301                                      | Quartz Crystal Mtg. in<br>"plug-in" holder |                              | 64C          | 146A-2   | 5                        | 20 1021 00                                |
|          |       |                               |                                           |                                            |                              |              |          |                          |                                           |
|          |       |                               |                                           | MISCELLANEOUS                              |                              |              |          |                          |                                           |
| 44       |       |                               |                                           | Crank Arm Assembly                         |                              | 64C          | GA-1149A | (                        | GA-1149A                                  |
| 117      |       |                               |                                           | Load Coil Lead Assembly                    |                              | 64C          | GA-1174A | Ċ                        | <b>JA-1174A</b>                           |
| 117      |       |                               |                                           | Final Plate Lead Assembly                  |                              | 64C          | GA-1175A |                          | JA-1175A                                  |
| 6        |       |                               |                                           | Plate Lead Assembly                        |                              | 64C          | GA-2021A | (                        | JA-2021A                                  |
| 7        | -     |                               |                                           | Mod. Plate Lead Assembly                   |                              | 64C          | GA-2030A |                          | GA-2030A                                  |
| 117      |       |                               |                                           | Meter Lead Assembly                        |                              | 64C          | GA-2083A | . (                      | <b>JA-2083A</b>                           |
| 9        |       |                               |                                           | Flexible Lead Assembly                     |                              | 64C          | GA-2096A |                          | GA-2096A                                  |
| 117      | -     |                               |                                           | Plate Lead Assembly                        |                              | 64C          | GA-2130A |                          | GA-2130A                                  |
| 117      |       |                               |                                           | Gnd. Strip Assembly                        |                              | 64C          | GA-2170A |                          | GA-2170A                                  |
| 76       | -     |                               |                                           | Antenna Lead Assembly                      |                              | 64C          | GA-2523A |                          | FA-2523A                                  |
| 118      |       |                               |                                           | Multiplier Coil Lead Assem                 | bly                          | 64C          | GA-2583A |                          | GA-2583A                                  |
| 118      |       |                               |                                           | Multiplier Coil Lead Assemi                | bly                          | 64C          | GA-2584A |                          | GA-2584A                                  |
| 118      | 1     |                               |                                           | L. F. Osc. Lead Assembly                   |                              | 64C          | GA-2587A |                          | A-2587A                                   |

### FOR A-C EQUIPMENT

## MISCELLANEOUS (Cont.)

| Carton<br>Number                                | Navy or<br>JAN Type<br>Quan. Number | All Symbol<br>Designations<br>Involved | Description                                                                                                                                                                                             | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code                                                | Mfr's.<br>Desig-<br>nation                                                       | Spcl.Contractor'sTol. orDrawing orMod.Part Number                                               |
|-------------------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 118<br>118<br>118<br>118<br>6<br>117<br>9<br>96 | 1<br>1<br>1<br>1<br>1<br>1<br>2 ft. |                                        | Multiplier Coil Lead Asse<br>Multiplier Coil Lead Asse<br>Grid Clip Assembly<br>Mod. Plate Lead Assembly<br>Plate Lead Assembly<br>Meter Lead Assembly<br>Flexible Lead Assembly<br>Tinned Copper Braid | embly                        | 64C<br>64C<br>64C<br>64C<br>64C<br>64C<br>64C<br>64C<br>24B | GA-2588A<br>GA-2589A<br>GA-2623A<br>GA-2639A<br>GB-2021A<br>GB-2021A<br>GB-2096A | GA-2588A<br>GA-2589A<br>GA-2623A<br>GA-2639A<br>GB-2021A<br>GB-2083A<br>GB-2096A<br>425 0001 00 |

### FOR D-C EQUIPMENT

## MOTORS

ы

|     | Carton<br>Number | Quan. | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                                                                                              | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br><u>Mod.</u> | Contractor's<br>Drawing or<br>Part Number |
|-----|------------------|-------|-------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|--------------|----------------------------|---------------------------------|-------------------------------------------|
|     | 160              | 1     |                               | B101                                   | 1/20 hp 28 v d-e                                                                                         |                              | 98E          | NY-818C-A                  | 8                               | 18C                                       |
|     |                  |       |                               |                                        | CAPACITORS                                                                                               |                              |              |                            |                                 |                                           |
|     | 167              | 1     | (481677-1<br>(481678-1        | C101<br>C102, C103, C104               | .000185 mf $\pm 1\%$ 1000 TV<br>Set of 3 matched Ceramic<br>Capacitors Total 413 mm<br>$\pm 1\%$ 1000 TV | ,f }                         | 64C          |                            | (                               | 3A-1433C                                  |
| 171 | 73               | 1     |                               | C105                                   | .005 mf $\pm 5\%$ 2500 TV                                                                                | ,                            | 75C<br>02S   | 4LST<br>HLST               | 9                               | 25N250K-J                                 |
| Ц   | 72               | 1     |                               | C106, C117                             | .006 mf $\pm 20\%$ 1000 TV                                                                               |                              | 75C<br>02S   | 4LS<br>HLS-10              | 9                               | 10N260C-M                                 |
|     | 72               | 1     |                               | C107                                   | .002 mf $\pm 20\%$ 1000 TV                                                                               |                              | 75C<br>02S   | 4LS<br>HLS-10              | 9                               | 10N220C-M                                 |
|     | 73               | 1     |                               | C108, C116                             | .0005 mf $\pm 10\%$ 1500 TV                                                                              |                              | 028          | BE-15                      | 9                               | 15N350E-K                                 |
|     | 72               | 3     | -482111-B-20                  | C109, C110, C113, C114,<br>C401        | .002 mf $\pm 20\%$ 1500 TV                                                                               |                              | 028          | BE-15                      |                                 | 15N220E-M                                 |
|     | 66               | 1     |                               | C111, C115                             | 6 sect. variable ceramic cap                                                                             |                              | 25C          | 828-003                    | 9                               | 17N6A3                                    |
|     | 73               | 1     |                               | C112                                   | .00025 mf $\pm 10\%$ 1500 TV                                                                             |                              | 02S          | BE-15                      | 9                               | 15N325E-K                                 |
|     | <b>24</b>        | 1     |                               | C118                                   | .002 mf $\pm 20\%$ 7500 TV                                                                               |                              | 02S          | A2LS                       | 9                               | 75N220A-M                                 |
|     | 73               | 1     |                               | C119                                   | .002 mf $\pm 20\%$ 2500 TV                                                                               |                              | 75C          | 4LS                        | 9                               | 25N220C-M                                 |
|     |                  |       |                               |                                        |                                                                                                          |                              | 02S          | HLS-25                     |                                 |                                           |
|     | 74               | 1     |                               | C120A, C120B                           | .002 mf $\pm 20\%$ 5000 TV                                                                               |                              | 75C          | 4LS                        | 9                               | 50N220C-M                                 |
|     |                  |       |                               |                                        |                                                                                                          |                              | 02S          | HLS-50                     |                                 |                                           |
|     | 23               | 1     |                               | C121A, C121B, C121C                    | 3-0.1 mf $\pm 20\%$ 600 WV                                                                               |                              | 75C<br>64S   | DYRT-6111<br>3XDMR<br>TW61 | 9                               | 56NT01WX1-M                               |
|     | 140              | 2     |                               | C122A, C122B, C129                     | $.00005 \text{ mf} \pm 10\%$ Ceramic                                                                     |                              | 25C          | 850-002                    | 9                               | 13N450C-K                                 |
|     | 140              | 2     |                               | C124A, C124B, C124C                    | .000067 mf $\pm 5\%$ Ceramic                                                                             |                              | 25C          | 850-003                    |                                 | 13N467C-J                                 |
|     | 31, 181,<br>182  | 1     |                               | C126                                   | 2.0 mf $\pm 20\%$ 600 WV                                                                                 |                              | 75C          | KG-3020                    |                                 | 30N78B-M                                  |

### FOR D-C EQUIPMENT

## CAPACITORS (Cont.)

| Carton<br>Number | Quan. | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                                                                           | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code   | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br><u>Mod.</u> | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------|-------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|------------------------------|----------------|----------------------------|---------------------------------|-------------------------------------------|
| 73               | 1     |                               | C127                                   | .006 mf ±20% 1500 TV                                                                  |                              | 028            | BE-15                      |                                 | 915N260E-M                                |
| 140              | 1     | 481689-10                     | C130                                   | .000025 mf ±10% Ceramic                                                               |                              | 25C            | 850-001                    |                                 | 913N425C-K                                |
| 72               | 1     | 101000 10                     | C131                                   | .0008 mf $\pm 5\%$ 1000 TV                                                            |                              | 028            | BE-10                      |                                 | 910N380E-J                                |
| 70               | 1     |                               | C132, C133                             | .004 mf $\pm 20\%$ 600 TV                                                             |                              | 75C            | 3WS                        |                                 | 909N240F-M                                |
| 10               | T     |                               | 0102, 0100                             |                                                                                       |                              | 028            | JS                         |                                 |                                           |
| 173              | 1     |                               | C134, C135                             | Midget Variable                                                                       |                              | 05P            | 010                        |                                 | 922N51                                    |
| 140              | 1     | 481681                        | C136                                   | 13 mmf Variable Ceramic                                                               |                              | 25C            | 822-009                    |                                 | 917N101                                   |
| 70               | 1     | 401001                        | C137                                   | $.0015 \text{ mf} \pm 10\% 900 \text{ TV}$                                            |                              | 64S            |                            |                                 | 909N215F-K                                |
| 10               | T     |                               | 0101                                   |                                                                                       |                              | 028            |                            |                                 |                                           |
| 12, 13,          | 3     |                               | C201, C202, C207, C208,                | 20 mf +100% -10% 100                                                                  | v                            | 75C            | RVL-10051-1                |                                 | 183N33A                                   |
| 12, 15,          | 9     |                               | C1919A, C1919B                         | 20 111 (100 /0 10 /0 100                                                              | •                            | 05M            | SPO 38482                  |                                 |                                           |
| 20               | 2     |                               | C203, C304, C311                       | .05 mf ±20% 600 WV                                                                    |                              | 75C            | TVC                        |                                 | 930N66A-M                                 |
| 20<br>73         | 1     |                               | C203, C304, C011<br>C204               | .006 mf $\pm 10\%$ 1500 TV                                                            |                              | 028            | BE-15                      |                                 | 915N260E-K                                |
| 72               | 1     |                               | C205                                   | $.001 \text{ mf} \pm 10\% 1500 \text{ TV}$                                            |                              | 028            | BE-15                      |                                 | 915N210E-K                                |
| 73               | 1     |                               | C206                                   | $.003 \text{ mf} \pm 10\% 1500 \text{ TV}$                                            |                              | 028            | BE-15                      |                                 | 915N230E-K                                |
| 70               | 1     |                               | C301, C302                             | $.00001 \text{ mf} \pm 10\% 1000 \text{ TV}$                                          |                              | 75C            | 5WS                        |                                 | 909N410GN-K                               |
| 10               | •     |                               |                                        |                                                                                       |                              | 028            | KS                         |                                 |                                           |
| 22               | 1     |                               | C303, C305                             | .5 mf ±20% 600 WV                                                                     |                              | 75C            | DYR-6050                   |                                 | 956NS08YX1-M                              |
|                  | _     |                               |                                        |                                                                                       |                              | 64S            | X-DMR65                    |                                 |                                           |
| 70               | 1     |                               | C308                                   | .001 mf $\pm 20\%$ 1000 TV                                                            |                              | 75C            | 1RS                        |                                 | 912N210AN-M                               |
| 21               | 1     |                               | C309A, C309B                           | 2-0.1 mf ±20% 600 WV                                                                  |                              | 75C            | DYRT6011                   |                                 | 956ND01WX1-M                              |
| 70               | 1     |                               | C310                                   | .0025 mf $\pm 20\%$ 1000 TV                                                           |                              | 75C            | 1RS                        |                                 | 912N225AN-M                               |
| 70               | 1     |                               | C402                                   | .00005 mf $\pm 20\%$ 900 TV                                                           |                              | 028            | Туре "С"                   |                                 | 909N450C-M                                |
|                  |       |                               |                                        |                                                                                       |                              | 75C            | 1WL                        |                                 |                                           |
| 71               | 2     | 481685-2                      | C403, C408, C412                       | .0003 mf $\pm 2\%$ 1000 TV                                                            |                              | 25C            | 816-035                    |                                 | 913N330-G                                 |
| 102              | 1     | 481688-1/2                    | C404                                   | Set of 3 matched ceramic<br>capacitors total 0.00083<br>mf $\pm \frac{1}{2}\%$ 500 WV |                              | $25\mathrm{C}$ | 816-044                    |                                 | 913NA1                                    |
| 71               | 3     |                               | C405A, C405B, C409A,<br>C410B, C410C   | .002 mf $\pm 1\%$ 500 TV                                                              |                              | 34S            |                            |                                 | 912N220H-F                                |
| 70               | 1     |                               | C405C                                  | .001 mf $\pm 1\%$ 500 TV                                                              |                              | 34S            |                            |                                 | 912N210H-F                                |
| 70               | 1     | 481684-2                      | C406A                                  | .000125 mf $\pm 2\%$ 1000 TV                                                          |                              | $25\mathrm{C}$ | 814-106                    |                                 | 913 0001 00                               |
|                  |       |                               |                                        |                                                                                       |                              |                |                            |                                 |                                           |

#### FOR D-C EQUIPMENT

### CAPACITORS (Cont.)

|   |                  |          |                               |                                             | 0112 11012 0110 (0041                                                      | ·/                           |                |                            |                                 |                                           |
|---|------------------|----------|-------------------------------|---------------------------------------------|----------------------------------------------------------------------------|------------------------------|----------------|----------------------------|---------------------------------|-------------------------------------------|
|   | Carton<br>Number | Quan.    | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved      | Description                                                                | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code   | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br><u>Mod.</u> | Contractor's<br>Drawing or<br>Part Number |
|   | 102              | 1        | 481687-1                      | C407                                        | Set of 3 matched ceramic<br>capacitors total .00088<br>mf $\pm 1\%$ 500 WV |                              | 25C            | 816-043                    | :                               | 913NA2                                    |
|   | 70               | 1        |                               | C408A, C410D                                | .0015 mf $\pm 1\%$ 500 TV                                                  |                              | 34S            |                            | :                               | 912N215H-F                                |
|   | 71               | 1        |                               | C408B                                       | .00015 mf $\pm 2\%$ 1000 TV                                                |                              | $25\mathrm{C}$ | 810-250                    | :                               | 913N315N6.6-G                             |
|   | 70               | 1        |                               | C409B                                       | .0004 mf $\pm 1\%$ 500 TV                                                  |                              | 34S            |                            |                                 | 912N340H-F                                |
|   | 71               | 1        | 481686-2                      | C409C                                       | .00035 mf $\pm 2\%$ 1000 TV                                                |                              | 25C            | 816-041                    |                                 | 913N335N3.3-G                             |
|   | 71               | 1        | 481683-2                      | C410A                                       | .00025 mf $\pm 2\%$ 1000 TV                                                |                              | 25C            | 810-290                    | :                               | 913N325N7-G                               |
|   | 172              | 1        | 481680                        | C411                                        | 5 sect. variable ceramic cap                                               | •                            | $25\mathrm{C}$ | 826-003                    | :                               | 917N5A1                                   |
|   | 41               | 1        |                               | C1001                                       | .0007 mf $\pm 5\%$ 5000 WV                                                 |                              | 75C<br>02S     | 6LS<br>F2                  | :                               | 906N370A-J                                |
| 5 | 74               | 3        |                               | C1002, C1003, C1910,<br>C1913, C1914, C1918 | .01 mf $\pm 20\%$ 1000 TV                                                  |                              | 75C<br>02S     | 4L<br>H-10                 | 5                               | 910N110G-M                                |
|   | 158, 159         | 2        |                               | C1101, C1102, C1103                         | $25 \text{ mmf} \pm 10\% 10,000 \text{ v} \text{ eff}$                     |                              | 06A            | 1860-201                   | 9                               | 914N1X6-K                                 |
|   | 42, 64           | 2        |                               | C1901, C1902, C1909,<br>C1915               | $2 \text{ mf } \pm 20\% 400 \text{ WV}$                                    |                              | 75C            |                            | :                               | 954NS4U-M                                 |
|   | 165              | 1        |                               | C1903, C1904                                | 8 mf $\pm 20\%$ 800 WV                                                     |                              | 75C            | KG-4080                    | 9                               | 930N19-M                                  |
|   | 164              | 1        |                               | C1905, C1906                                | 4 mf $\pm 20\%$ 2000 WV                                                    |                              | $75\mathrm{C}$ | TJU-20040                  | 1                               | 930N40-M                                  |
|   | 74               | <b>2</b> | -48312-B-20                   | C1907, C1908, C1922                         | Dual 0.1 mf $\pm 20\%$ 600 WV                                              | 7                            | 75C            |                            | :                               | 956ND01W-M                                |
|   | 11               | 1        |                               | C1911                                       | $0.1 \text{ mf} \pm 20\% 600 \text{ WV}$                                   |                              | 75C            |                            | 9                               | 956NS01Y-M                                |
|   | 179              | 1        |                               | C1912, C1916                                | $0.1 \text{ mf} \pm 20\% 1500 \text{ WV}$                                  |                              | 75C            |                            | :                               | 930 0012 00                               |
|   | 180              | 1        |                               | C1917                                       | 4.0 mf $\pm 20\%$ 50 WV                                                    |                              | 75C            |                            | :                               | 930 0013 00                               |
|   |                  | 1        |                               | C1920, C1921                                | $2.0 \text{ mf} \pm 10\% 600 \text{ WV}$                                   |                              | 75C            |                            | 9                               | 930N78B-K                                 |
|   |                  |          |                               |                                             |                                                                            |                              |                |                            |                                 |                                           |

APPENDIX

### FOR D-C EQUIPMENT

#### DYNAMOTORS

|   | Carton<br>Number | Navy or<br>JAN Typ<br>Quan. Number | All Symbol<br>Designations<br>Involved | Description                                                   | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|---|------------------|------------------------------------|----------------------------------------|---------------------------------------------------------------|------------------------------|--------------|----------------------------|--------------------------|-------------------------------------------|
|   | 121              | 20                                 | D1901, D1902                           | -+115 v d-c brush for D190<br>D1902                           | 1,                           | 88F          | BR-104                     | 2                        | 34 0003 00                                |
|   | 122              | 10                                 | D1902                                  | +400 volt brush                                               |                              | 88F          | BR-102                     | 2                        | $34 \ 0005 \ 00$                          |
|   | 77               | 2                                  | D1901, D1902                           | 115 v and 28 v brush holder                                   | •                            | 88F          | B-104                      | 2                        | 34 0006 00                                |
|   | 77               | 2                                  | D1902                                  | 400 v brush holder                                            |                              | 88F          | B101                       | 2                        | 34 0007 00                                |
|   | 78               | 2                                  | D1901, D1902                           | Brush holder cap for 115 v<br>and 28 v brush holder           |                              | 88F          | BHC-101                    |                          | 34 0008 00                                |
|   | 78               | 2                                  | D1901, D1902                           | Brush holder cap for 14 v<br>400 v and 750 v brush<br>holders |                              | 88F          | BHC-103                    | 2                        | 34 0009 00                                |
| - | 79               | 4                                  | D1901, D1902                           | Bearing for D1901, D1902                                      |                              | 88F          | CWC 88013                  | 2                        | 34 0010 00                                |
| F | 154              | 20                                 | D1901, D1902                           | -115 y d-c brush                                              |                              | 88F          | <b>BR-104</b>              | 2                        | 34 0012 00                                |
| ~ | 122              | 10                                 | D1902                                  | -400  v brush                                                 |                              | 88F          | BR-102                     |                          | 34 0014 00                                |
|   | 155              | 10                                 | D1901                                  | -14 v brush                                                   |                              | 88F          | BR-106                     |                          | 34 0021 00                                |
|   | 155              | 10                                 | D1901                                  | -14 v brush                                                   |                              | 88F          | BR-106                     | 2                        | 34 0022 00                                |
|   | 156              | 10                                 | D1901                                  | +28 v brush                                                   |                              | 88F          | BR-101                     | 2                        | 234 0023 00                               |
|   | 156              | 10                                 | D1901                                  | -28 v brush                                                   |                              | 88F          | BR-101                     | 2                        | 234 0024 00                               |
|   | 157              | 10                                 | D1902                                  | +750 v brush                                                  |                              | 88F          | <b>BR-103</b>              | 2                        | 234 0025 00                               |
|   | 157              | 10                                 | D1902                                  | -750 v brush                                                  |                              | 88F          | <b>BR-103</b>              | 2                        | 234 0026 00                               |
|   | 97               | 2                                  | D1901                                  | 28 v brush holder                                             |                              | 88F          | B-103                      | 2                        | 234 0029 00                               |
|   | 97               | 2                                  | D1902                                  | +750 v brush holder                                           |                              | 88F          | B-102R                     | 2                        | 234 0030 00                               |
|   | 98               | 2                                  | D1902                                  | 750 v brush holder                                            |                              | 88F          | B-102L                     | 2                        | 234  0031  00                             |
|   | 98               | 2                                  | D1901                                  | 28 v brush holder cap                                         |                              | 88F          | BHC-102                    | 4                        | 234  0032  00                             |
|   | 77               | 2                                  | D1901                                  | 14 v brush holder                                             |                              | 88F          | DLT-105                    | 4                        | 234 0042 00                               |
|   | 161              | 1                                  | D1901                                  | D1901 Armature                                                |                              | 88F          | ARM-104                    |                          | 234 0033 00                               |
|   | 166              | 1                                  | D1902                                  | D1902 Armature                                                |                              | 88F          | ARM-105                    |                          | 234 0034 00                               |
|   | 162              | $\frac{1}{2}$                      | D1901                                  | D1901 Field Coil                                              |                              | 88F          | FCA-104                    |                          | 234 0036 00                               |
|   | 163              | 2                                  | D1902                                  | D1902 Field Coil                                              |                              | 88F          | FCA-105                    |                          | 234 0037 00                               |
|   |                  |                                    |                                        |                                                               |                              |              |                            |                          |                                           |

.

## FOR D-C EQUIPMENT

### MISCELLANEOUS ELECTRICAL PARTS

|                  |                                     | MISCE                                  | LLANEOUS ELECIKI                                           | CAL FAR                      | cro                       |                            |                                 |                                           |
|------------------|-------------------------------------|----------------------------------------|------------------------------------------------------------|------------------------------|---------------------------|----------------------------|---------------------------------|-------------------------------------------|
| Carton<br>Number | Navy or<br>JAN Type<br>Quan. Number | All Symbol<br>Designations<br>Involved | Description                                                | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code              | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br><u>Mod.</u> | Contractor's<br>Drawing or<br>Part Number |
| 123              | 20                                  | E101A                                  | + and $-$ Brush for                                        | <b>.</b> .                   | 98E                       |                            | 2                               | 234N130                                   |
| 25               | 4                                   | E1701, E1702                           | NY-818C-A Autotune M<br>Split rubber bushing               | <b>1</b> otor                | 10C                       | Р                          | ę                               | 371N111                                   |
|                  |                                     |                                        | FUSES                                                      |                              |                           |                            |                                 |                                           |
| 31<br>100        | 10<br>10                            | F1901, F1902<br>F1903, F1904, F1905    | 30 amp fuse link<br>15 amp 250 v 11/32'' dia.<br>1½'' long |                              |                           |                            |                                 | 264N230B<br>AA199K                        |
| 99               | 10                                  | F1906                                  | 3 amp 250 v 11/32'' dia.                                   |                              |                           |                            | I                               | AA199C                                    |
| 136<br>168       | 10<br>10                            | F1907<br>F1908                         | 1½" long<br>1 amp 1000 v<br>1 amp 2500 v                   |                              | 78L<br>78L                | 2104<br>2109               |                                 | 264N704<br>264N709                        |
|                  |                                     |                                        | PILOT LIGHTS                                               |                              |                           |                            |                                 |                                           |
| 80               | 2                                   | I101, I901                             | 28 v clear bulb, miniature<br>bayonet base                 |                              | 40G                       | T3-14                      | 2                               | 262N327                                   |
| 80               | 2                                   | I1901, I1902                           | 12-16 volt miniature bayon<br>base                         | net                          | 40G                       | T3-1⁄4                     | 2                               | 862N326                                   |
|                  |                                     |                                        | JACKS AND RECEPTA                                          | ACLES                        |                           |                            |                                 |                                           |
| 169              | 4                                   | J101, J103, J104, J105,                | 1 circuit jack for plugs wit                               | h                            | 05M                       | SC1A                       | 3                               | 58N104                                    |
| 170              | 4                                   | J901, J904<br>J102, J903               | 1/4" barrel<br>3 circuit jack                              |                              | 21N<br>05 <b>M</b><br>21N | SCA2B                      | 3                               | 58N105                                    |

#### FOR D-C EQUIPMENT

#### JACKS AND RECEPTACLES (Cont.)

|                  |                     | J-                         |                                                            | (,               | ,<br>, |                  |                  |                 |
|------------------|---------------------|----------------------------|------------------------------------------------------------|------------------|--------|------------------|------------------|-----------------|
| Carton<br>Number | Navy or<br>JAN Type | All Symbol<br>Designations |                                                            | Navy<br>Spec. or | Mfr.   | Mfr's.<br>Desig- | Spcl.<br>Tol. or | 0               |
| ΰZ               | Quan. Number        | Involved                   | Description                                                | Dwg. No.         | Code   | nation           | Mod.             | Part Number     |
| 130              | 4                   | J106                       | 27 term, female conn.                                      |                  | 10C    | RNK-27-31SL      | :                | 371N403R        |
| 106              | 4                   | J107                       | 3 term. female conn. wall                                  |                  | 10C    | RWK-C3-31SL      | :                | 371N105R        |
| 113              | 4                   | J108                       | mtg.<br>10 term. male conn. wall<br>mtg.                   |                  | 10C    | FK-10-32S        | :                | <b>371N5</b> 13 |
| 103              | 4                   | J111                       | 8 term. conn. socket                                       |                  | 91J    | 300              | :                | 366N208         |
| 104              | 4                   | J112                       | 12 term. socket chassis mt                                 | g.               | 91J    | 300              |                  | 366N212         |
| 83               | 4                   | J114                       | 6 term. chassis mtg. socket                                |                  | 91J    | 300              |                  | 366N206         |
| 105              | 4                   | J115                       | 12 term. octal style cable<br>plug conn.                   |                  | 60A    | 70-12            |                  | 369N17          |
| <b>109</b>       | 4                   | J116                       | 15 term. chassis mtg. conn                                 |                  | 91J    | 300              |                  | 366N215         |
| 40               | 4                   | J1001                      | 3 term. wall mtg. recept. n                                |                  | 10C    | WK-C3-32S        |                  | 371N104         |
| 111              | 4                   | J1901                      | 27 term. wall mtg. conn.                                   |                  | 10C    | NK-27-32S        |                  | 371N401         |
| 133              | 4                   | J1902                      | 10 term. wall mtg. conn.                                   |                  | 10C    | RFK-10-31SL      |                  | 371N511R        |
| 119              | . 4                 | J1906, J1907               | 6 term. conn. socket                                       |                  | 64C    |                  |                  | 500 2072 00A    |
|                  |                     |                            | RELAYS                                                     |                  |        |                  |                  |                 |
| 114              | 1                   | K101                       | 3 pole double throw relay                                  |                  | 85G    | G-33177          |                  | 405NB201A       |
| 26               | 1                   | K102, K1001A               | Coil 28 v 30 ohm (2 requir<br>for each relay)              | ed               | 85G    |                  |                  | 409N37          |
| 84               | 4                   | K102                       | Stationary Contact (long) $\frac{1}{8}$ " dia. fine silver |                  | 85G    |                  |                  | 409N38          |
| 85               | 4                   | K102                       | Stationary Contact (short)                                 | )                | 85G    |                  |                  | 409N39          |
| 86               | 4                   | K102                       | Movable Contact NO ½"<br>dia. fine silver                  |                  | 85G    |                  |                  | 409N40          |
| 87               | 4                   | K102                       | Movable Contact NC ½"<br>dia. fine silver                  |                  | 85G    |                  |                  | 409N41          |
| 88               | 4                   | K102                       | Movable Contact NO-NC $\frac{1}{8}''$ dia. fine silver     |                  | 85G    |                  |                  | 409N42          |

### FOR D-C EQUIPMENT

#### RELAYS (Cont.)

|    | •.               |   |                               |                                        | RELAIS (Cont.)                                                   |                              |              |                            |                                 |                                           |
|----|------------------|---|-------------------------------|----------------------------------------|------------------------------------------------------------------|------------------------------|--------------|----------------------------|---------------------------------|-------------------------------------------|
|    | Carton<br>Number |   | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                                                      | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spel.<br>Tol. or<br><u>Mod.</u> | Contractor's<br>Drawing or<br>Part Number |
|    | 89               | 4 |                               | K103                                   | Movable Contact and sprin $3/16^{\prime\prime}$ dia. fine silver | g                            | 85G          |                            | 4                               | 09N44                                     |
|    | 90               | 4 |                               | K103                                   | Movable Auxiliary Contact $\frac{1}{8}$ dia.                     |                              | 85G          |                            | 4                               | 09N45                                     |
|    | 91               | 4 |                               | K103                                   | Stationary Contact NO<br>3/16" dia. fine silver                  |                              | 85G          |                            | 4                               | 09N46                                     |
|    | 92               | 4 |                               | K103                                   | Stationary Contact NC 3/1<br>dia. fine silver                    | 6''                          | 85G          |                            | 4                               | 09N47                                     |
|    | 33               | 4 |                               | K103                                   | Stat. Auxiliary Cont. 1/8"<br>dia.                               |                              | 85G          |                            | 4                               | 0 <b>9N</b> 48                            |
|    | 19               | 1 |                               | K103                                   | Relay Coil 28 v d-c 125 ohn                                      | n                            | 85G          | SP-222-W                   |                                 | 09N51                                     |
| 77 | 18               | 1 |                               | K104                                   | Relay Coil 28 v d-c 150 ohn                                      |                              | 85G          | SP-220-W                   |                                 | 09N43                                     |
| ·  | 94               | 4 |                               | K104                                   | Movable Cont. 3/16" dia.<br>fine silver                          |                              | 85G          | 51-220-W                   |                                 | 09N43<br>09N49                            |
|    | 95               | 4 |                               | K104                                   | Stat. relay cont. bracket<br>and Insulation Board Ass            |                              | 85G          | BBA-61                     | 4                               | 09N50                                     |
|    | 137              | 1 |                               | K105                                   | 28 v d-c 1 PDT, 1 PNC, an<br>1 PNO Contacts                      |                              | 85G          | G33304                     | 4                               | 10 <b>N</b> 18                            |
|    | 116              | 1 |                               | K1902                                  | 12 v d-c coil 2 PNO Contac                                       | ts                           | 85G          | G333402                    | 1                               | 05NB205A                                  |
|    | 65               | 1 |                               | K1903                                  | 115 v d-c coil 2 PDT                                             |                              |              | 12706                      |                                 | 05NB208                                   |
|    | 115              | 1 |                               | K1901                                  | 115 v d-c coil 3 PNO Conta                                       |                              |              | G33549                     |                                 | 05NB203A                                  |
|    | 63               | 1 |                               | K1904                                  | 28 v d-c coil 2 PNO Contact                                      |                              |              | 12708                      |                                 | 05NB206                                   |
|    |                  |   |                               | INI                                    | OUCTORS AND REAC                                                 | TORS                         |              |                            |                                 |                                           |
|    |                  |   |                               |                                        | (See Figure 119)                                                 |                              |              |                            |                                 |                                           |
|    | 108              | 2 |                               | L102, L103, L115, L403                 | Mult. Sect. 2.5 mh 0.125 am                                      | -                            | 05N<br>35M   | R100-U                     | 24                              | 10N53                                     |
|    | 16               | 1 |                               | L104                                   | 2 sect. 208 mh $\pm 1\%$ 2 ohm duo-lateral wound                 |                              | 68S          |                            | 24                              | 10N60                                     |
|    |                  |   |                               |                                        |                                                                  |                              |              |                            |                                 |                                           |

### FOR D-C EQUIPMENT

#### INDUCTORS AND REACTORS

|   | Carton<br>Number | Quan. | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved                      | Description                                                    | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spel.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|---|------------------|-------|-------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|------------------------------|--------------|----------------------------|--------------------------|-------------------------------------------|
|   | 108              | 1     |                               | L107                                                        | Mult. Sect. duo-lateral<br>wound 2.5 mh 0.125 amp<br>35-50 ohm |                              | 05N          | R100                       | 2                        | 240N2A                                    |
|   | 8                | 1     |                               | L108                                                        | 175 turns close wound single<br>layer                          | e                            | 64C          | GA-1404C                   | (                        | GA-1404C                                  |
|   | 30               | 1     |                               | L109, L1001                                                 | Mult. Sect. 6 mh 21 ohm                                        |                              | 82C          |                            | 2                        | 240N59                                    |
|   | 5                | 1     |                               | L110                                                        | Close wound single layer                                       |                              | 64C          | GA-1395C                   |                          | GA-1395C                                  |
|   | 108              | 4     |                               | L116, L1912, L1913,<br>L1914, L1915, L1916,<br>L1917, L1918 | 3 sect. 1 mh duo-lateral<br>wound                              |                              | 35M          | R-300U                     | 5                        | 240N58                                    |
|   | 15               | 1     |                               | L402                                                        | 8 mh 0.125 amp 70 ohm                                          |                              | 05H          | CH-8                       |                          | 240N4A                                    |
|   | 2, 3,            | 5     |                               | L1904, L1905, L1906, L1907,                                 | .012 mh choke                                                  |                              | 97E          |                            | :                        | 240N54                                    |
| , | 27, 28,<br>183   |       |                               | L1908, L1909, L1910,<br>L1911, L1919, L1920                 |                                                                |                              | 05 <b>M</b>  | RF-583                     |                          |                                           |
|   |                  |       |                               |                                                             | METERS                                                         |                              |              |                            |                          |                                           |

| 176 | 1        | M101  | 0-0.25 amp r-f meter         | 40G               | DW44                   | 451ND0.25 SN |
|-----|----------|-------|------------------------------|-------------------|------------------------|--------------|
| 175 | 1        | M102  | 0-1 ma d-c meter $2\%$ accy. | 35W<br>40G<br>35W | NT-33<br>DW41<br>NX-33 | 450ND1SN     |
| 177 | 1 -22438 | M1001 | 3 amp Thermo-ammeter         | 45W               | 507                    | 457N114      |
|     |          |       | PLUGS                        |                   |                        |              |

| 110        | 4      | P101         | 12 term. octal style female                                                        | 60A        | M1P             | 369N16             |
|------------|--------|--------------|------------------------------------------------------------------------------------|------------|-----------------|--------------------|
| 127<br>126 | 4<br>4 | P201<br>P301 | conn. chassis mounting<br>12 term. conn. chassis mtg.<br>8 term. plug chassis mtg. | 91J<br>91J | P-312-AB<br>300 | 365N212<br>365N208 |

## FOR D-C EQUIPMENT

## PLUGS (Cont.)

|     | Carton<br>Number | Quan. | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                               | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br><u>Mod.</u> | Contractor's<br>Drawing or<br>Part Number |
|-----|------------------|-------|-------------------------------|----------------------------------------|-------------------------------------------|------------------------------|--------------|----------------------------|---------------------------------|-------------------------------------------|
|     | 125              | 4     |                               | P401                                   | 6 term. conn. chassis mtg.                |                              | 91J          | 300                        | ć                               | 365N206                                   |
|     | 112              | 4     |                               | P901                                   | 27 term. wall mtg. recept.                |                              | 10C          | K                          | ÷                               | 371N405                                   |
|     | 82               | 4     |                               | P1001                                  | 2 term. chassis mtg. socket               | ;                            | 91J          | S-302-AB                   | 8                               | 366N202                                   |
|     | 132              | 4     |                               | P1501                                  | 27 term. 90 degree plug con<br>Female     | nn.                          | 10C          | NK-27-23-11/16             | ę                               | 371N406                                   |
|     | 131              | 4     |                               | P1502                                  | 27 term. straight plug conr<br>Male       | 1.                           | 10C          | RNK-27-22C11/16            | ÷                               | 371N404R                                  |
|     | 135              | 4     |                               | P1601                                  | 10 term. straight plug conr               | 1.                           | 10C          | FK10-21-9/16               | ç                               | 871N514                                   |
|     | 134              | 4     |                               | P1602                                  | 10 term. 90 degree angle pl<br>conn.      | ug                           | 10C          | RFK10-24C9/16              | ŧ                               | 871N512R                                  |
| 170 | 128              | 4     |                               | P1701                                  | 3 term. 90 degree angle female plug conn. |                              | 10C          | WK-C3-23C7/16              | é                               | 871N109                                   |
|     | 129              | 4     |                               | P1702                                  | 3 term. straight plug conn.               |                              | 10C          | RWK-C3-22C7/16             | 3                               | 71N110R                                   |
|     | 124              | 4     |                               | P1901, P1902                           | 6 prong connector plug                    |                              | 91J          | SS-6-AB 1/16               | 5                               | 63N206                                    |

#### RESISTORS

| 69  | 1 |             | R101                            | 22,000 ohm $\pm 10\%$ 1 w                 | 28J            | BT1-Navy | 729NG22M-K   |
|-----|---|-------------|---------------------------------|-------------------------------------------|----------------|----------|--------------|
| 69  | 1 |             | R102, R107                      | 100,000 ohm $\pm 10\%$ 1 w                | 28J            | BT1-Navy | 729NG100M-K  |
| 69  | 3 | -RC30BF470M | R103, R104, R106, R108,<br>R112 | 47 ohm $\pm 20\%$ 1 w                     | 65S            |          | 729NG47-M    |
| 139 | 2 |             | R105, R109, R110                | 20,000 ohm $\pm 10\%$ 25 w                | 25P            | 0218     | 710NC20MA-K  |
| 101 | 1 |             | R111                            | 235 ohm $\pm 2\%$ 200 v                   | 28J            | WW3      | 721NL235-G   |
| 138 | 2 |             | R113, R114, R136                | 150 ohm $\pm 20\%$ 10 w                   | 25P            | BD       | 710NA150B-M  |
| 139 | 1 |             | R115                            | $100 \text{ ohm } \pm 10\% 25 \text{ w}$  | $25\mathrm{P}$ |          | 710NC100A-K  |
| 138 | 1 |             | R116                            | $1 \text{ ohm } \pm 10\% 10 \text{ w}$    | 25P            | BD       | 710NA1A-K    |
| 139 | 2 |             | R117, R118, R119, R120          | $5000 \text{ ohm } \pm 10\% 25 \text{ w}$ | $25\mathrm{P}$ | 0212     | 710NC5MA-K   |
| 4   | 1 |             | R121                            | $0.8 \text{ ohm } \pm 10\% 50 \text{ w}$  | $25\mathrm{P}$ |          | 710ND0.8A-K  |
| 139 | 1 |             | R123                            | 12.6 ohm ±10% 25 w                        | $25\mathrm{P}$ |          | 710NC12.6A-K |
| 139 | 1 |             | R124                            | 25,000 ohm $\pm 10\%$ 25 w                | $25\mathrm{P}$ | 0219     | 710NC25MA-K  |

## FOR D-C EQUIPMENT

## RESISTORS (Cont.)

| Conton | Number | Quan.          | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                                 | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation           | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|--------|--------|----------------|-------------------------------|----------------------------------------|---------------------------------------------|------------------------------|--------------|--------------------------------------|--------------------------|-------------------------------------------|
| 1      | 01     | 1              |                               | R128                                   | 4000 ohm $\pm 2\%$ 200 v                    |                              | 28J          | WW3                                  |                          | 721NL4M-G                                 |
|        | 38     | 1              |                               | R129, R130                             | 1000 ohm $\pm 10\%$ 10 w                    |                              | 25P          | BD                                   |                          | 710NA1MA-K                                |
|        | 38     | î              |                               | R131                                   | $350 \text{ ohm } \pm 10\% 10 \text{ w}$    |                              | 25P          | BD                                   |                          | 710NA350-K                                |
|        | 01     | 1              |                               | R132                                   | $50,000 \text{ ohm } \pm 2\% 200 \text{ v}$ |                              | 28J          | WW3                                  |                          | 721NL50M-G                                |
|        | 38     | 1              |                               | R133                                   | 50 ohm $\pm 10\%$ 10 w                      |                              | 25P          |                                      |                          | 710NA50A-K                                |
|        | 67     | 1              |                               | R134                                   | 75 ohm $\pm 10\%$ $\frac{1}{2}$ w           |                              | 28J          | $BW_{2}^{1/2}$                       | i                        | 707N75N-K                                 |
|        | 67     | 1              |                               | R135                                   | 10 ohm $\pm 10\% \frac{1}{2}$ w             |                              | 28J          | $BW_{2}^{1/2}$                       |                          | 707N10N-K                                 |
|        | 67     | 1              |                               | R201, R204                             | 220 ohm $\pm 5\%$ 1 w                       |                              | 22A          |                                      |                          | 703NA220-J                                |
|        | 67     | 1              |                               | R202                                   | 100 ohm $\pm 5\%$ 1 w                       |                              | 22A          |                                      |                          | 703NA100-J                                |
|        | 68     | 1              |                               | R203                                   | 15,000 ohm $\pm 5\% \frac{1}{2}$ w          |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE15M-J                                |
|        | 68     | $\overline{2}$ |                               | R205, R210, R303                       | 470,000 ohm $\pm 10\% \frac{1}{2}$ w        |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE470M-K                               |
|        | 38     | 1              |                               | R206                                   | 42 ohm $\pm 10\%$ 10 w                      |                              | 25P          | BD                                   |                          | 710NA42B-K                                |
|        | 67     | 1              |                               | R207                                   | 2200 ohm $\pm 10\%$ 1 w                     |                              | 28J          | BW1-Navy                             |                          | 708N2200NA-K                              |
|        | 69     | 1              |                               | R208                                   | 1 Meg $\pm 10\% \frac{1}{2}$ w              |                              | 28J          | BW1-Navy                             |                          | 729NE1MEG-K                               |
|        | 68     | 2              |                               | R209, R307, R308                       | 220,000 ohm $\pm 10\% \frac{1}{2}$ w        |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE220M-K                               |
|        | 68     | 1              |                               | R211                                   | 100,000 ohm $\pm 5\% \frac{1}{2}$ w         |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE100M-J                               |
|        | 68     | 1              |                               | R212                                   | 470,000 ohm $\pm 5\%$ ½ w                   |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE470M-J                               |
|        | 68     | 1              |                               | R213                                   | 750,000 ohm $\pm 5\%$ ½ w                   |                              | 28J          | BT <sup>1</sup> ⁄2-Navy              |                          | 729NE750M-J                               |
|        | 67     | 1              |                               | R214, R215                             | 250 ohm $\pm 10\%$ 1 w                      |                              | 28J          | BW1-Navy                             |                          | 708N250NA-K                               |
|        | 67     | 1              |                               | R216                                   | 220 ohm $\pm 10\%$ ½ w                      |                              | 28J          | $BW_{2}^{1/2}$                       |                          | 707N220N-K                                |
|        | 68     | 1              |                               | R301, R311                             | 100,000 ohm $\pm 10\%$ ½ w                  |                              | 28J          | BT <sup>1</sup> /2-Navy              |                          | 729NE100M-K                               |
|        | 67     | 1              |                               | R302                                   | 10,000 ohm $\pm 10\% \frac{1}{2}$ w         |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE10M-K                                |
|        | 68     | 1              |                               | R304                                   | 82,000 chm $\pm 10\% \frac{1}{2}$ w         |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE82M-K                                |
|        | 67     | 1              |                               | R305                                   | 8200 ohm $\pm 10\% \frac{1}{2}$ w           |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE8200-K                               |
|        | 67     | 1              |                               | R309                                   | 1500 ohm $\pm 5\%$ ½ w                      |                              | 28J          | BT <sup>1</sup> / <sub>2</sub> -Navy |                          | 729NE1500-J                               |
|        | 17     | 1              |                               | R310                                   | 2-15 ohm Rheostat                           |                              | 89W          |                                      |                          | 381N901                                   |
|        | 69     | 1              |                               | R401                                   | 15,000 ohm $\pm 10\%$ 1 w                   |                              | 28J          | BT1-Navy                             |                          | 729NG15M-K                                |
|        | 69     | 1              | -RC31BF182K                   | R901                                   | 1800 ohm 1 w $\pm 20\%$                     |                              | 28J          | BT1-Navy                             |                          | 729NG1800-M                               |
| 1      | 71     | 1              | -631874-2                     | R902                                   | 500 ohm "T" pad attenuat                    |                              | 28J          | CSMPD                                |                          | 380N201                                   |
|        | 10     | 1              |                               | R1901                                  | 63 ohm $\pm 5\%$ 200 w Ferru<br>Type        | le                           | 66S          |                                      |                          | 733NXA63-J                                |

### FOR D-C EQUIPMENT

### RESISTORS (Cont.)

| Carton<br>Number | Navy or<br>JAN Type<br>Quan. Number | All Symbol<br>Designations<br>Involved | Description                                       | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------|--------------|----------------------------|--------------------------|-------------------------------------------|
| 69               | 1                                   | R1902, R1904                           | 200 ohm $\pm 20\%$ 2 w                            |                              | 28J          | 133-0200-7                 |                          | 09N200N-M                                 |
| 101              | 1                                   | R1903                                  | 13.3 ohm 2% 1 w                                   |                              | 28J          | WW3                        |                          | 21NL13.3-G                                |
| 1                | 1                                   | R1905                                  | 1000 ohm $\pm 5\%$ 25 w                           |                              | 66S          |                            | 7                        | 733NXE1M-J                                |
|                  |                                     |                                        | SWITCHES                                          |                              |              |                            |                          |                                           |
| 75               | 1                                   | S101                                   | Moving Switch Arm                                 |                              | 64C          | GA-1445A                   | (                        | GA-1445A                                  |
| 75               | 1                                   | S101                                   | Stationary Switch Arm                             |                              | 64C          | GA-2003A                   | (                        | GA-2003A                                  |
| 33               | 1                                   | S102                                   | 18 contact single pi                              |                              | 64C          |                            | E                        | 500 0085 00B                              |
| 34               | 1                                   | S103                                   | 7 contact single pi                               |                              | 64C          |                            | Đ                        | 500 0206 00B                              |
| 45               | 1                                   | S104                                   | Single pole NO 20 amp 24<br>v d-c                 |                              | 96C          | 8817                       | 2                        | 260N110                                   |
| 58               | 1                                   | S105                                   | 2 circuit 3 pos. non-shorting                     | [                            | 05P          | <i>a</i> .                 | 2                        | 259N139A                                  |
| 57               | 1                                   | S106                                   | 5 circuit 3 pos. shorting                         |                              | 05P          |                            | 2                        | 59N138A                                   |
| 60               | 1                                   | S107                                   | 4 circuit 2 pos. shorting                         |                              | 05P          |                            | 2                        | 59N141A                                   |
| 59               | 1                                   | S108                                   | 1 circuit 12 pos. non-shortin                     | g                            | 05P          |                            | 2                        | 59N140A                                   |
| 56               | 1                                   | S109                                   | 1 circuit 12 pos. shorting                        |                              | 05P          | 25851-DH-1                 | 2                        | 59N137A                                   |
| 55               | 1                                   | S110                                   | 3 circuit 4 pos. shorting                         |                              | 05P          |                            | 2                        | 59N136B                                   |
| 53               | 1                                   | S111                                   | Double Pole 1 NC 1 NO<br>Cont. Leaf               |                              | 64C          | GA-1557B                   | (                        | GA-1557B                                  |
| 50               | 1                                   | S112                                   | Single Pole 1 NC Cont. Lea                        | f                            | 64C          | Y-983A                     | Ŋ                        | 7-983A                                    |
| 43               | 1                                   | S113C                                  | Single Cont. Sw. Arm Assy.                        |                              | 64C          | GA-1074A                   | (                        | FA-1074A                                  |
| 51               | 1                                   | S113D                                  | Single Pole 1 NO Cont. Lea                        | f                            | 64C          | Y-1048A                    | y                        | 7-1048A                                   |
| 52               | 1                                   | S114                                   | DPST 2 NO 2 NC Cont. L                            | eaf                          | 64C          | Y-1136B                    | Y                        | 7-1136B                                   |
| 49               | 1                                   | S115                                   | Single Pole NO Cont. Leaf                         |                              | 64C          | Y-981A                     | Ŋ                        | 7 <b>-9</b> 81A                           |
| 36, 37<br>38, 39 |                                     | S116, S1002                            | 8 amp 250 v a-c SPDT<br>Vacuum Contact            |                              | 40G          | GL34                       | 2                        | 60N601                                    |
| 48               | 1                                   | S201                                   | DPDT Toggle 1 amp 250 v<br>d-c or 3 amp 125 v d-c |                              | 84A          | 24003                      | 2                        | 66N103A                                   |
| 62               | 1                                   | S202                                   | 2 P 6 pos. 1 sect. non-<br>shorting               |                              | 05M          |                            | 2                        | 59N149                                    |

APPENDIX

### FOR D-C EQUIPMENT

### SWITCHES (Cont.)

| Carton<br>Number | Quan. | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                                 | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|------------------|-------|-------------------------------|----------------------------------------|---------------------------------------------|------------------------------|--------------|----------------------------|--------------------------|-------------------------------------------|
| 35               | 1     |                               | S401                                   | Rotor Assembly                              |                              | 64C          | GA-1021A                   | (                        | GA-1021A                                  |
| 35               | 1     |                               | S401                                   | Stator Assembly                             |                              | 64C          | GA-1544B                   |                          | GA-1544B                                  |
| 47               | 1     | -24003                        | S901                                   | DPDT Toggle 1 amp 250 v                     | z d-e                        | 84A          | 20905-GH                   | 6                        | 266N103                                   |
| 61               | 1     |                               | S902                                   | 11 pos. 1 circuit single pi<br>non-shorting |                              | 05P          |                            | 2                        | 259N142A                                  |
| 54               | 1     |                               | S903                                   | 4 pos. 3 circuit 2 pi shortin               | g                            | 05P          |                            | 1                        | 259N136A                                  |
| 178              | 1     |                               | S1001                                  | 4 pos. non-shorting                         |                              | 64C          |                            |                          | GA-1108C                                  |
| 174              | 1     |                               | S1901                                  | 7 NO 1 NC Key Switch                        |                              |              |                            |                          | AC102H                                    |
| 46               | 1     |                               | S1902, S1903, S1904                    | SPST Toggle 3 amp 125 v                     |                              | 84A          | 20994-ET                   | :                        | 266N101                                   |
| 184              | 1     |                               | S1905                                  | Push Toggle NO Cont. 3 a 250 v.             | mp<br>°                      | 84A          | 3592N                      | :                        | 266N105                                   |
|                  |       |                               |                                        | TUBES                                       |                              |              |                            |                          |                                           |
| 150              | 1     |                               | V101                                   | Type 837, Beam Pentode                      |                              | * *          | 837                        | :                        | 256.837                                   |
| 151, 152,<br>153 | 3     |                               | V102, V103, V401                       | Type 1625, Beam Pentode                     |                              | * *          | 1625                       | :                        | 256.1625                                  |
| 149              | 1     |                               | V104                                   | Type 813, Beam Pentode                      |                              | * *          | 813                        |                          | 256.813                                   |
| 147, 148         | 2     |                               | V105, V106                             | Type 811, Triode                            |                              | * *          | 811                        |                          | 256.811                                   |
| 141, 142,<br>143 | 3     |                               | V201, V301, V302                       | 12SJ7, Triple Grid Amp.                     |                              | * *          | 12SJ7                      | :                        | 255.12SJ7                                 |
| 145, 146         | 2     |                               | V202, V203                             | 6V6GT Beam Pentode                          |                              | * *          | 6V6GT                      | :                        | 255.6V6GT                                 |
|                  |       |                               |                                        | SOCKETS                                     |                              |              |                            |                          |                                           |
| 107              | 4     | -49366                        | X101, X102, X103, X401                 | 7 terminal base, Iso.                       |                              | 77J          | 227                        |                          | 220N573                                   |
| 120              | 4     | 20000                         | X104                                   | 7 terminal "Jumbo" wafer<br>socket          |                              | 77J          | 237                        | :                        | 220N571A                                  |
| 32               | 4     |                               | X105, X106                             | 4 prong low loss ceramic                    |                              | 77J          | 224                        | :                        | 220N545                                   |
| 29               | 4     |                               | X201, X202, X203, X301,<br>X302, X303  | 8 terminal octal tube socke                 | t                            | 60A          | 88-8                       | :                        | 220N185                                   |

### FOR D-C EQUIPMENT

### CRYSTALS

| 144       1       -40127       Y301       Quartz Crystal Mtd. in<br>"Plug-in" holder       64C       146A-3       500 4374 00A         44       1       Crank Arm Assembly       64C       GA-1149A       GA-1149A         117       1       Load Coil Lead Assembly       64C       GA-1174A       GA-1174A         117       1       Final Plate Lead Assembly       64C       GA-2030A       GA-2030A         7       1       Mod. Plate Lead Assembly       64C       GA-2030A       GA-2080A         9       1       Meter Lead Assembly       64C       GA-2030A       GA-2080A         9       1       Meter Lead Assembly       64C       GA-2030A       GA-2080A         9       1       Meter Lead Assembly       64C       GA-2083A       GA-2080A         9       1       Meter Lead Assembly       64C       GA-2083A       GA-2080A         9       1       Meter Lead Assembly       64C       GA-2080A       GA-2080A         117       1       Meter Lead Assembly       64C       GA-2170A       GA-2170A         118       1       Multiplier Coil Lead Assembly       64C       GA-2583A       GA-2583A         118       1       GA-2160A                      |   | Carton<br>Number | Quan. | Navy or<br>JAN Type<br>Number | All Symbol<br>Designations<br>Involved | Description                | Navy<br>Spec. or<br>Dwg. No. | Mfr.<br>Code | Mfr's.<br>Desig-<br>nation | Spcl.<br>Tol. or<br>Mod. | Contractor's<br>Drawing or<br>Part Number |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|-------|-------------------------------|----------------------------------------|----------------------------|------------------------------|--------------|----------------------------|--------------------------|-------------------------------------------|
| 44       1       Crank Arm Assembly       64C       GA-1149A       GA-1149A         117       1       Load Coil Lead Assembly       64C       GA-1174A       GA-1174A         117       1       Final Plate Lead Assembly       64C       GA-1175A       GA-1175A         6       1       Plate Lead Assembly       64C       GA-2021A       GA-2020A         7       1       Mod. Plate Lead Assembly       64C       GA-2020A       GA-2020A         9       1       Meter Lead Assembly       64C       GA-2020A       GA-2020A         9       1       Meter Lead Assembly       64C       GA-2083A       GA-2096A         9       1       Gnd. Strip Assembly       64C       GA-2170A       GA-2096A         117       1       Gnd. Strip Assembly       64C       GA-2633A       GA-2638A         118       1       Multiplier Coil Lead Assembly       64C       GA-2583A       GA-2583A         118       1       L. F. Osc. Lead Assembly       64C       GA-2584A       GA-2588A         118       1       Multiplier Coil Lead Assembly       64C       GA-2587A       GA-2588A         118       1       Multiplier Coil Lead Assembly       64C       GA              |   | 144              | 1     | -40127                        | Y301                                   |                            |                              | 64C          | 146A-3                     | 5                        | 00 4374 00A                               |
| 117       1       Load Coil Lead Assembly       64C       GA-1174A       GA-1174A         117       1       Final Plate Lead Assembly       64C       GA-1175A       GA-1175A         6       1       Plate Lead Assembly       64C       GA-2021A       GA-2021A         7       1       Mod. Plate Lead Assembly       64C       GA-2021A       GA-2021A         7       1       Mod. Plate Lead Assembly       64C       GA-2021A       GA-2021A         9       1       Meter Lead Assembly       64C       GA-2030A       GA-2083A         9       1       Flexible Lead Assembly       64C       GA-2083A       GA-2083A         9       1       Gnd. Strip Assembly       64C       GA-2583A       GA-2583A         117       1       Gnd. Strip Assembly       64C       GA-2583A       GA-2583A         118       1       Multiplier Coil Lead Assembly       64C       GA-2584A       GA-2583A         118       1       Multiplier Coil Lead Assembly       64C       GA-2584A       GA-2587A         118       1       Multiplier Coil Lead Assembly       64C       GA-2589A       GA-2583A         118       1       Multiplier Coil Lead Assembly       64C          |   |                  |       |                               |                                        | MISCELLANEOUS              | 5                            |              |                            |                          |                                           |
| 117       1       Final Plate Lead Assembly       64C       GA-1175A       GA-1175A         6       1       Plate Lead Assembly       64C       GA-2021A       GA-2021A         7       1       Mod. Plate Lead Assembly       64C       GA-2021A       GA-2080A         117       1       Moder Plate Lead Assembly       64C       GA-2083A       GA-2083A         9       1       Meter Lead Assembly       64C       GA-2083A       GA-2096A         117       1       Gnd. Strip Assembly       64C       GA-2583A       GA-2523A         76       1       Antenna Lead Assembly       64C       GA-2583A       GA-2583A         118       1       Multiplier Coil Lead Assembly       64C       GA-2583A       GA-2583A         118       1       L. F. Osc. Lead Assembly       64C       GA-2583A       GA-2583A         118       1       Multiplier Coil Lead Assembly       64C       GA-2583A       GA-2583A         118       1       Multiplier Coil Lead Assembly       64C       GA-2583A       GA-2583A         118       1       Multiplier Coil Lead Assembly       64C       GA-2623A       GA-2583A         118       1       Multiplier Coil Lead Assembly    |   |                  | -     |                               |                                        |                            |                              |              |                            |                          |                                           |
| 61Plate Lead Assembly64CGA-2021AGA-2021A71Mod. Plate Lead Assembly64CGA-2030AGA-2030A1171Meter Lead Assembly64CGA-2088AGA-2088A91Flexible Lead Assembly64CGA-2096AGA-2070A1171Gnd. Strip Assembly64CGA-2523AGA-2523A1181Multiplier Coil Lead Assembly64CGA-2583AGA-2583A1181Multiplier Coil Lead Assembly64CGA-2587AGA-2583A1181Multiplier Coil Lead Assembly64CGA-2587AGA-2583A1181Multiplier Coil Lead Assembly64CGA-2587AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2688AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2683AGA-2589A1181Multiplier Coil Lead Assembly64CGA-2623AGA-2689A1181Multiplier Coil Lead Assembly64CGA-2623AGA-2639A1181Multiplier Coil Lead Assembly64CGA-2623AGA-2639A61Plate Lead Assembly64CGB-2021AGB-2021A91Plate Lead Assembly64CGB-2083AGB-2021A91Plate Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64                                                                                                                                                                                                                                                                               |   |                  | _     |                               |                                        |                            |                              |              |                            |                          |                                           |
| 71Mod. Plate Lead Assembly64CGA-2030AGA-2030A1171Meter Lead Assembly64CGA-2083AGA-2083A91Flexible Lead Assembly64CGA-2096AGA-2096A1171Gnd. Strip Assembly64CGA-2170AGA-2170A761Antenna Lead Assembly64CGA-2533AGA-2533A1181Multiplier Coil Lead Assembly64CGA-2583AGA-2583A1181Multiplier Coil Lead Assembly64CGA-2584AGA-2584A1181L. F. Osc. Lead Assembly64CGA-2584AGA-2587A1181Multiplier Coil Lead Assembly64CGA-2583AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2638AGA-2589A1181Multiplier Coil Lead Assembly64CGA-2638AGA-2638A1181Multiplier Coil Lead Assembly64CGA-2639AGA-2639A1181Multiplier Coil Lead Assembly64CGB-2021AGB-2031A118 <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                      |   |                  | 1     |                               |                                        | -                          |                              |              |                            |                          |                                           |
| 117       1       Meter Lead Assembly       64C       GA-2083A       GA-2083A         9       1       Flexible Lead Assembly       64C       GA-2096A       GA-2096A         117       1       Gnd. Strip Assembly       64C       GA-2170A       GA-2170A         76       1       Antenna Lead Assembly       64C       GA-2523A       GA-2523A         118       1       Multiplier Coil Lead Assembly       64C       GA-2583A       GA-2583A         118       1       Multiplier Coil Lead Assembly       64C       GA-2583A       GA-2583A         118       1       L. F. Osc. Lead Assembly       64C       GA-2583A       GA-2583A         118       1       Multiplier Coil Lead Assembly       64C       GA-2588A       GA-2587A         118       1       Multiplier Coil Lead Assembly       64C       GA-2588A       GA-2587A         118       1       Multiplier Coil Lead Assembly       64C       GA-2588A       GA-2683A         118       1       Multiplier Coil Lead Assembly       64C       GA-2633A       GA-2633A         118       1       Mod. Plate Lead Assembly       64C       GA-2639A       GA-2639A         6       1       Plate Lead Assembly |   | 7                | 1     |                               |                                        |                            | 7                            | 64C          | GA-2030A                   | (                        | A-2030A                                   |
| 1171Gnd. Strip Assembly64CGA-2170AGA-2170A761Antenna Lead Assembly64CGA-2523AGA-2523A1181Multiplier Coil Lead Assembly64CGA-2583AGA-2583A1181Multiplier Coil Lead Assembly64CGA-2584AGA-2584A1181L. F. Osc. Lead Assembly64CGA-2587AGA-2587A1181L. F. Osc. Lead Assembly64CGA-2588AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2588AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2589AGA-2589A1181Multiplier Coil Lead Assembly64CGA-2623AGA-2623A1181Mod. Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2088AGB-2088A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 00500 2599 00D1Spare Parts Box500 2599 00D500 2599 00D500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                          | ' | 117              | 1     |                               | •                                      |                            |                              | 64C          | GA-2083A                   | (                        | A-2083A                                   |
| 761Antenna Lead Assembly64CGA-2523AGA-2523A1181Multiplier Coil Lead Assembly64CGA-2583AGA-2583A1181Multiplier Coil Lead Assembly64CGA-2584AGA-2584A1181L. F. Osc. Lead Assembly64CGA-2588AGA-2587A1181Multiplier Coil Lead Assembly64CGA-2588AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2589AGA-2589A1181Multiplier Coil Lead Assembly64CGA-2623AGA-2623A1181Grid Clip Assembly64CGA-2639AGA-2639A61Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 00500 2599 00D1Spare Parts Box500 2599 00D500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 9                | 1     |                               |                                        | Flexible Lead Assembly     |                              | 64C          | GA-2096A                   | (                        | FA-2096A                                  |
| 1181Multiplier Coil Lead Assembly64CGA-2583AGA-2583A1181Multiplier Coil Lead Assembly64CGA-2584AGA-2584A1181L. F. Osc. Lead Assembly64CGA-2587AGA-2587A1181Multiplier Coil Lead Assembly64CGA-2588AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2589AGA-2589A1181Grid Clip Assembly64CGA-2639AGA-2623A1181Mod. Plate Lead Assembly64CGB-2021AGB-2021A1181Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 002599 00D1Spare Parts Box500 2599 00D500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 117              | 1     |                               |                                        | Gnd. Strip Assembly        |                              | 64C          | GA-2170A                   |                          |                                           |
| 1181Multiplier Coil Lead Assembly64CGA-2584AGA-2584A1181L. F. Osc. Lead Assembly64CGA-2587AGA-2587A1181Multiplier Coil Lead Assembly64CGA-2588AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2589AGA-2589A1181Grid Clip Assembly64CGA-2623AGA-2623A1181Grid Clip Assembly64CGA-2639AGA-2639A1181Mod. Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2083AGB-2083A91Tinned Copper Braid425 0001 00500 2599 00D1Spare Parts Box500 2599 00D500 2599 00D500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 76               | 1     |                               |                                        | Antenna Lead Assembly      |                              | 64C          | GA-2523A                   | (                        | A-2523A                                   |
| 1181L. F. Osc. Lead Assembly64CGA-2587AGA-2587A1181Multiplier Coil Lead Assembly64CGA-2588AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2589AGA-2589A1181Grid Clip Assembly64CGA-2623AGA-2623A1181Mod. Plate Lead Assembly64CGA-2639AGA-2639A61Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 002599 00D1Spare Parts Box500 2599 00D500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                  | 1     |                               |                                        |                            |                              |              |                            |                          |                                           |
| 1181Multiplier Coil Lead Assembly64CGA-2588AGA-2588A1181Multiplier Coil Lead Assembly64CGA-2589AGA-2589A1181Grid Clip Assembly64CGA-2623AGA-2623A1181Mod. Plate Lead Assembly64CGA-2639AGA-2639A61Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 00500 2599 00D1Spare Parts Box500 2599 00D500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                  | 1     |                               |                                        | Multiplier Coil Lead Asser | nbly                         | 64C          | GA-2584A                   | (                        | A-2584A                                   |
| 1181Multiplier Coil Lead Assembly64CGA-2589AGA-2589A1181Grid Clip Assembly64CGA-2623AGA-2623A1181Mod. Plate Lead Assembly64CGA-2639AGA-2639A61Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 00500 2599 00D1Spare Parts Box500 2599 00D500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 118              |       |                               |                                        |                            |                              | 64C          | GA-2587A                   | (                        | A-2587A                                   |
| 1181Grid Clip Assembly64CGA-2623AGA-2623A1181Mod. Plate Lead Assembly64CGA-2639AGA-2639A61Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 001Spare Parts Box500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 118              | 1     |                               |                                        | Multiplier Coil Lead Assen | nbly                         | 64C          | GA-2588A                   | 0                        | A-2588A                                   |
| 1181Mod. Plate Lead Assembly64CGA-2639AGA-2639A61Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 001Spare Parts Box500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 118              | 1     |                               |                                        | Multiplier Coil Lead Assen | nbly                         | 64C          | GA-2589A                   | (                        | A-2589A                                   |
| 61Plate Lead Assembly64CGB-2021AGB-2021A1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 001Spare Parts Box500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 118              | 1     |                               |                                        |                            |                              | 64C          | GA-2623A                   | (                        | A-2623A                                   |
| 1171Meter Lead Assembly64CGB-2083AGB-2083A91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 001Spare Parts Box500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 118              | 1     |                               |                                        |                            | 7                            | 64C          |                            |                          |                                           |
| 91Flexible Lead Assembly64CGB-2096AGB-2096A962 ft.Tinned Copper Braid425 0001 001Spare Parts Box500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 6                | 1     |                               |                                        | Plate Lead Assembly        |                              | 64C          | GB-2021A                   | (                        | B-2021A                                   |
| 96         2 ft.         Tinned Copper Braid         425 0001 00           1         Spare Parts Box         500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 117              | 1     |                               |                                        | Meter Lead Assembly        |                              | 64C          | GB-2083A                   | (                        | B-2083A                                   |
| 1 Spare Parts Box 500 2599 00D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 9                | -     |                               |                                        | Flexible Lead Assembly     |                              | 64C          | GB-2096A                   | (                        | GB-2096A                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 96               | 2 ft. |                               |                                        | Tinned Copper Braid        |                              |              |                            | 4                        | 25 0001 00                                |
| 1 Tray for Spare Parts Box 500 2029 00C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                  | 1     |                               |                                        | Spare Parts Box            |                              |              |                            | 5                        | 00 2599 00D                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                  | 1     |                               |                                        | Tray for Spare Parts Box   |                              |              |                            | 5                        | 00 2029 00C                               |

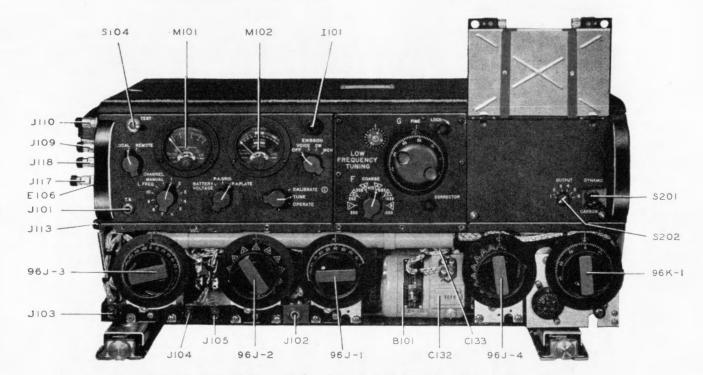
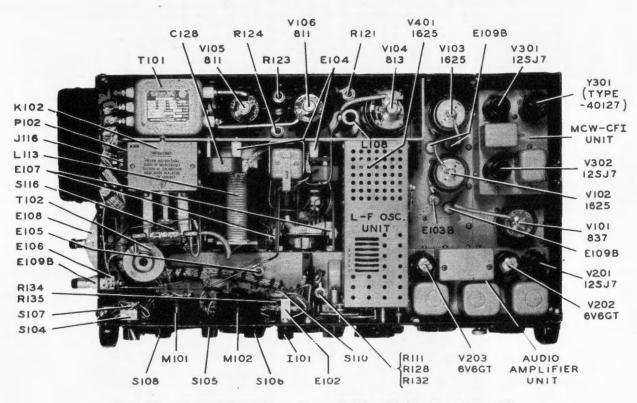
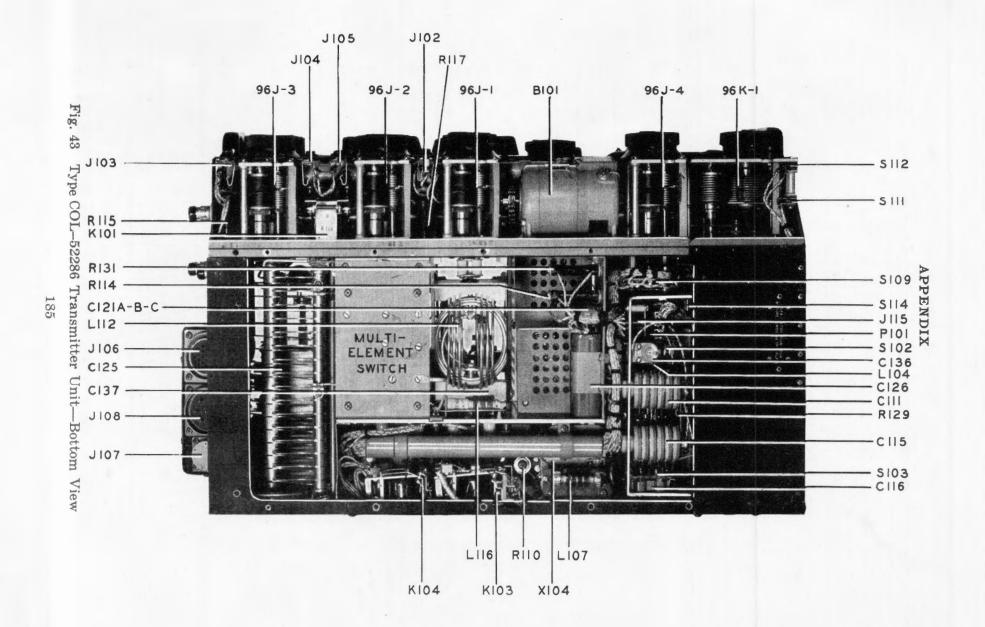





Fig. 41 Type COL-52286 Transmitter Unit-Front Open View







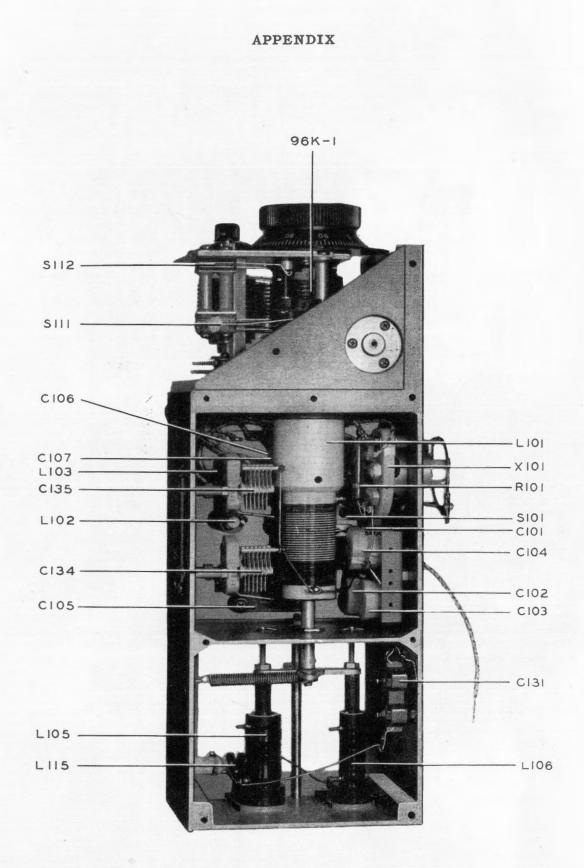
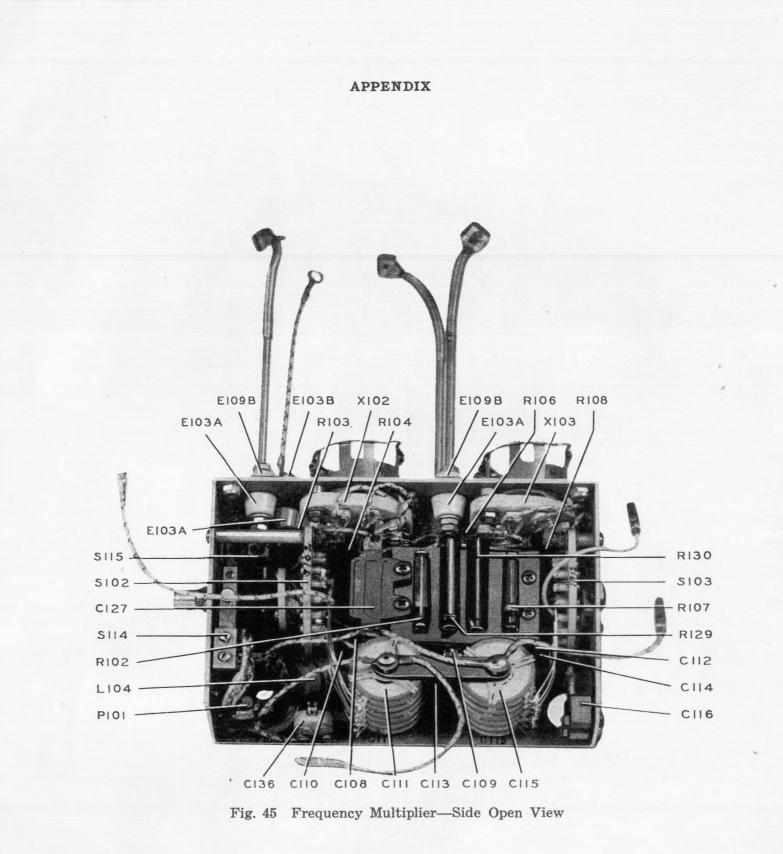




Fig. 44 High-Frequency Oscillator-Side Open View



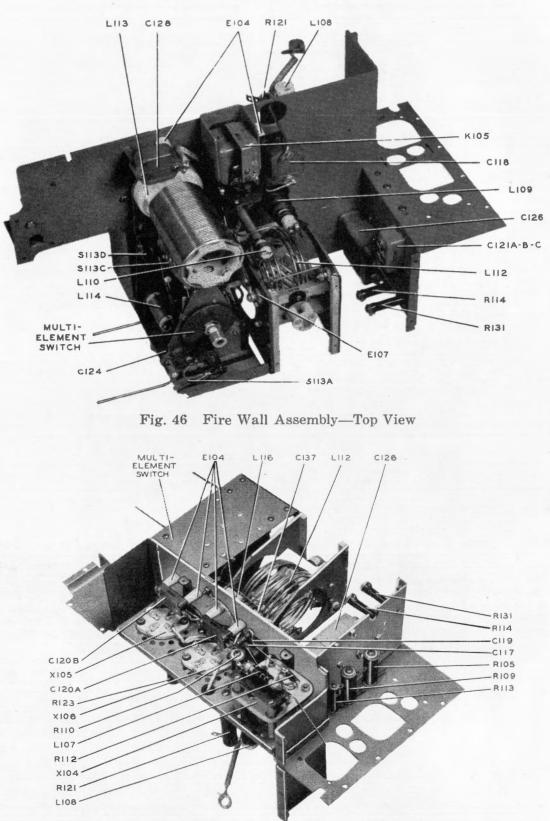



Fig. 47 Fire Wall Assembly-Bottom View



Fig. 48 Low-Frequency Oscillator Unit-Front View

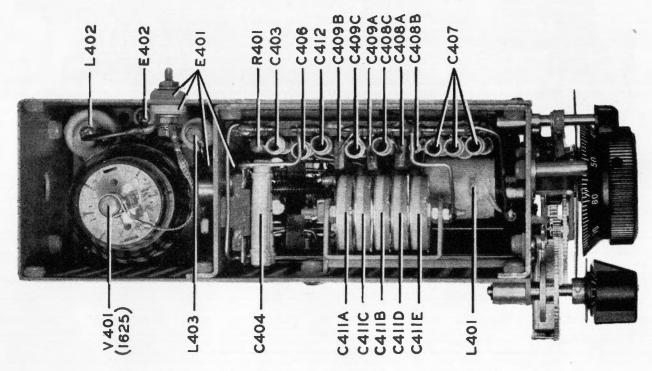
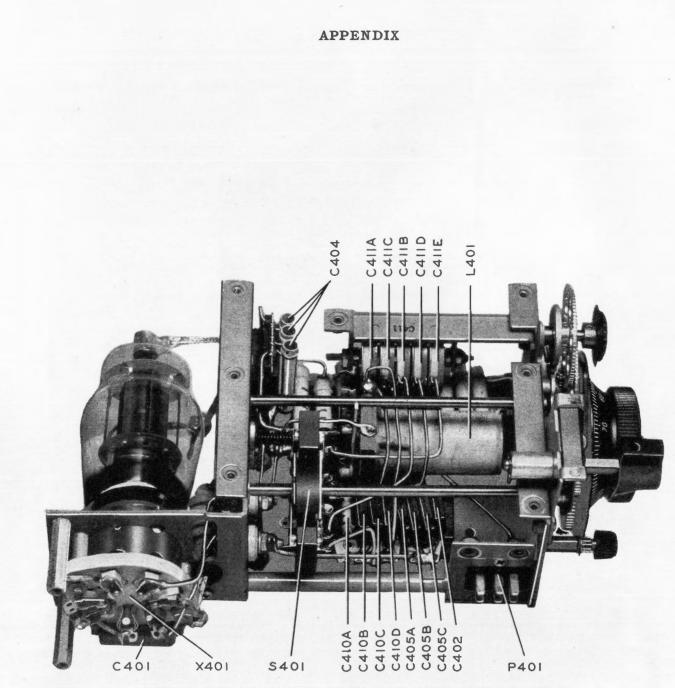




Fig. 49 Low-Frequency Oscillator Unit-Top Open View





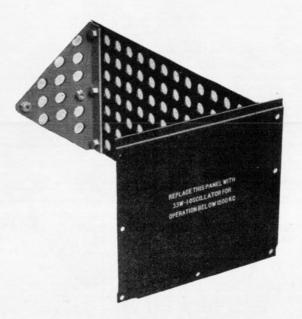
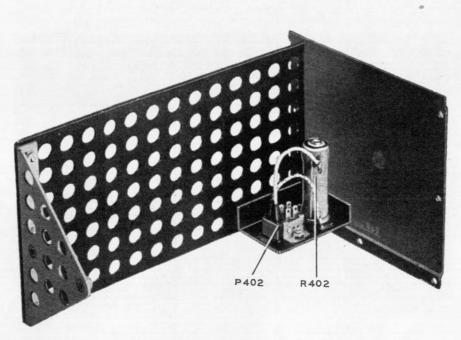
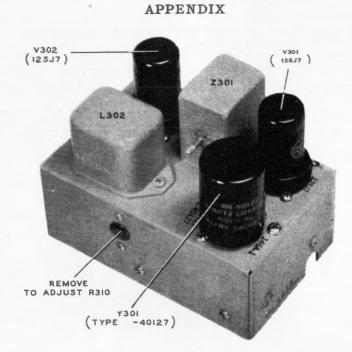
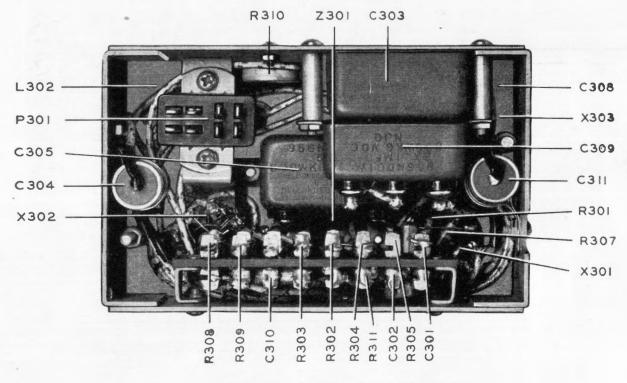
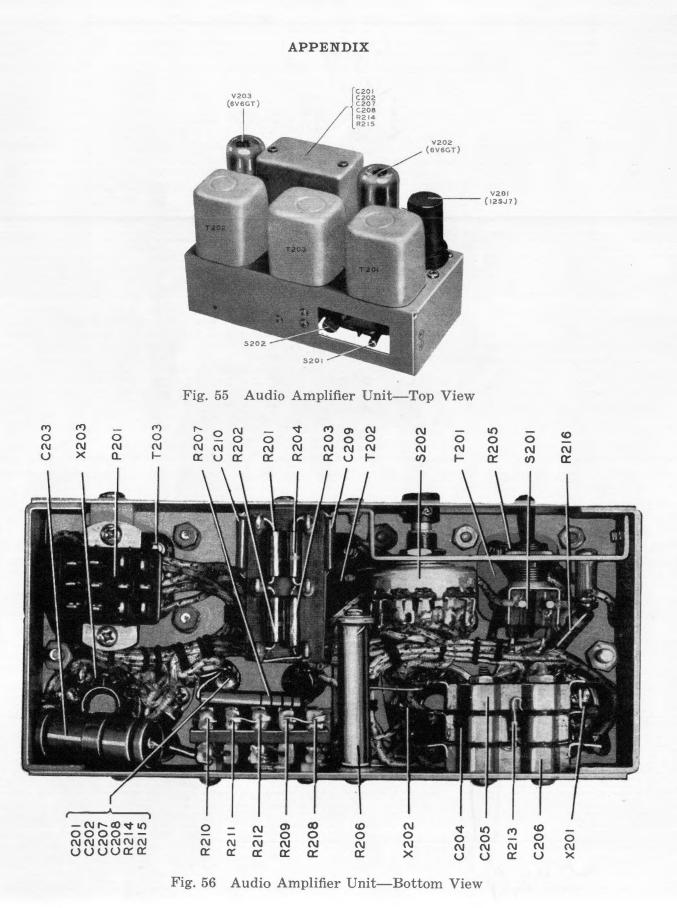
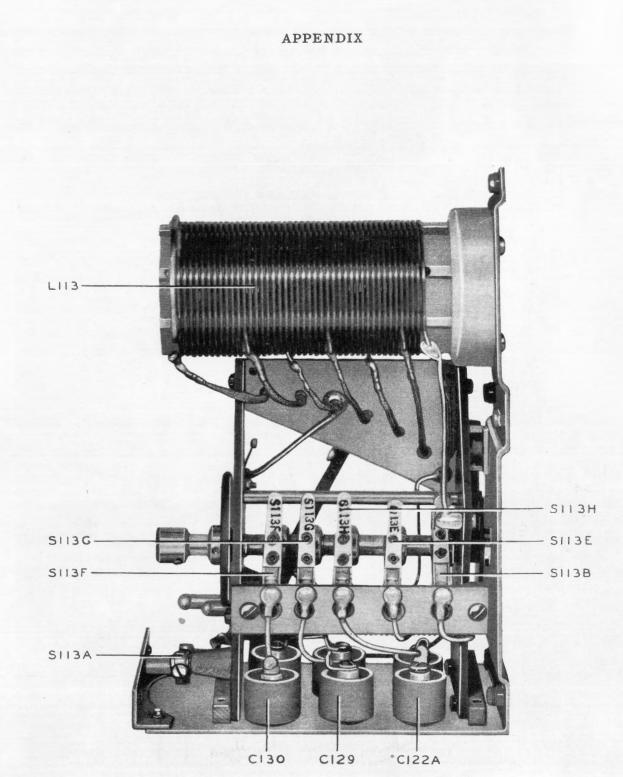



Fig. 51 Dummy Low-Frequency Oscillator Unit-Front View

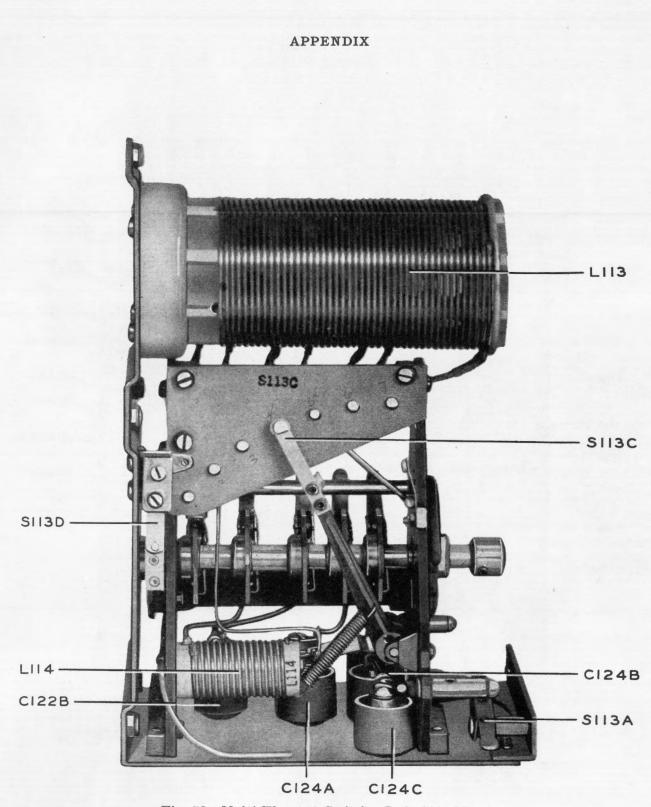




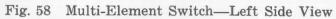


Fig. 52 Dummy Low-Frequency Oscillator Unit-Side View












(1





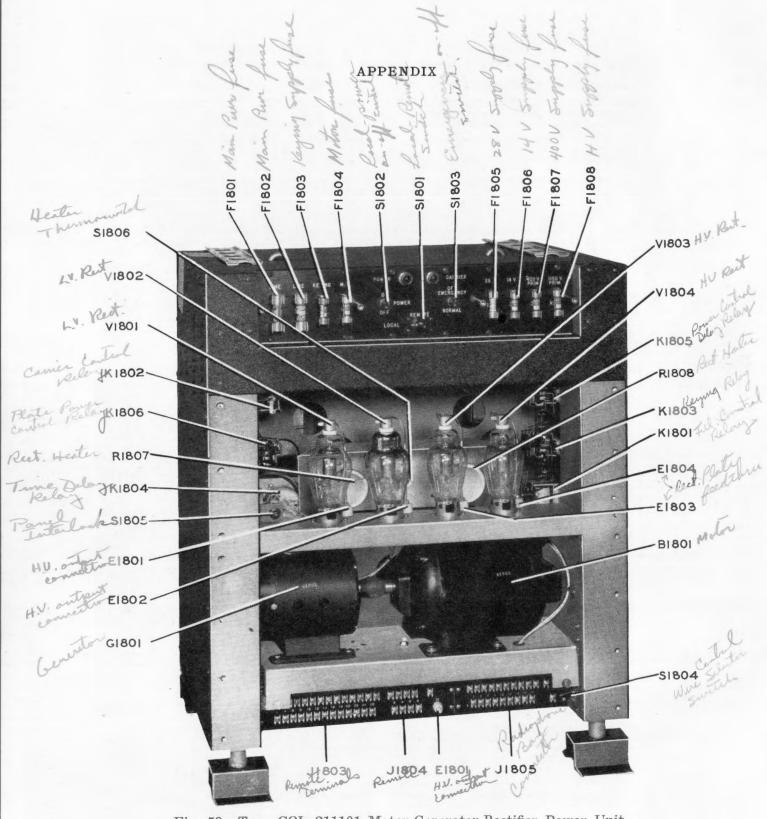



Fig. 59 Type COL-211101 Motor-Generator-Rectifier Power Unit Front View Open

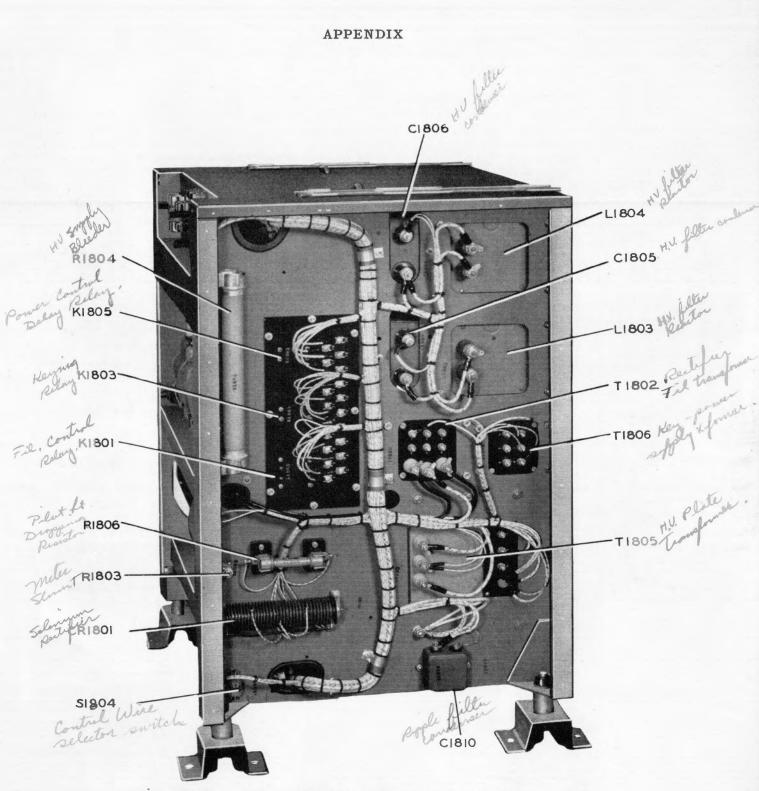



Fig. 60 Type COL-211101 Motor-Generator-Rectifier Power Unit Right Side Open View

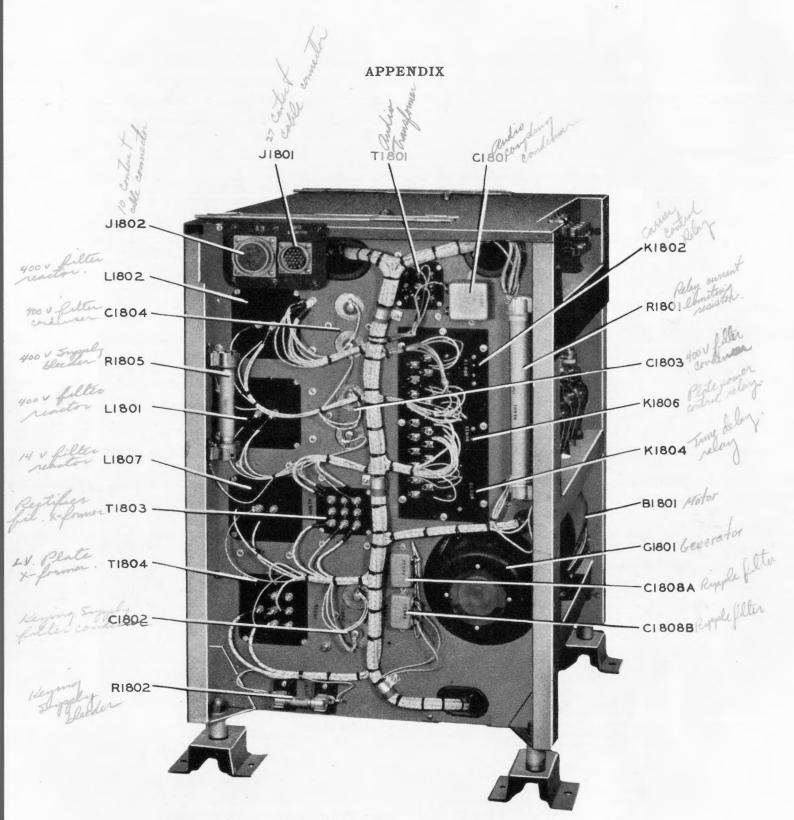
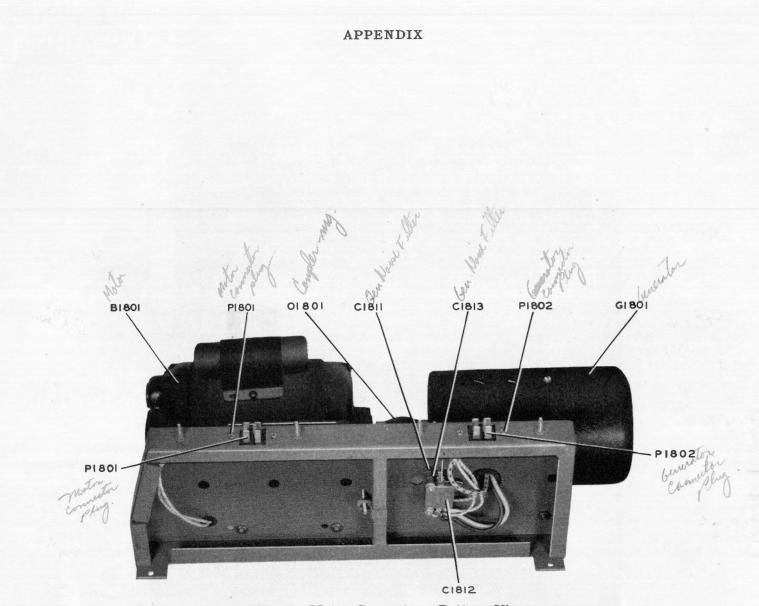
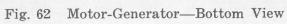





Fig. 61 Type COL-211101 Motor-Generator-Rectifier Power Unit Left Side Open View





.



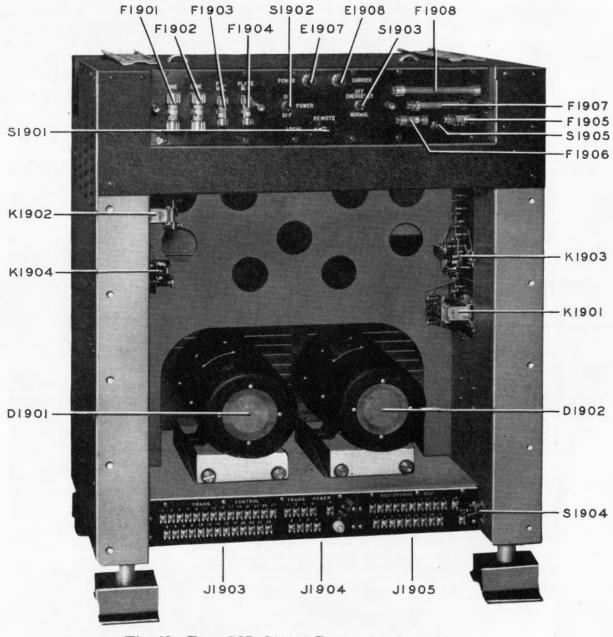



Fig. 63 Type COL-211102 Dynamotor Assembly Front Open View

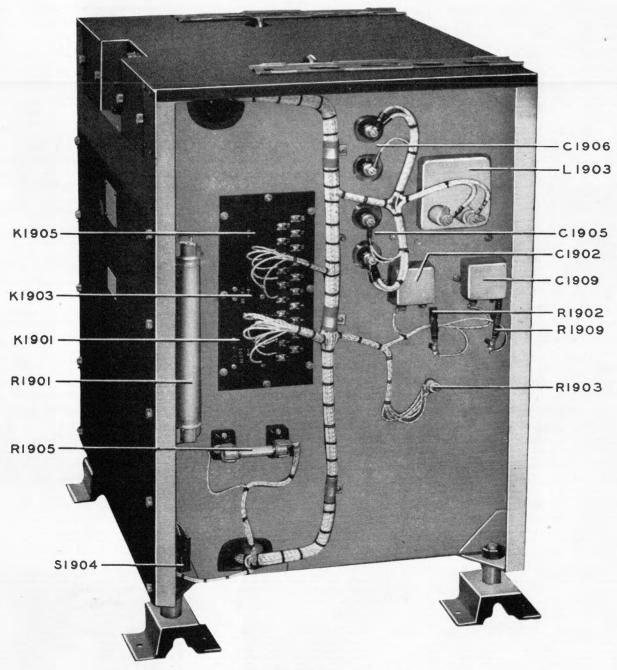



Fig. 64 Type COL-211102 Dynamotor Assembly Right Side Open View

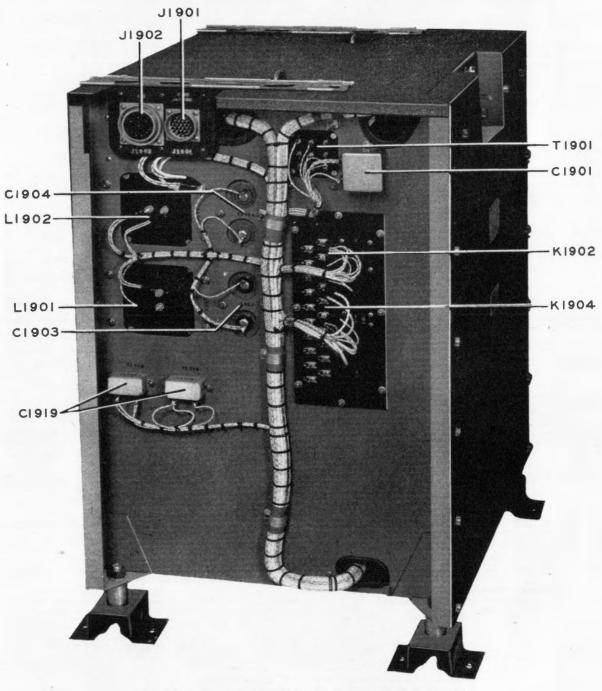
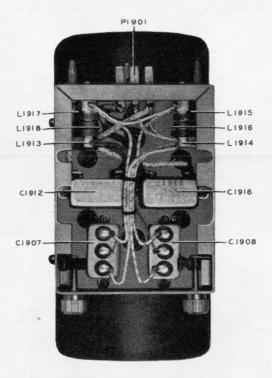
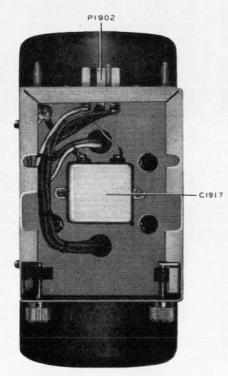
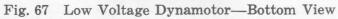
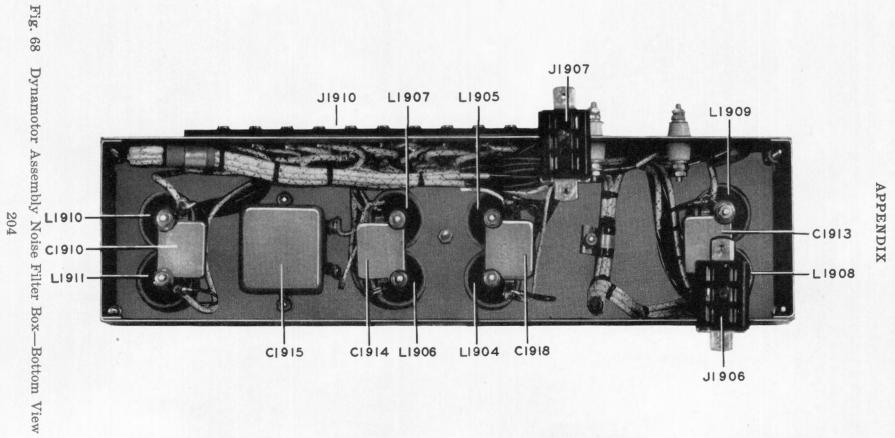
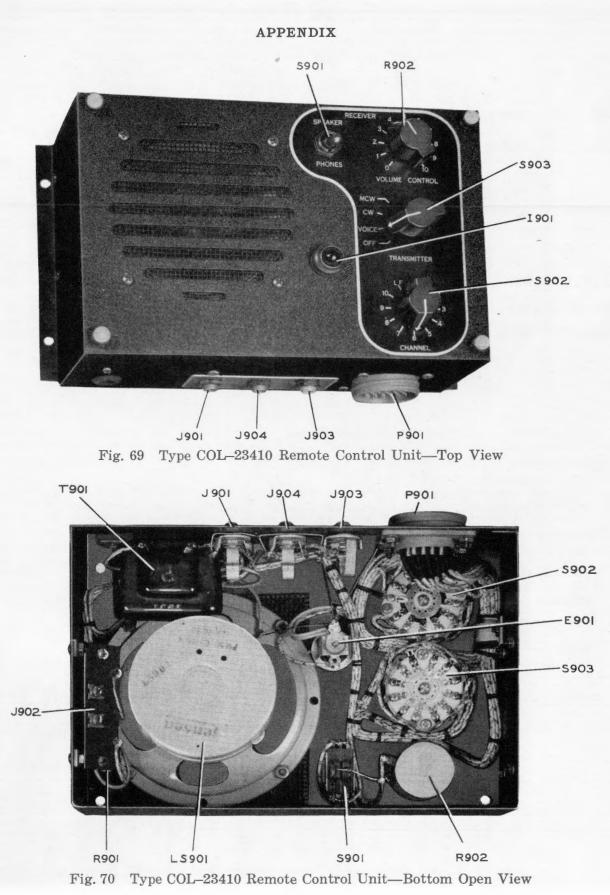
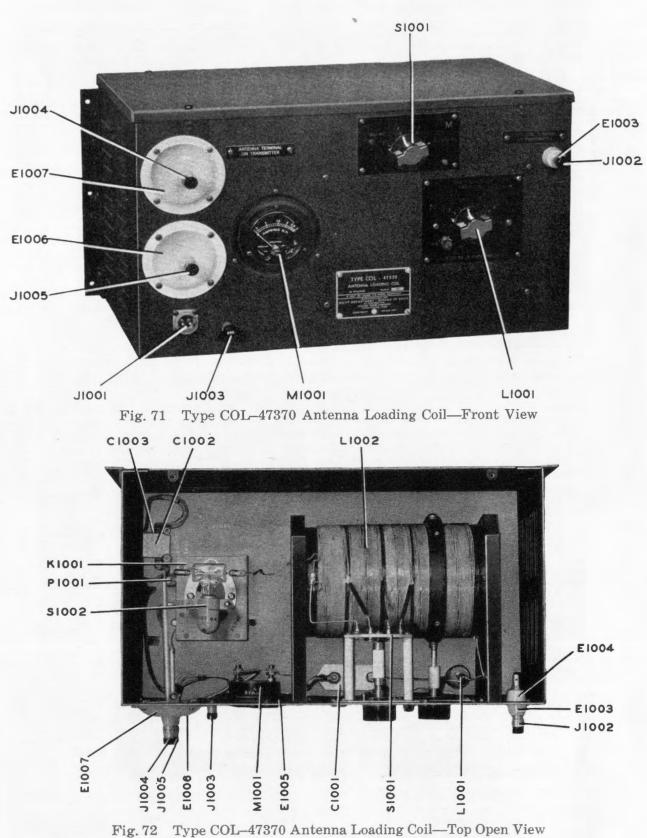



Fig. 65 Type COL-211102 Dynamotor Assembly Left Side Open View





Fig. 66 High Voltage Dynamotor-Bottom View











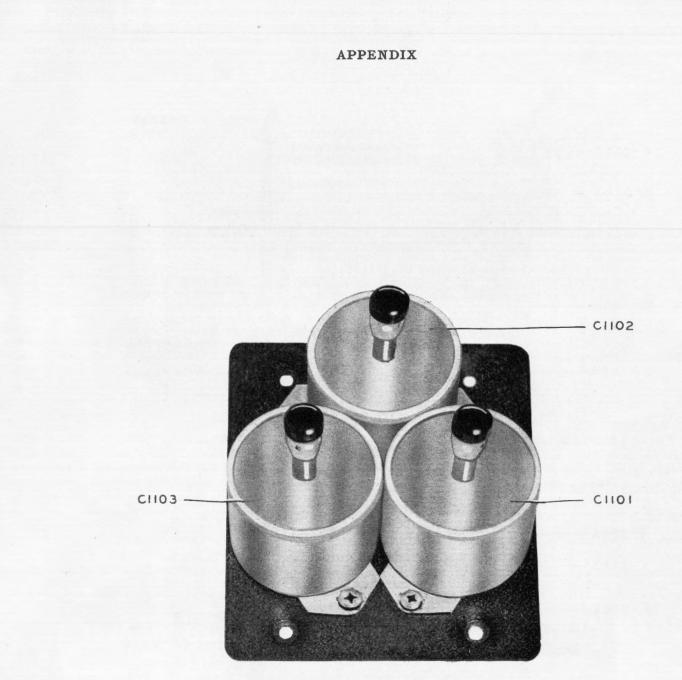



Fig. 73 Type COL-481628 Antenna Shunt Capacitor-Top View

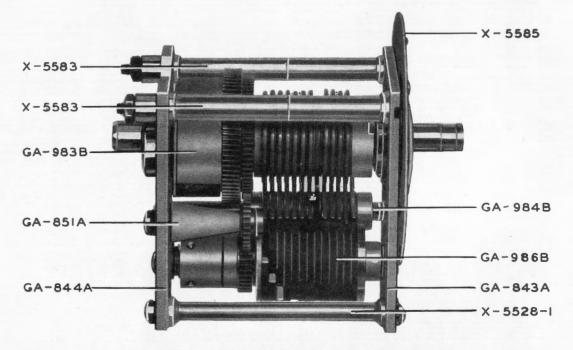



Fig. 74 96J Autotune Singleturn Unit-Left Side View

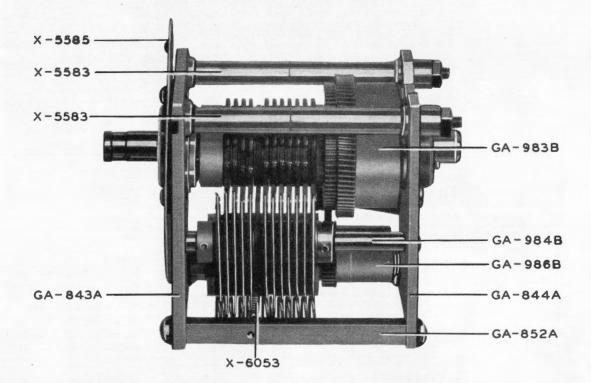
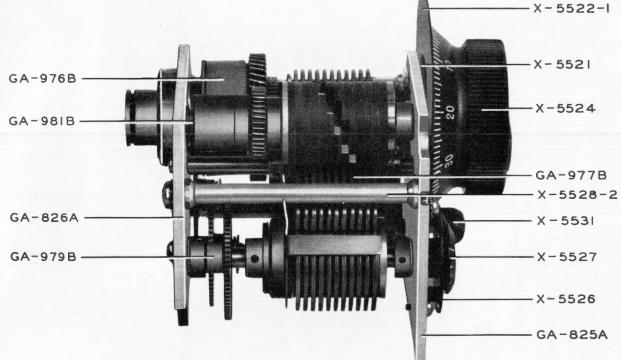




Fig. 75 96J Autotune Singleturn Unit-Right Side View





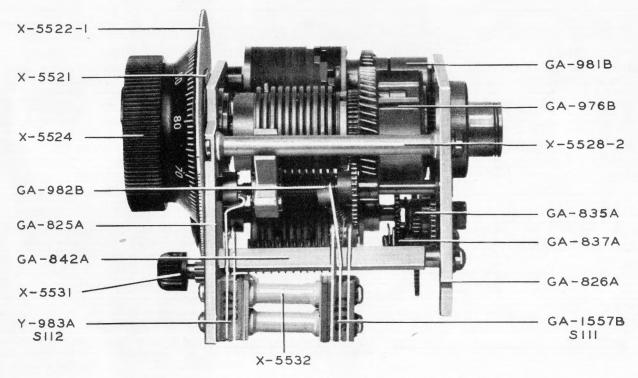
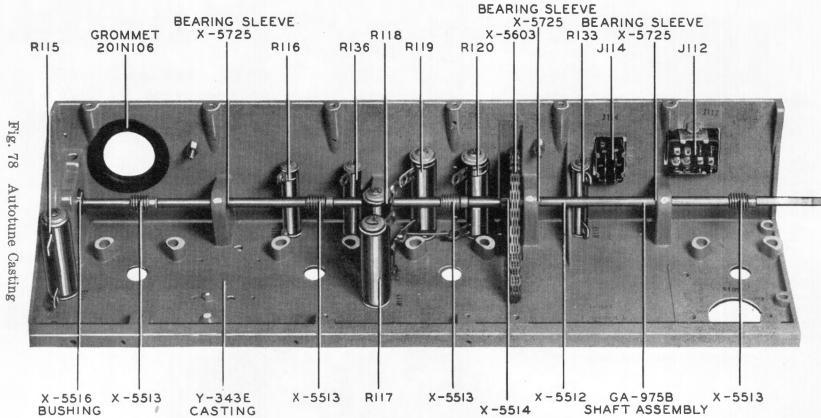
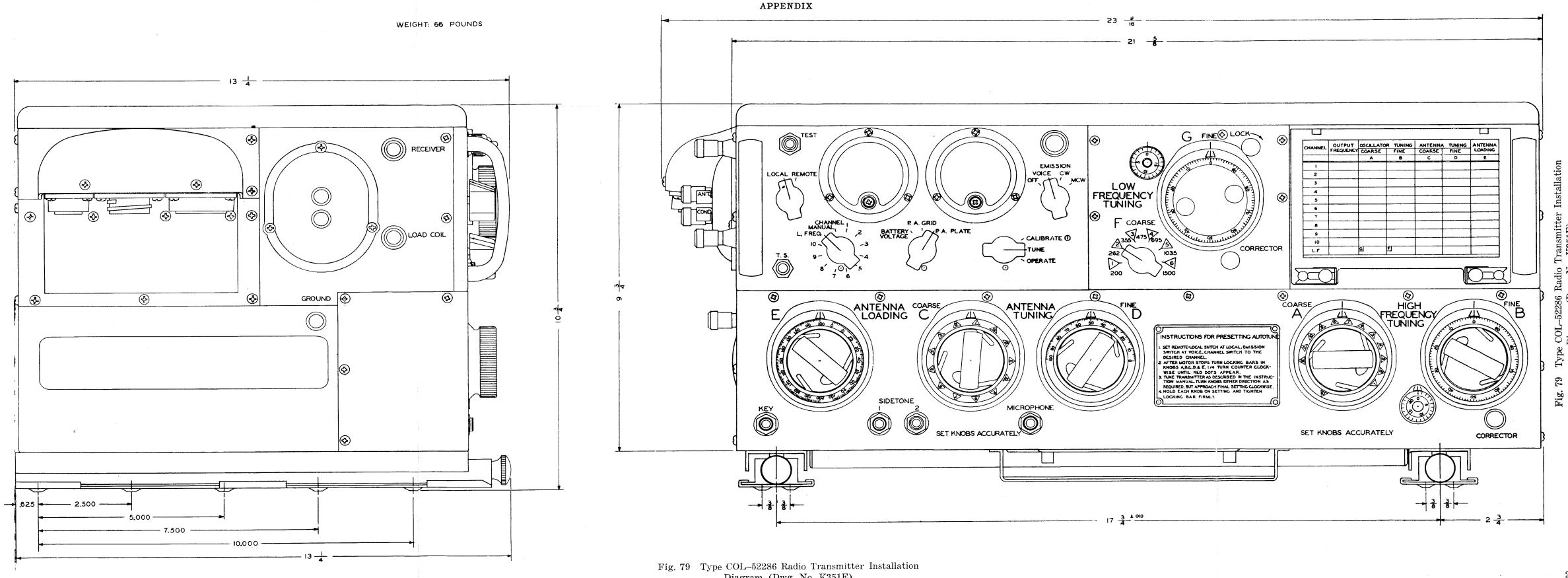
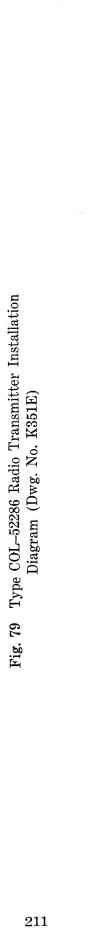
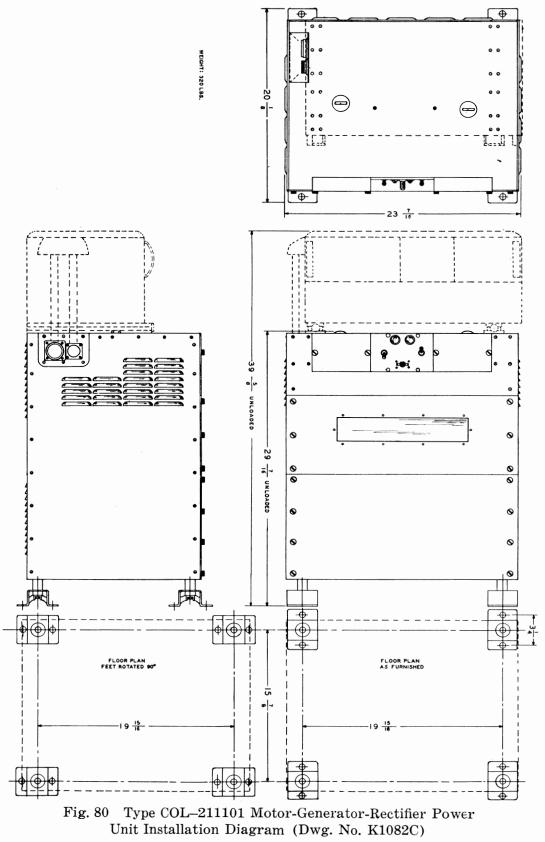
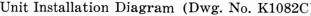
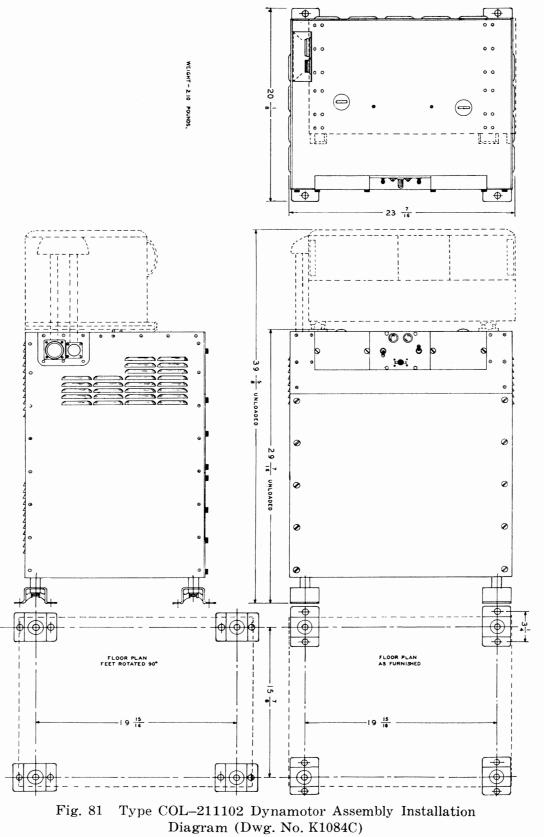
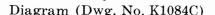




Fig. 77 96K Autotune Multiturn Unit-Right Side View







Diagram (Dwg. No. K351E)











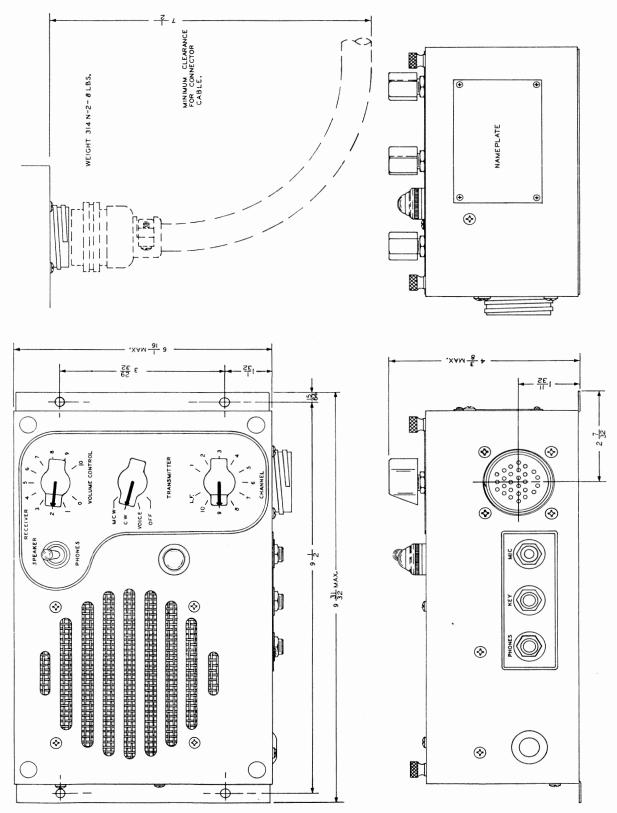
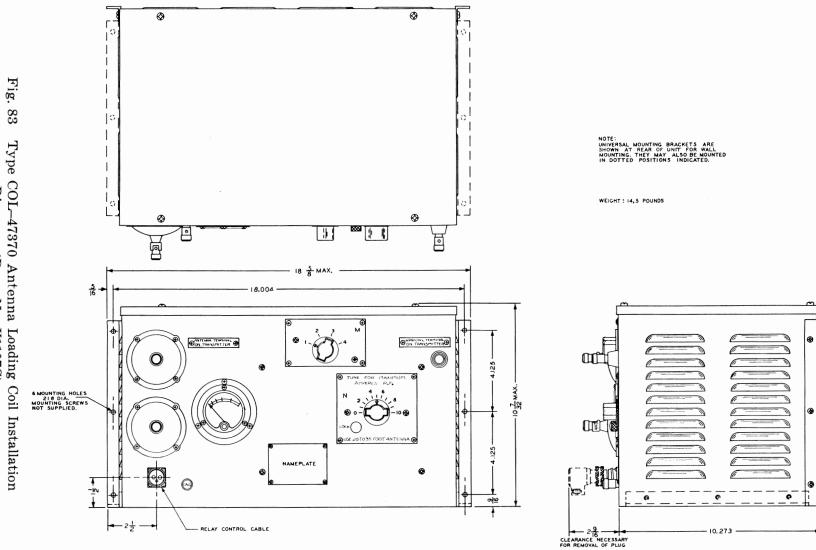
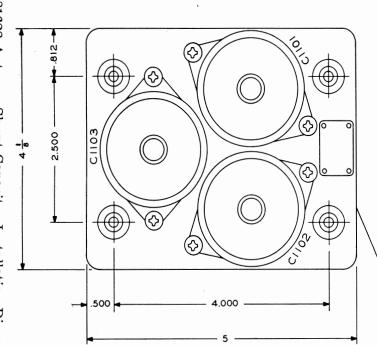



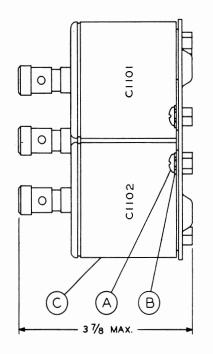

Fig. 82 Type COL-23410 Remote Control Unit Installation Diagram (Dwg. No. K1104C)

g. 83 Type COL-47370 Antenna Loading Coil Installation Diagram (Dwg. No. K1107C) 215

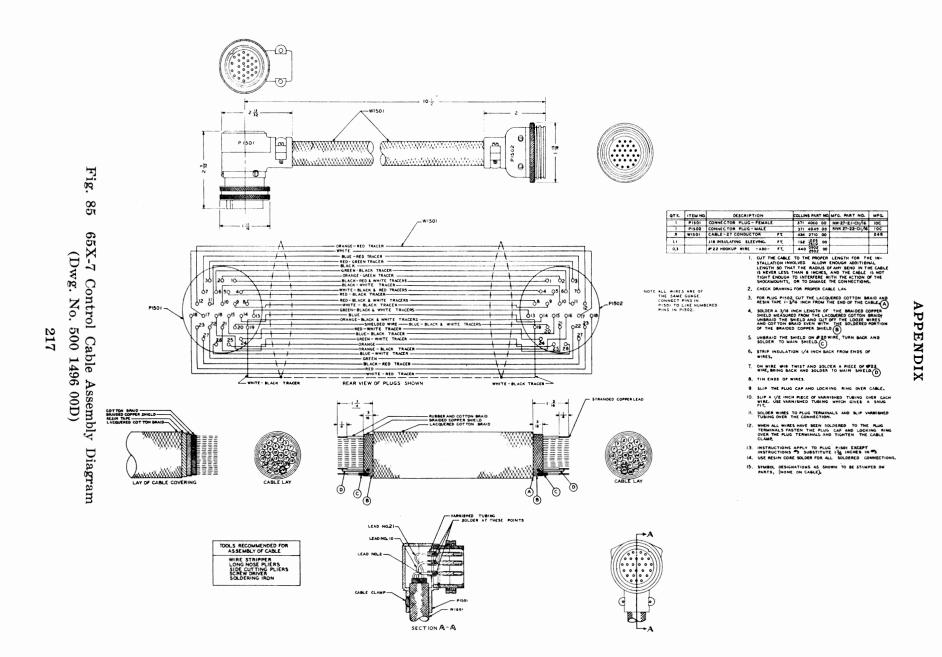



|   | ITEM | DESCRIPTION                     | PART NO.    | MAT'L FIN. |
|---|------|---------------------------------|-------------|------------|
| 6 | A    | #8-32 X5/16 S.S. PH. B.HD. SCR. | 343 0186 00 |            |
| 6 | В    | #8 EXT SHAKE WASHER             | 373 8030 00 |            |
| 3 | с    | 25MMF. CAPACITOR                | 914 1762 00 |            |
| 1 | D    | CAPACITOR MTG. PLATE ASS'Y.     | 571 1722 10 |            |
| 1 | ×    | ASSY OF PARTS PER GR. A         | 571 1370 20 |            |

.




216




.

WEIGHT: I POUND 9.5 OZ.



 $\bigcirc$ 



ര 10 ۵ Fig. Ē P1 6 01 хiн N 0 98 0 COLLINS MIG. PART NO, MIG. PART NO. MIG. PART NO, MIG. 371 5140 00 FR-10-21-C\$/4 10C 371 5129 00 RFR-10-24-C\$/4 10C 132 1275 00 132 1275 00 132 1275 00 132 1275 00 132 1275 00 132 1275 00 133 1275 00 140 950 00 131 1275 00 132 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 1275 00 131 QTT. ITEM NO DESCRIPTION 
 ITEM NC
 DESCRIPTION

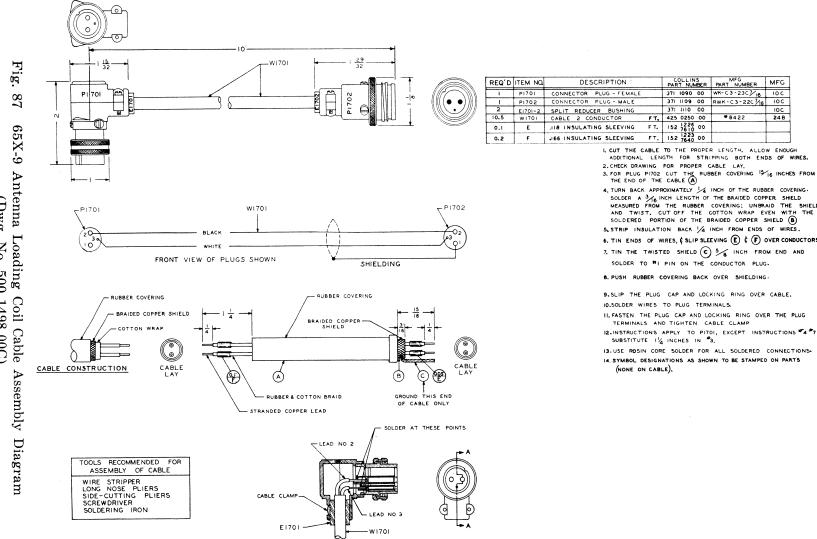
 1
 PIE 01
 CONNECTOR PLUG-FEMALE

 1
 PIE02
 CONNECTOR PLUG-MALE

 69
 WIG01
 CABLE-IO CONDUCTOR

 0.7
 E
 JIE INSULATING SLEEVING, FT,
 65X-8 Power 43 D #22 HOOK-UP WIRE - A9-. FT. 0.2' F ISS INSULATING SLEEVING, FT. 152 123 00 I, CUT THE CABLE TO THE PROPER LENGTH FOR THE INSTALLA-TION INVOLVED. ALLOW ENDUGH ADDITIONAL LENGTH SO THAT THE ADDUG TO AND REND IN THE CABLE IS HIVER LESS THAN BINCHES AND THE CABLE IS NOT TIGHT ENDUGH TO INTERFERE WITH THE ACTION OF THE SHOGAMOUNTS OR TO DAMAGE THE CONNECTORS. P1602 GREEN 2. CHECK DRAWING FOR PROPER CABLE LAY. 2 CHECK DRAWING TOR PROPER CALL ( AT, 3 FOR PLUE PHOLOW THE LADOUT ALL CAUCHERS COTTON BAND AND ASIN TARE 13/16 INCH FRAUT THE RANGE TO THE CARL ( A) 4 SOURD A ALL INCH LENGT OF THE BANDE COME SWELLO MEASUND FROM THE LADOUT ALL COURSE INCE AND THE COTTON BAND EVEN WITH THE SOLERED PORTION OF THE BANDED COPPER SWITHCE (B) 3. STEPP INSULATION BACK (4) INCH I ROBE INCS OF THE WARS -BLUE -AED -Cable Assembly 500 1497 00D) --BLACK - WHITE ---- BLACK TRACER -- GREEN --- BLACK TRACER -- ORANGE -- BLACK TRACER --5. STEPP INSULATION BACK 14 Incid FROM ENDS OF THE WIRES, 6. TWIST AND SOLDER A PIECC OF 22 WIRE OF 39 WIRE, BOWN BACA AND SOLDER TO SHIELD,  $\bigcirc$ 7. THI ENDS OF WIRES, & SLEVING  $\bigcirc$  AND  $\bigcirc$  OUR CONDUCTORS 8. SLIP A 12 INCIDENT SUBJECT TO SUBJECT OVER CARL, B. SLIP A 12 INCIDENT OF UNAMINISHED TUBING OVER CACH WIRE, USE VARIANSIND TUBING UNCID AVEL TIC. -w 1601 REAR VIEW OF PLUGS SHOWN IQ, SOLDER WIRES TO PLUG TERMINALS AND SLIP VARNISHED TUBING OVER THECONNECTIONS, 1+ II. WHEN ALL WIRES HAVE BEEN SOLDERED TO THE PLUG TERMINALS PASTEN THE PLUG CAP AND LOCKING RING OVER THE PLUG TERMINALS AND TIGHTEN THE CABLE CLAMP, -RUBBER AND COTTON BRAID BRAIDED COPPER SHIELD /LACQUERED COTTON BRAID 1 18 -14. 12.INSTRUCTIONS APPLY TO PLUG PIGOZ EXCEPT INSTRUCTION #3, SUBSTITUTE 134 INCH IN THIS INSTRUCTION, LACQUERED COTTON BRAID 1: 3, USE RESIN CORESOLDER ON ALL SOLDERED CONNECTIONS, 14. SYMBOL DESIGNATIONS AS SHOWN TO BE STAMPED ON PARTS (NONE ON CABLE). Diagram ¥¥¥¥¥¥¥ \*\*\*\*\*\*\*\*\*\*\* . ..... STRANDED COPPER LEAD ତ Ó LAY OF CABLE COVERING CABLE LAY CABLE LAY ٢ ۲ VARNISHED TUBING SOLDER AT THESE POINTS LEAD NO.I TOOLS RECOMMENDED FOR ASSEMBLY OF CABLE P 1601 wiso " 🚵 🛲 🕅 WIRE STRIPPER LONG NOSE PLIERS SIDE-CUTTING PLIERS SCREWDRIVER SOLDERING IRON CABL 0 SECTION A-A

(Dwg. No.


218

| A |
|---|
| P |
| P |
| E |
| H |
| Ĕ |
| × |

.

(Dwg. No. 500 1498 00C)

219



SECTION A-A

SOLDER A 3 18 INCH LENGTH OF THE BRAIDED COPPER SHELD

MFG PART NUMBER

\*8422

371 1090 00 WK-C3-23CV18

371 1109 00 RWK-C3-220716

MFG

10 C

100

100

24 B

MEASURED FROM THE RUBBER COVERING; UNBRAID THE SHIELD AND TWIST, CUT OFF THE COTTON WRAP EVEN WITH THE SOLDERED PORTION OF THE BRAIDED COPPER SHIELD (8) 5. STRIP INSULATION BACK 1/4 INCH FROM ENDS OF WIRES.

6. TIN ENDS OF WIRES, & SLIP SLEEVING (E) & (F) OVER CONDUCTORS.

7. TIN THE TWISTED SHIELD C 5 8 INCH FROM END AND

SOLDER TO #I PIN ON THE CONDUCTOR PLUG.

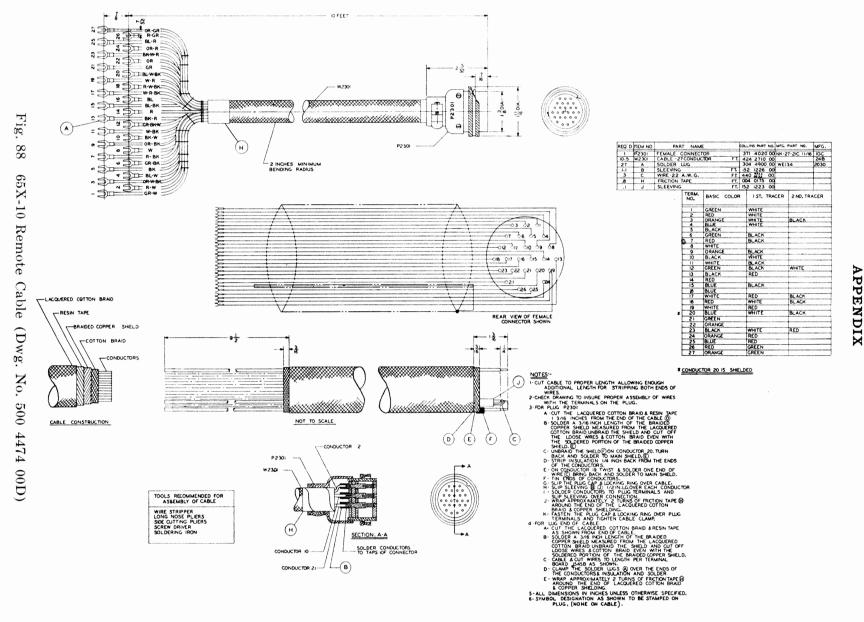
8. PUSH RUBBER COVERING BACK OVER SHIELDING

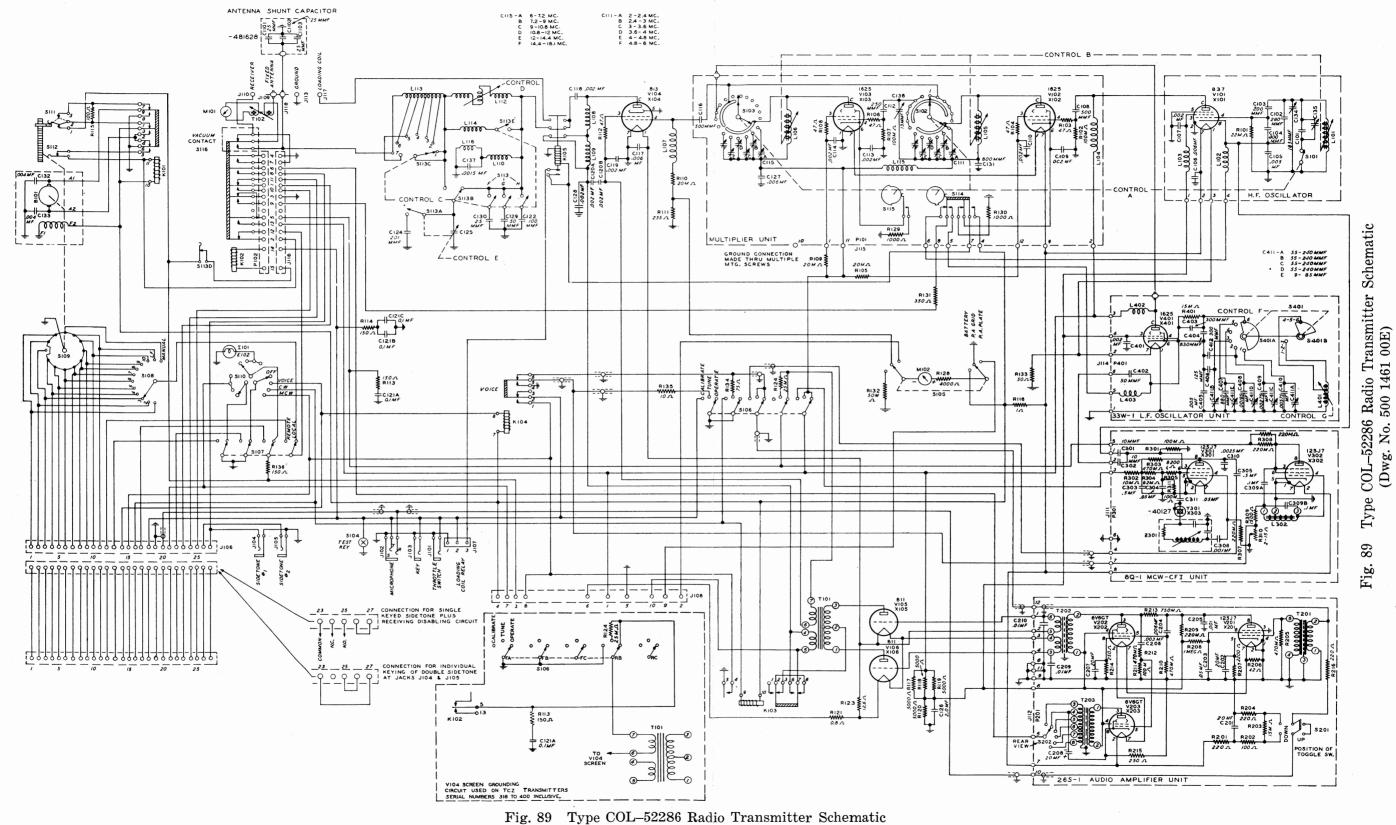
COLLINS PART NUMBER

371 1110 00

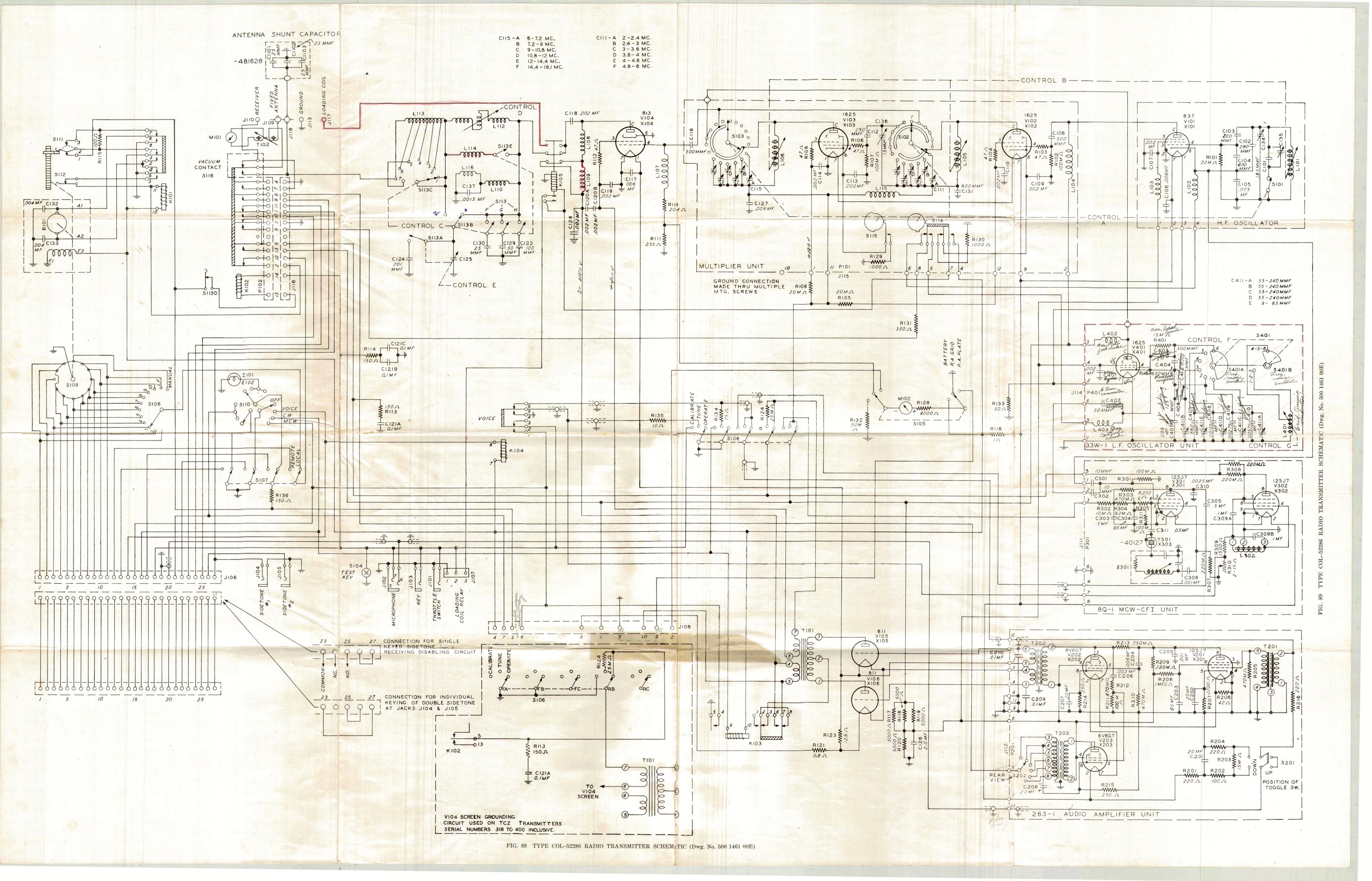
425 0250 00

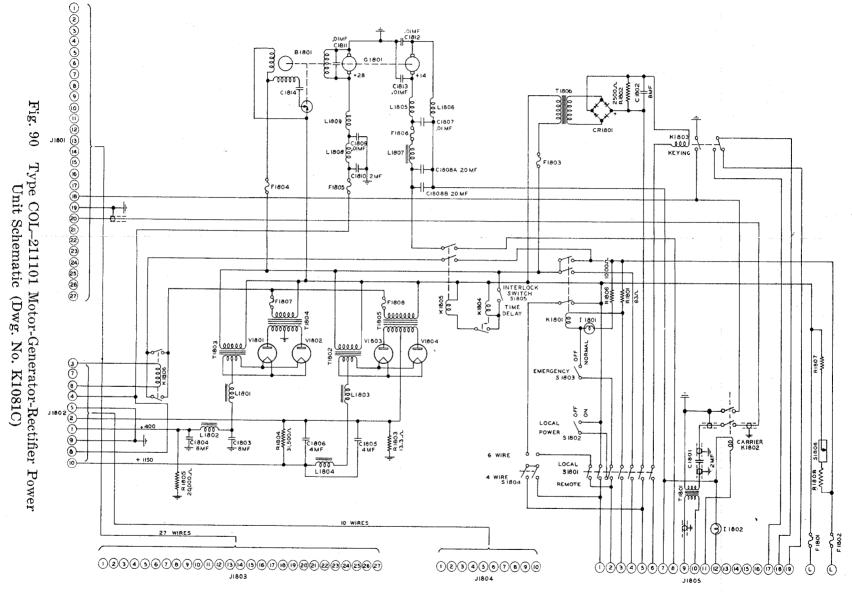
152 7610 00

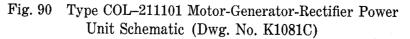

FT.

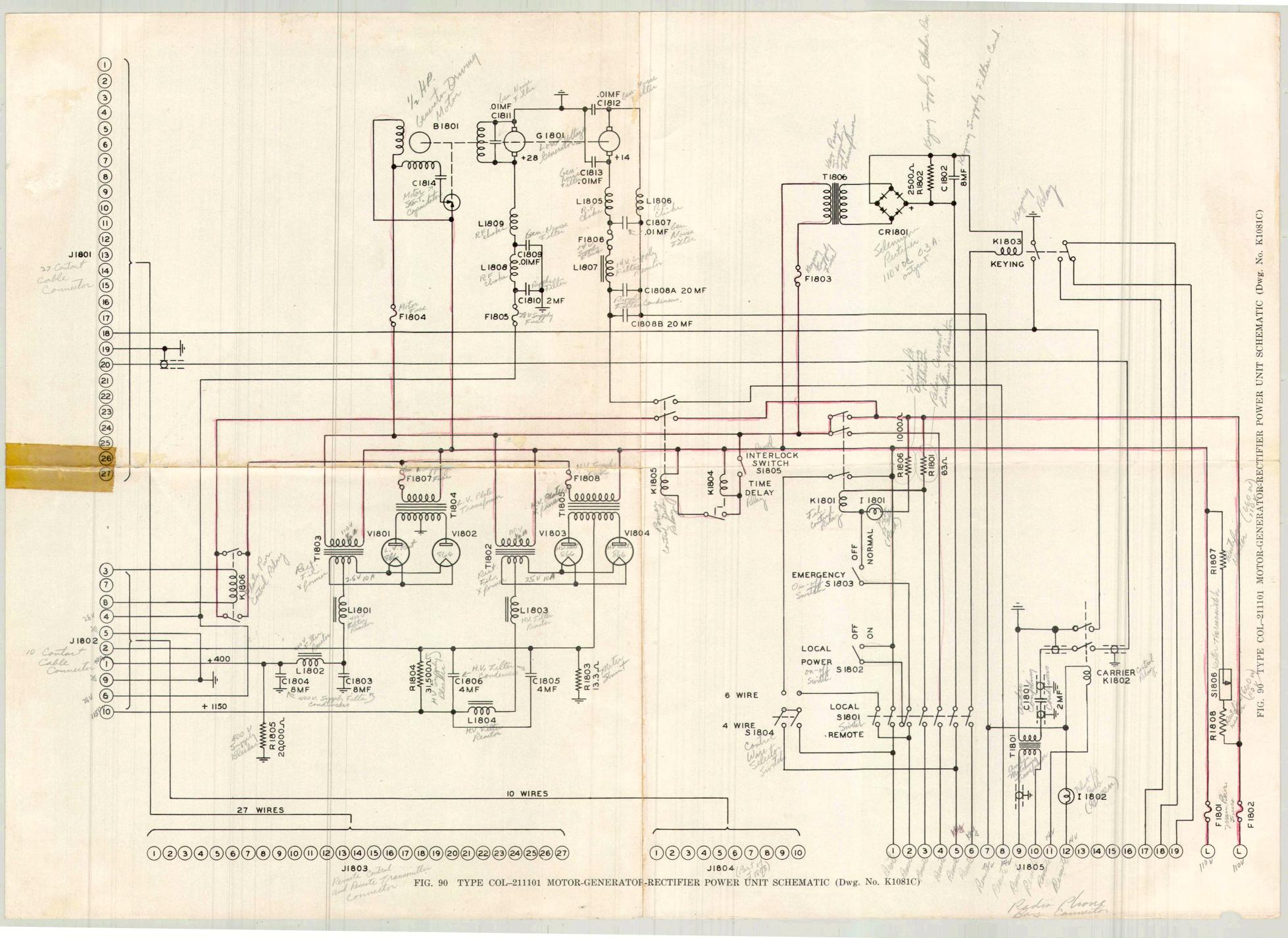

9.SLIP THE PLUG CAP AND LOCKING RING OVER CABLE. IO.SOLDER WIRES TO PLUG TERMINALS.

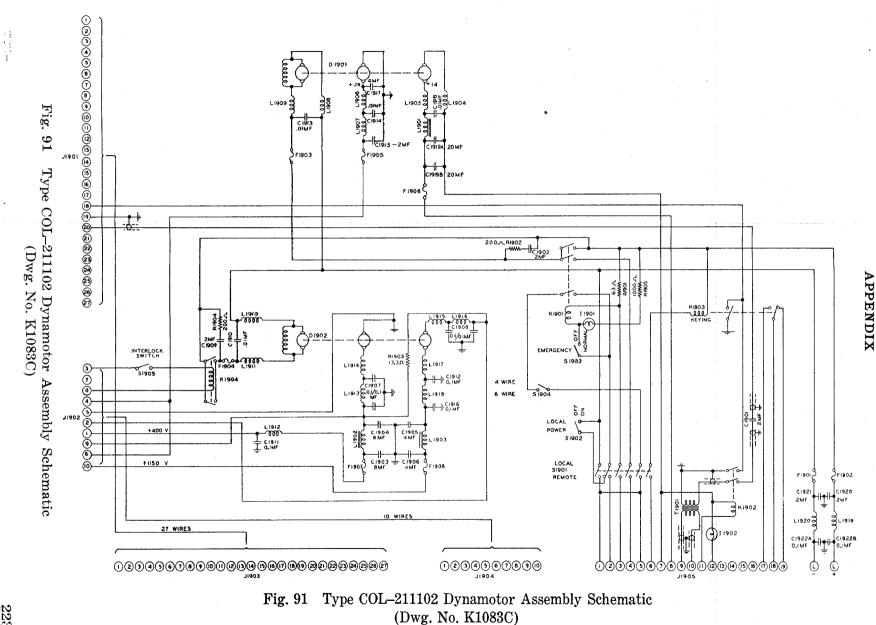
IL FASTEN THE PLUG CAP AND LOCKING RING OVER THE PLUG TERMINALS AND TIGHTEN CABLE CLAMP 12.INSTRUCTIONS APPLY TO PITOL, EXCEPT INSTRUCTIONS #4 #7 #8


SUBSTITUTE 14 INCHES IN #3. 13. USE ROSIN CORE SOLDER FOR ALL SOLDERED CONNECTIONS.


14. SYMBOL DESIGNATIONS AS SHOWN TO BE STAMPED ON PARTS





(Dwg. No. 500 1461 00E)











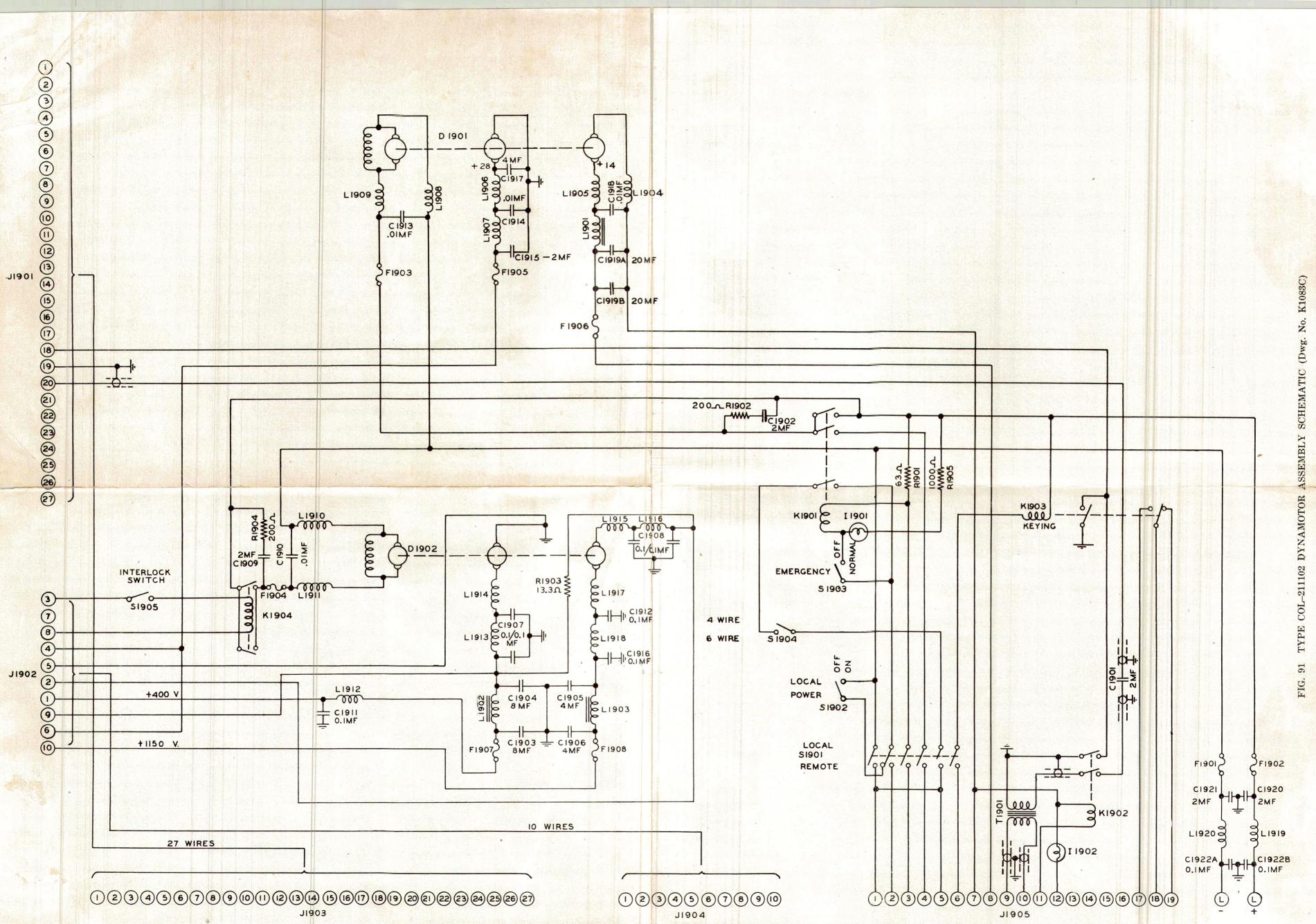
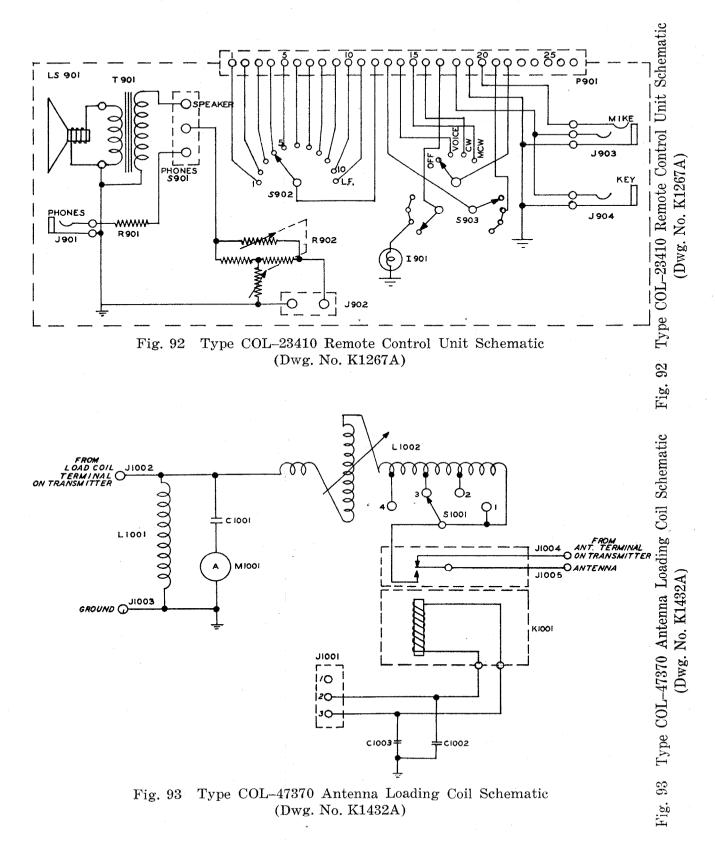
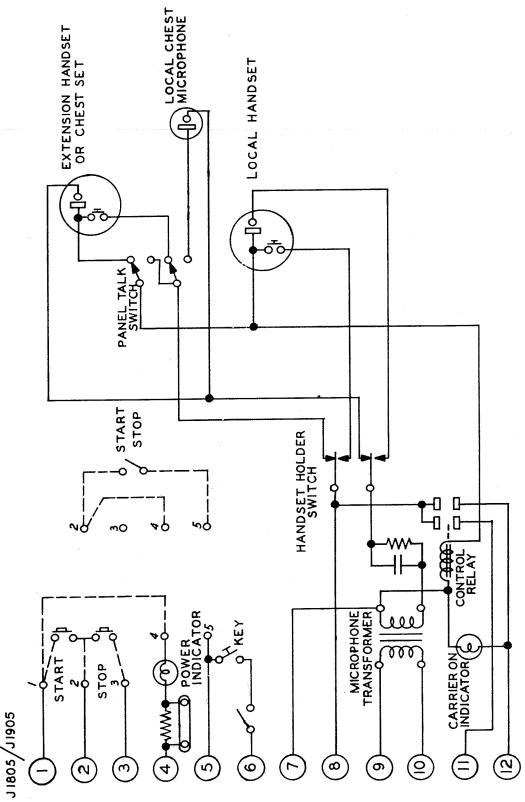
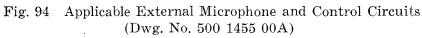






FIG. 91 TYPE COL-211102 DYNAMOTOR ASSEMBLY SCHEMATIC (Dwg. No. K1083C)









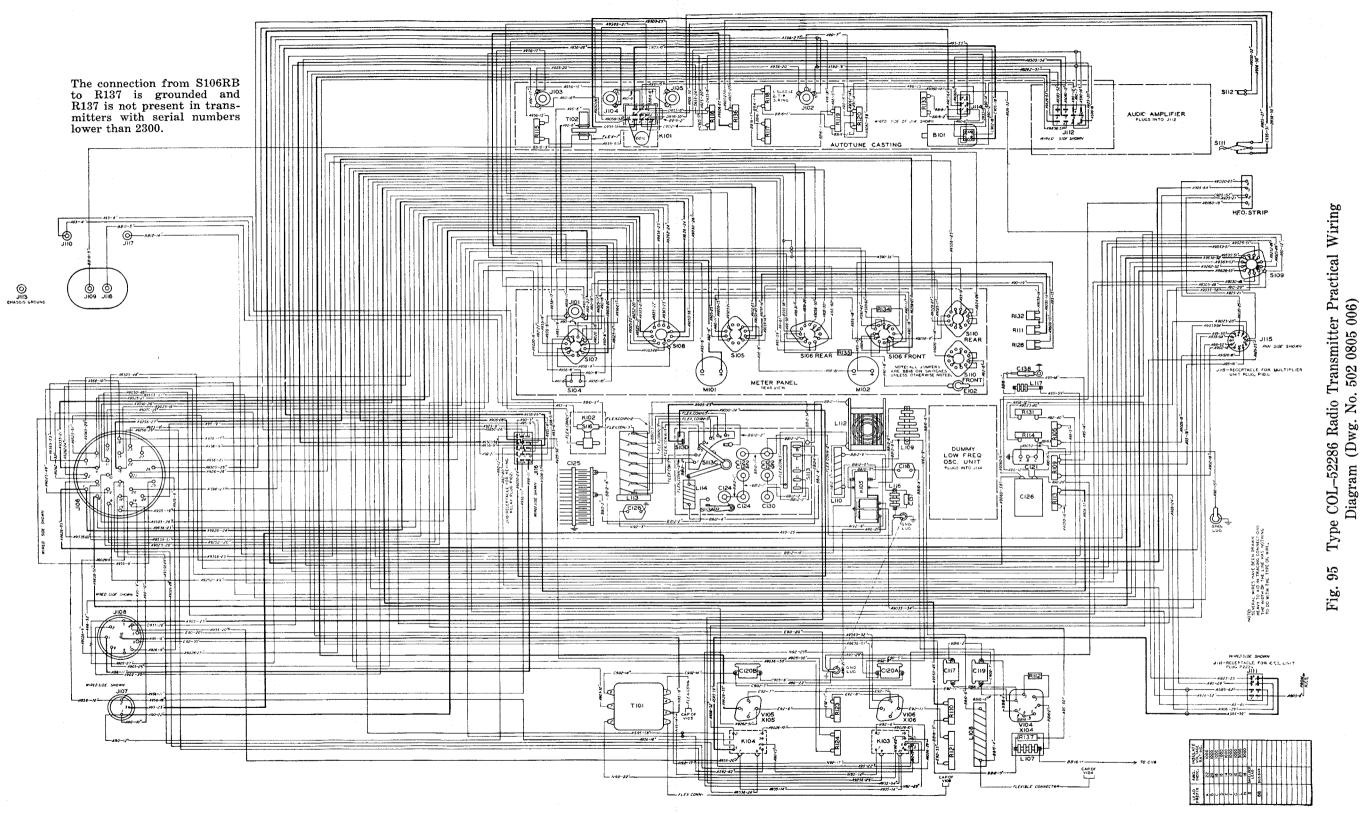



Fig. 95 Type COL-52286 Radio Transmitter Practical Wiring Diagram (Dwg. No. 502 0805 006)

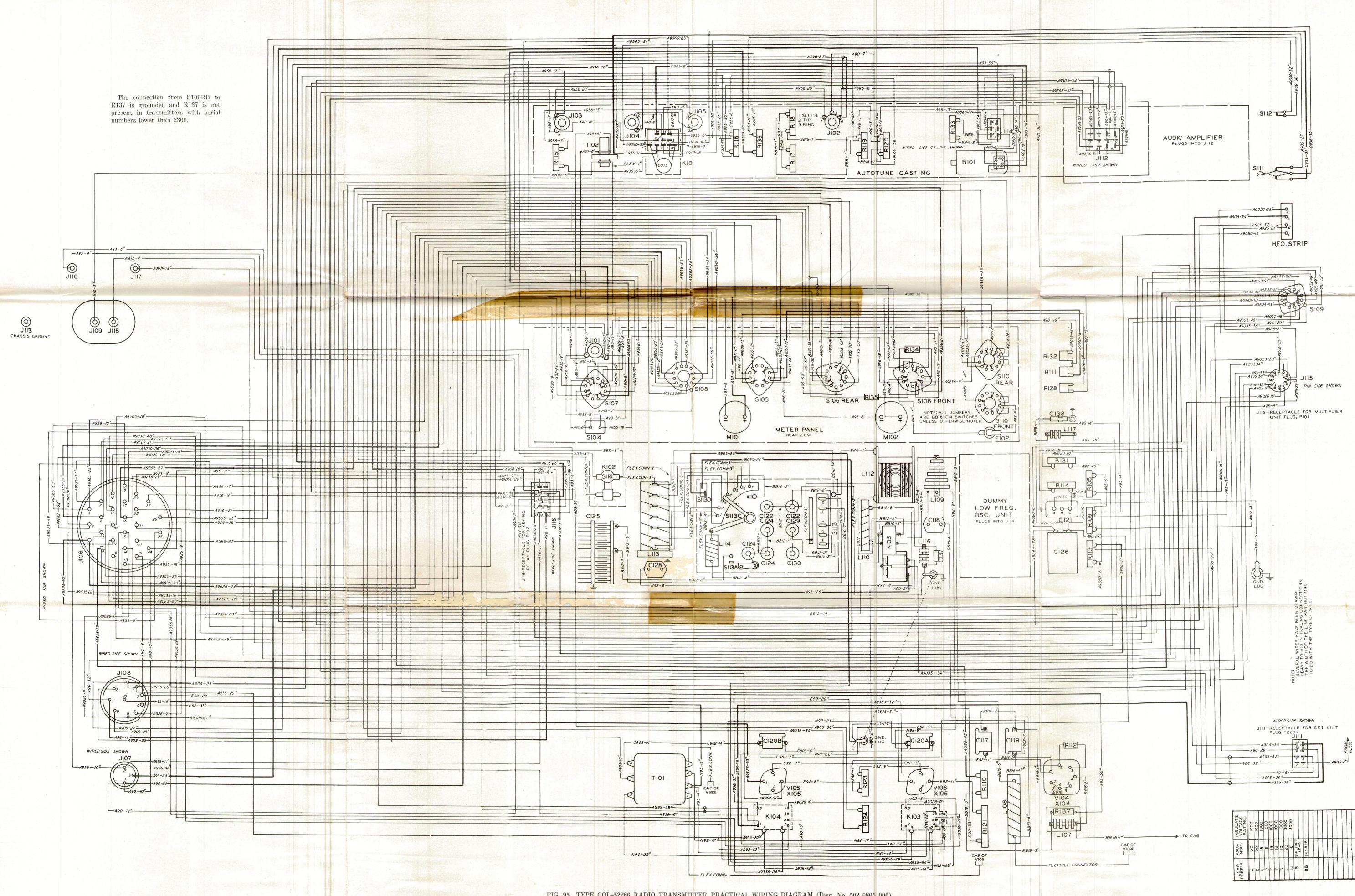



FIG. 95 TYPE COL-52286 RADIO TRANSMITTER PRACTICAL WIRING DIAGRAM (Dwg. No. 502 0805 006)

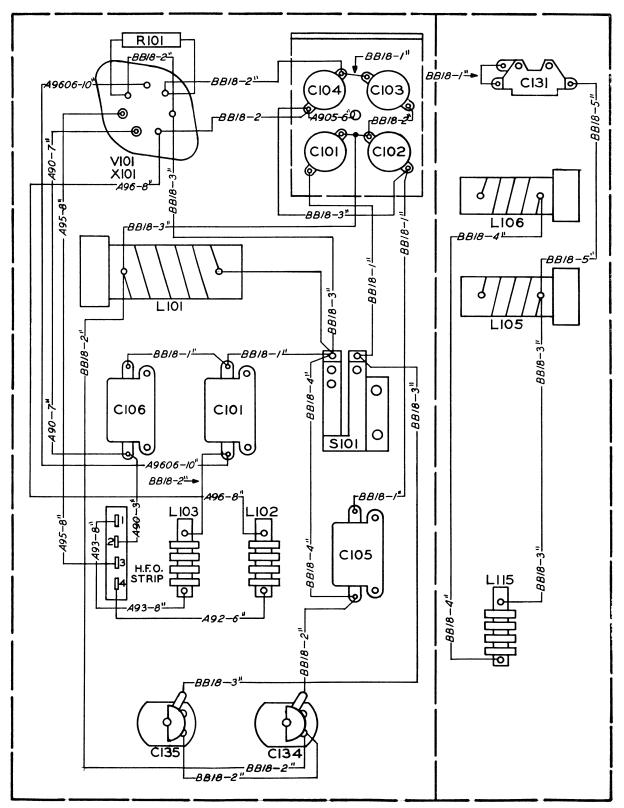
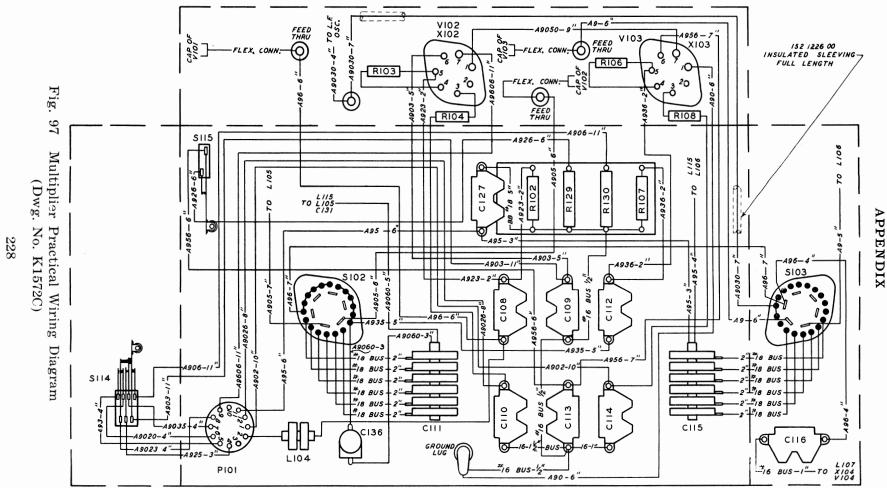
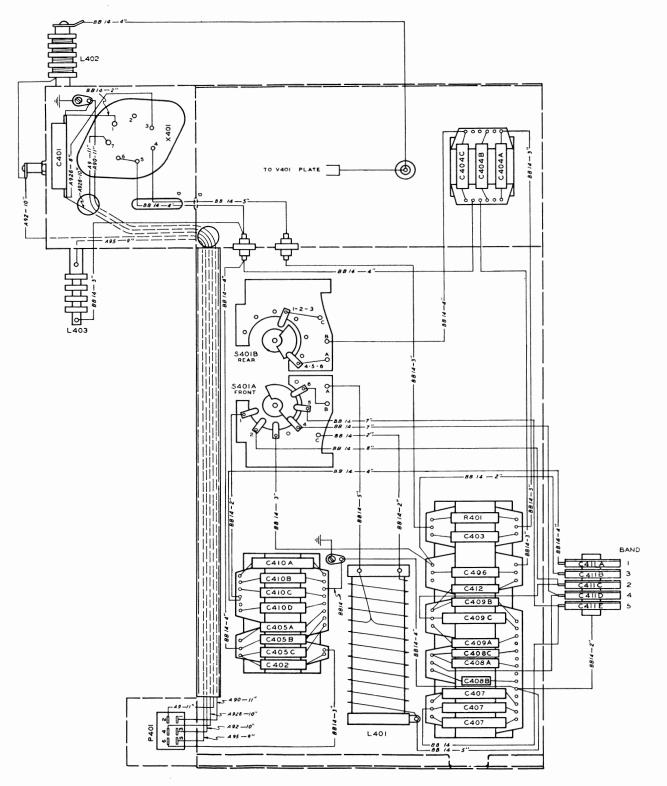




Fig. 96 High Frequency Oscillator Practical Wiring Diagram (Dwg. No. 502 0804 003)





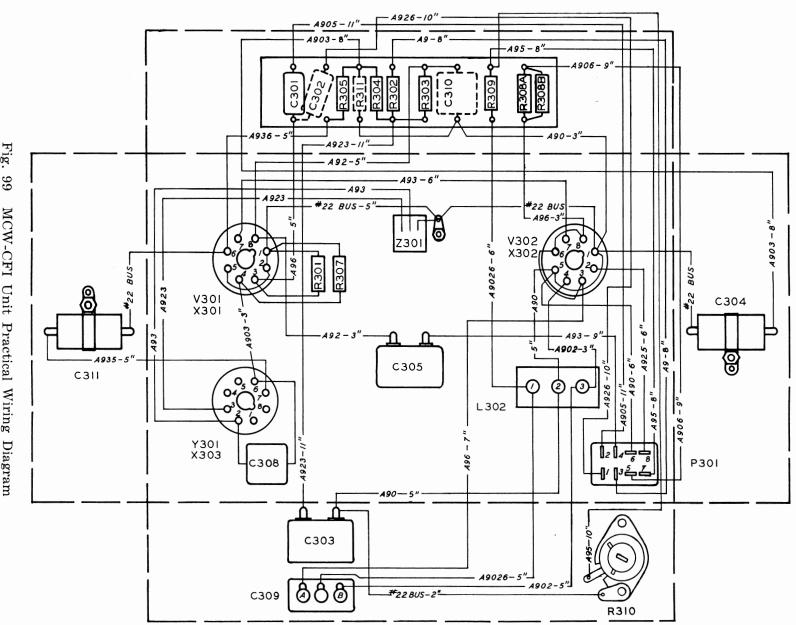
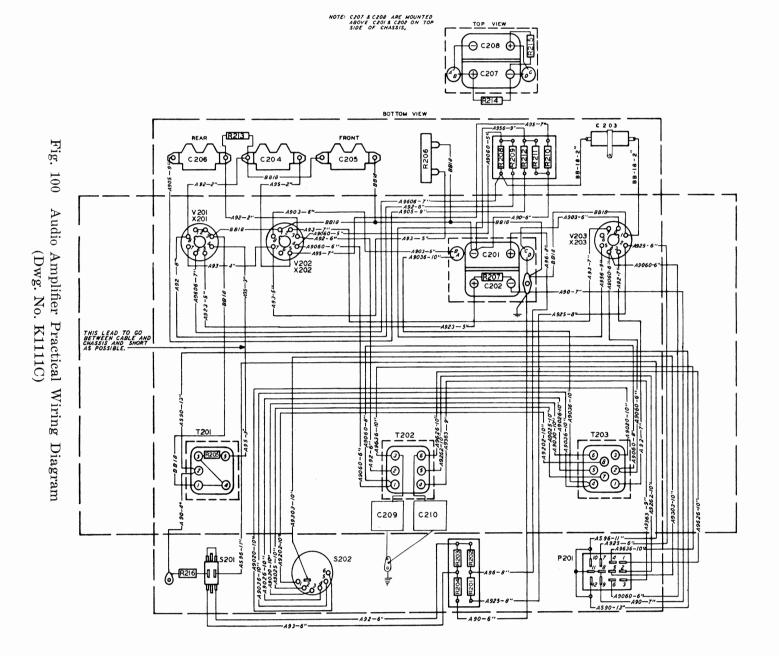




Fig. 98 Low Frequency Oscillator Practical Wiring Diagram (Dwg. No. K1146C)









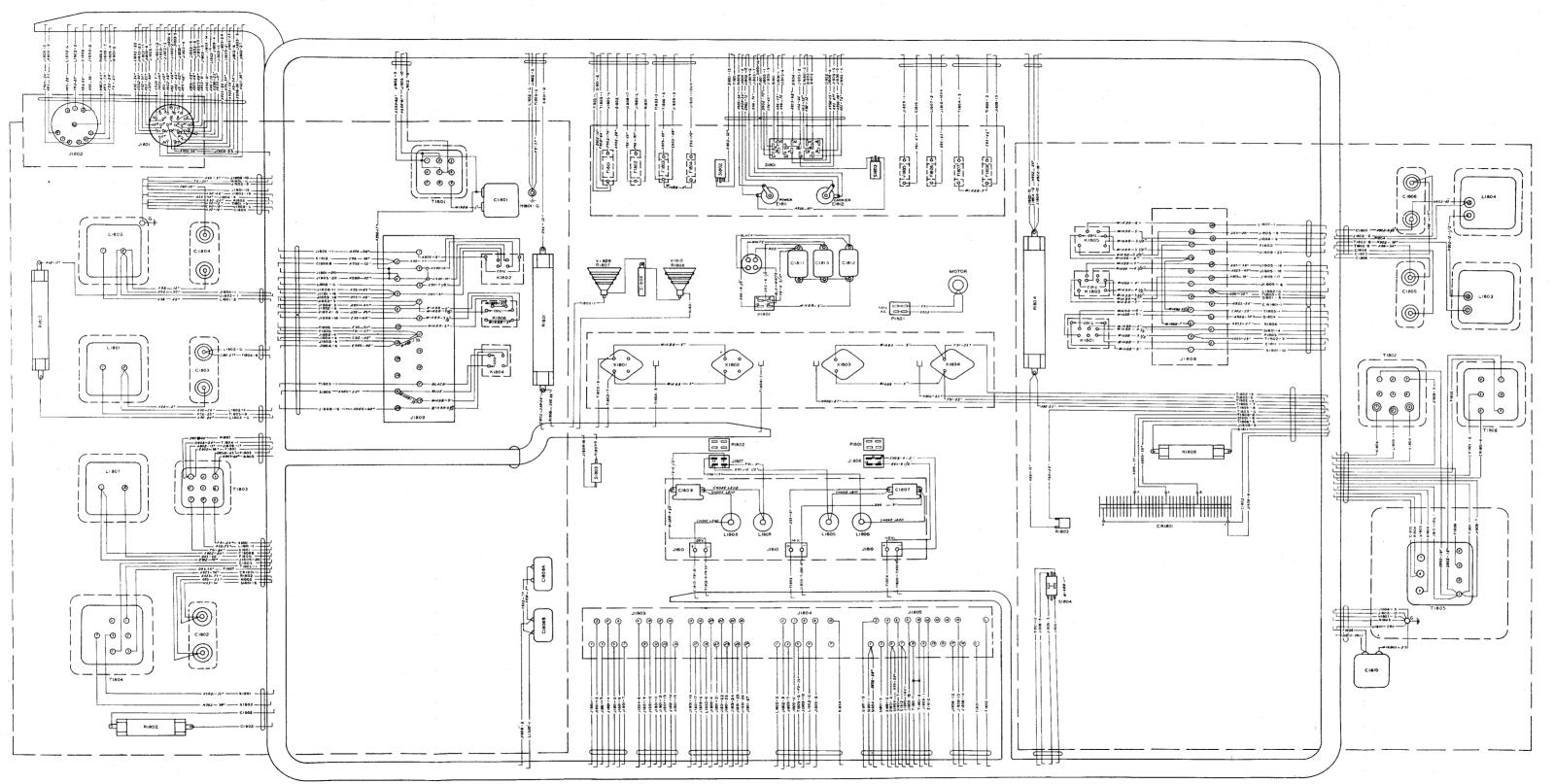



Fig. 101 Type COL-211101 Motor-Generator-Rectifier Power Unit Practical Wiring Diagram (Dwg. No. 500 4446 00F)

| 64<br>10 BBro<br>11,3 F9<br>12,2 F81<br>13,5 F9<br>13,2 F81<br>11,5 F302<br>11,5 F302<br>13,6 F302<br>13,6 F302<br>13,6 F302<br>14,6 D93<br>5,5 D93<br>5,6 D95<br>5,6 D95<br>5,6 D95<br>5,6 D95<br>5,6 D95<br>5,6 D95<br>5,6 D95<br>5,6 D95<br>5,6 D95<br>5,6 D95<br>5,7 D93<br>5,7                                                                                                                                                                                                                                 | PART<br>NUMBER | PRIN'T NO.<br>PART NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 152 7610 00    | INSULATED SLEEVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3         3           2         3           2         3           2         3           2         3           3         4           3         4           3         4           3         1           3         1           3         1           3         5           3         5           3         5           3         5           4         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 152 7640 00    | INSULATED SLEEVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T         T           21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152 7070 00    | INSULATED SLEEVING F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 97<br>44<br>44<br>44<br>45<br>45<br>45<br>45<br>45<br>45<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 152 7700 00    | INSULATED BLEEVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Image         Image           10         Barro           10         Garro           11         Garro           20.3         Anon           21.4         Obe           22.5         Garro           23.6         Garro           24.7         Anon           24.3         Anon           24.3         Anon           25.4         Garro           26.3         Anon           26.4         Anon           26.4         Anon           26.4         Anon           26.4         Anon           26.4         Anon           26.4 <t< td=""><td>304 1500 00</td><td>HEAVY 14 SOLDER LUG</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 304 1500 00    | HEAVY 14 SOLDER LUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 304 1800 00    | LIGHT 3/18 SOLDER LUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pin         Back           0         880           0         880           10         880           10         880           10         700           10         700           100         700           100         700           100         700           100         700           100         700           100         700           100         700           100         700           100         700           100         700           100         700           100         700           101         700           102         700           103         700           104         700           105         700           106         700           100         800           100         800           100         800           100         800           101         800           102         800           103         800           104         800           105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 304 2008 60    | HEAVY NIS SOLDER LUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0         5000           103         793           112         794           113         794           113         794           113         794           113         794           113         794           114         794           115         793           115         793           116         793           116         793           116         793           116         793           116         793           116         793           111         400           102         705           111         400           103         444           104         403           111         403           103         444           104         403           104         403           104         403           104         403           104         403           104         403           104         403           104         403           104         403           104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 304 5200 00    | SPADE SOLDER LUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| U2.2         Ph1           02.2         Ph1           0.6         FR4           0.6         FR4           0.7         C 90           3.0         FR02           3.1         FR02           3.2         FR02           3.3         FR02           3.4         FR02           3.5         FR02           3.4         FR02           3.4         AR5           3.5.         FR02           3.4.         AR5           3.5.         FR02           3.4.         AR5           3.5.         FR02           4.4         FR02           3.5.         FR02           4.75         FR02 </td <td>421 1820 00</td> <td>BIA SINGLE CONDUCTOR MAG WAREF"</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 421 1820 00    | BIA SINGLE CONDUCTOR MAG WAREF"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| B.B.         Free           11.9         Free           11.9         Free           12.0         6.03           13.0         6.03           13.0         6.03           13.0         6.03           13.0         6.03           13.0         6.03           13.0         6.03           14.0         Dr9.           21.1         6.002           21.1         6.002           21.1         6.002           21.1         6.002           3.6         D93.           21.1         6.002           3.6         D93.           21.1         6.002           3.6         D93.           3.6         D93.           3.6         D34.           6.03         6.03           6.3         6.03           6.3         6.03           8.0         A402           3.1.4         A50.           3.0.4         A51.           3.0.4         A52.           3.0.4         A52.           3.0.4         A52.           3.0.4         A52.           3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 440 0401 00    | #12 ROCKBESTOS WIRE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.3.5         Fig2, 10.0         F33           1.0.5         F33, 10.0         F63           3.0.6         F63         F53           3.0.7         F63         F53           3.0.7         F63         F53           3.0.7         F63         F53           3.0.7         F63         F63           3.0.7         F63         F53           3.0.7         F63         F63           3.0.7         F63         F63           3.0.7         F63         F63           5.3.7         F63         F63           5.4.7         F63         F63           5.5.8         F63         F63           5.3.7         F62         F63           5.4.7         F63         F63           6.5.8         F63         F63           6.5.4         F63         F63           6.5.4         F63         F63           7.3.7         F63         F63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440 0403 00    | A 12 ROCKBESTOS WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Book         CB3           100         CB3           100         CB4           100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 440 0405 00    | 12 ROCKBESTOS WIRE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TE         Cop           3.0         Frod           3.5         F03           5.5         F03           5.5         F03           5.6         F03           6.5         A9           24.4         F082           7.4         F082           7.4         F082           7.4         F082           7.4         F082           7.4         F082           7.4         F082           8.6         A80           9.6         A92           2.7         A932           2.8.4         A92           2.8.4         A92           2.9.5         A92           2.0.5         A92           2.0.5         A932           4.02         A936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 440 0409 00    | 48 12 ROCKBESTOS WIRE P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| JO         Frequency           1.5         F002           1.5         F002           1.4         D35           2.8.0         D002           2.1         C 802           3.6         D32           3.6         D32           3.6         D32           3.6         D32           3.6         D32           3.7         C 802           3.2         C 603           6.5         A 702           2.3         A 702           2.3         A 703           2.4.3         A 704           2.5         A 705           1.1         A 204           3.4.4         A 32           3.5.4         A 35           3.6.5         A 92           3.6.6         A 92           3.6.7         A 32           3.6.8         A 32           3.6.9         A 32           3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 440 0 507 00   | O 14 AOCHERSTOS WIRE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15         1993           5.5         1923           5.5         1923           5.6         1923           5.6         1923           5.6         1923           5.8         1952           5.8         1962           5.8         1962           5.1         126           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           5.0         122           11         1404           10.4         1044           11         1404           11         1404           12.2         1425           12.2         1426           12.4         1424           12.4         1424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 440 0509 00    | GIA ROCKBESTOS WIRE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S5         D03           L6         D05           L6         D05           21.6         D06           21.6         D06           21.6         D05           21.6         D05           21.6         D05           21.6         D05           21.6         D05           21.6         C602           2.4         C602           2.4         C602           2.5         A003           2.6         A05           2.1.1         A064           3.6.5         A92           2.6.5         A93           3.6.6         A93           3.6.7         A92           3.6.7         A92<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 440 0010 00    | Hourses ina mine Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.4         Deg.           4.4         Deg.           2.4         Deg.           2.5         DSN           2.6         CSO           2.7         CSO           2.8         CSO           2.9         CSO           2.1         CSO           2.2         CSO           2.3         CAO           2.5         A           2.6         CSO           2.7         A           2.8         A           3.9         A           3.0         A           3.4.3         A           3.5.4         A           3.5.4         A           3.6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 440 0605 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21.6         Des           21.6         Des           3.6         Des           3.7         C 98           3.8         Des           3.4         Aso           3.6         AP           3.7         AP           3.8         AP           3.9         AP           3.4         AP           3.4         AP           3.4         AP           4.4         AP <td>440 \$607 00</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 440 \$607 00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23.0         6902           3.6         5935           3.6         5932           3.6         652           3.7         646           3.8         6934           3.4         6902           3.2         696           3.4         6902           3.5         A           3.5         A           3.5         A           3.5         A           3.6         A802           3.4         A402           3.4.3         A32           2.4.4         A953           3.5.4         A952           3.6.4         A954           3.7.4         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440 0608 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LE         Days           21.         C 60           5.0         5.02           3.2         C 60           5.0         5.02           3.2         C 60           5.0         5.04           6.3         C 63           6.5         A           2.1         C 63           6.3         C 63           2.3         A 602           2.3         A 602           2.3         A 602           3.42         A 402           3.43         A 602           3.43         A 602           3.43         A 602           3.44         A52           3.54         A 53           3.50         A 82           1.24         A 75           3.50         A 82           1.42         A 22           1.42         A 23           1.42         A 23           1.42         A 24           1.43         A 93           1.42         A 23           1.43         A 94           1.43         A 94           1.43         A 94           2.1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 440 0609 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.1         C40           5.6         G52           3.2         C96           3.4         C962           6.5         C532           2.4         C962           3.5         A           2.4         C962           3.5         A           2.5         A           2.5         A           2.6         A           2.7         A           2.8         A           3.9         A           3.0         A           3.0         A           2.0         A           3.0         A           2.0         A           3.0         A           2.1         A           3.2         A           2.3         A           3.4         A           2.0         A           3.1         A           2.1         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 440 0617 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.2         C96           2.4         C902           6.5         C303           0.5         A9           20.3         A902           22.3         A903           24.3         A903           24.3         A903           24.3         A903           24.3         A903           30.4         A92           26.4         A95           35.6         A95           35.6         A95           12.4         A928           12.4         A928           14.7         A936           10.8         A936           20.9         A936           22.9         A936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 440 0702 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.4 (902)<br>6.3 (903)<br>20.3 A902<br>22.3 A902<br>22.3 A902<br>22.3 A902<br>22.3 A903<br>34.3 A903<br>34.4 A905<br>34.4 A905<br>34.4 A90<br>34.3 A92<br>26.4 A95<br>35.0 A96<br>35.0 A96<br>35.0 A96<br>35.0 A96<br>12.4 A926<br>11.7 A926<br>11.7 A926<br>10.7 A936<br>8.0 A93 | 440 0704 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.4 (902)<br>6.3 (903)<br>20.3 A902<br>22.3 A902<br>22.3 A902<br>22.3 A902<br>22.3 A903<br>34.3 A903<br>34.4 A905<br>34.4 A905<br>34.4 A90<br>34.3 A92<br>26.4 A95<br>35.0 A96<br>35.0 A96<br>35.0 A96<br>35.0 A96<br>12.4 A926<br>11.7 A926<br>11.7 A926<br>10.7 A936<br>8.0 A93 | 440 0 709 0 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6.3 (200)<br>8.5 (200)<br>8.5 (200)<br>22.3 (200)<br>22.3 (200)<br>24.3 (200                                                                                                                                                                                                                                                                                                                                                | 440 0709 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.5         A9           20.3         A902           22.3         A903           24.3         A905           18.1         A906           30.8         A90           34.3         A92           26.4         A93           35.4         A92           26.4         A93           35.4         A92           20.9         A923           12.2         A925           10.7         A926           10.7         A936           22.7         A936           22.7         A936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 440 0710 00    | DIA ROCKBESTOS WIRE FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20.3         A902           22.3         A903           24.3         A903           24.3         A904           24.3         A905           24.3         A905           30.4         A92           24.4         A93           35.6         A92           24.4         A93           35.0         A92           20.9         A923           12.4         A923           12.4         A923           10.8         A936           8.0         A936           22.4         A936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 440 090 00     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24.3 A 305<br>19.1 A 306<br>30.8 A 90<br>34.3 A 12<br>264 A 93<br>35.0 A 95<br>35.0 A 95<br>12.2 A 92<br>12.4 A 928<br>11.7 A 935<br>10.6 A 335<br>8.0 A 396<br>8.0 A 95<br>22.7 A 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 40 0907 00   | the second |
| 24.3 A 305<br>19.1 A 306<br>30.8 A 90<br>34.3 A 12<br>264 A 93<br>35.0 A 95<br>35.0 A 95<br>12.2 A 92<br>12.4 A 928<br>11.7 A 935<br>10.6 A 335<br>8.0 A 396<br>8.0 A 95<br>22.7 A 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 440 0312 00    | and the second street, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19.1 A 506<br>30.8 A 90<br>34.3 A 92<br>26-4 A 93<br>33.4 A 95<br>33.4 A 95<br>35.0 A 96<br>20.9 A 223<br>12.4 A 926<br>112.4 A 926<br>112.4 A 926<br>11.7 A 935<br>10.8 A 336<br>8.0 A 936<br>22.7 A 596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 440 0216 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 30.8         A90           34.3         A32           26.4         A93           35.0         A35           35.0         A36           20.9         A323           12.2         A92 5           12.4         A926           11.7         A935           -0.8         A336           8.0         A956           22.1         A536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 440 0218 00    | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 34.3         A32           26-4         A95           35.0         A95           35.0         A26           20.9         A923           12.2         A925           12.4         A926           11.7         A935           0.0         A936           8.0         A956           22.1         A596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 440 0902 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 26-4         A93           35.0         A95           35.0         A96           20.9         A923           12.4         A926           11.7         A935           0.0         A936           8.0         A956           22.1         A596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 440 0903 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35.6 A95<br>35.0 A26<br>20.9 A923<br>12.2 A925<br>12.4 A926<br>11.7 A935<br>10.8 A936<br>8.0 A956<br>22.1 A590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 440 0304 00    | #22 ROCKBESTOS WIRE FT<br>#22 ROCKBESTOS WIRE FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 35.0 A96<br>20.9 A923<br>12.2 A925<br>12.4 A926<br>11.7 A935<br>10.0 A936<br>8.0 A956<br>22.7 A590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440 0905 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20.9 A923<br>12.2 A925<br>12.4 A925<br>11.7 A935<br>10.0 A936<br>8.0 A956<br>22.4 A590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 440 0906 00    | 922 ROCKBESTOS WIRE FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12.2 A925<br>12.4 A926<br>11.7 A935<br>10.8 A936<br>8.0 A956<br>22.7 A590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 640 6921 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12.4 A926<br>11.7 A935<br>10.8 A936<br>8.0 A956<br>22.1 A590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 440 0922 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11.7 A935<br>10.8 A936<br>8.0 A956<br>22.1 A590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10.8 A936<br>8.0 A956<br>22.1 A590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440 0929 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 80 A956<br>22.1 A590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 440 0932 00    | THE THE PLATES WITHE P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22.1 4590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 440 0937 00    | # 22 ROCKBESTOS WIRE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 443 2229 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 447 (690 20    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 J V N90Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **/ 1690 20    | RIS ROCKBESTOS WIRE P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|            | AWG<br>INDIC | VOLT<br>RATE |
|------------|--------------|--------------|
| A          | 22           | 1000         |
| ₿          | 20           | 1000         |
| c          | 18           | 1000         |
| D          | 16           | 1000.        |
| E          | 14           | 1000         |
| F          | 12           | 1000         |
| <b>J</b> . | 6            | 1000         |
| 4          | 20           | 3000         |
| N          | 16           | 3000         |
| - 5        | LEAD         |              |
| 88         | BUS BAR      |              |

Fig. 101 Type COL-211101 Motor-Generator-Rectifier Power Unit Practical Wiring Diagram (Dwg. No. 500 4446 00F)

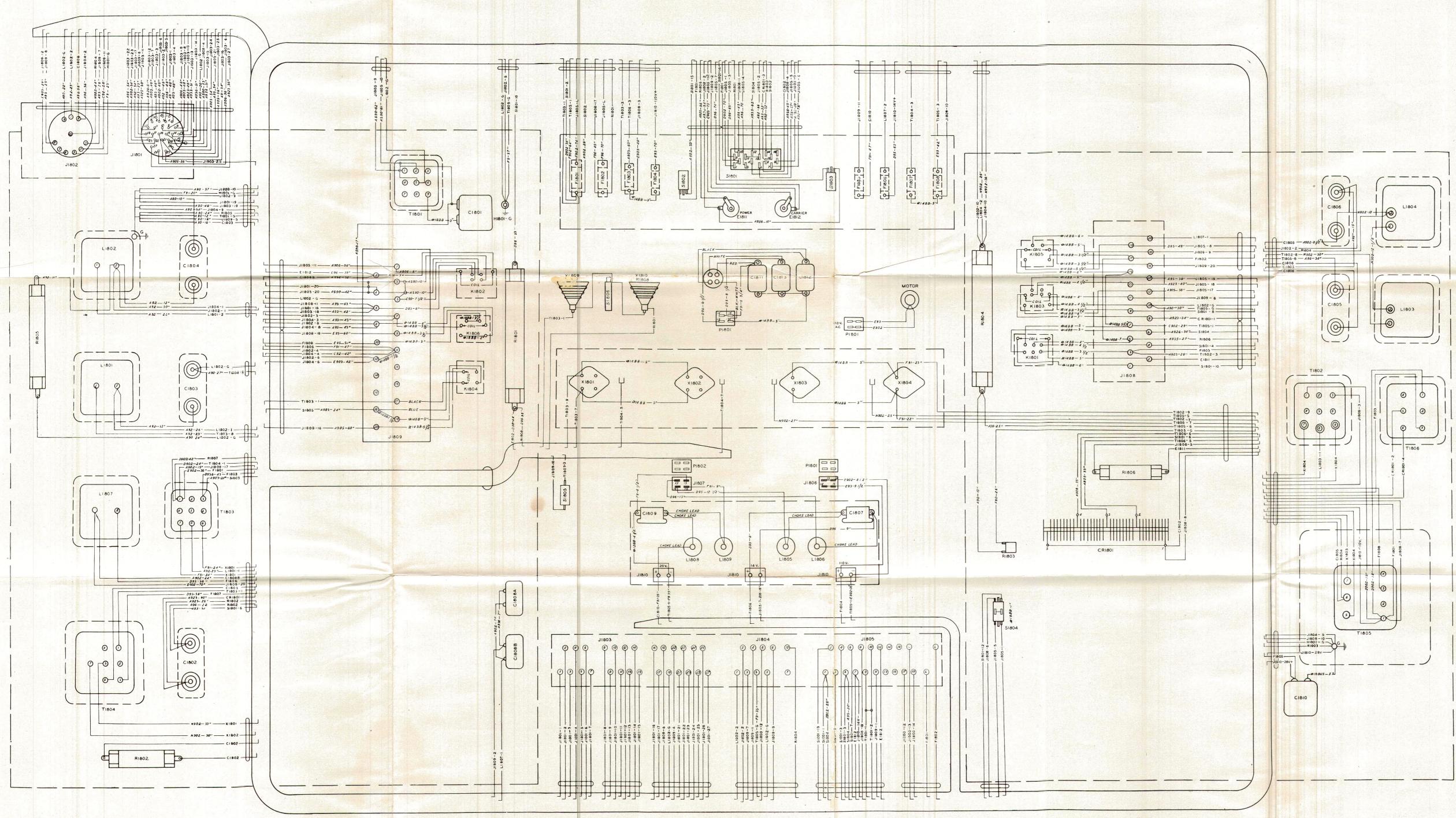
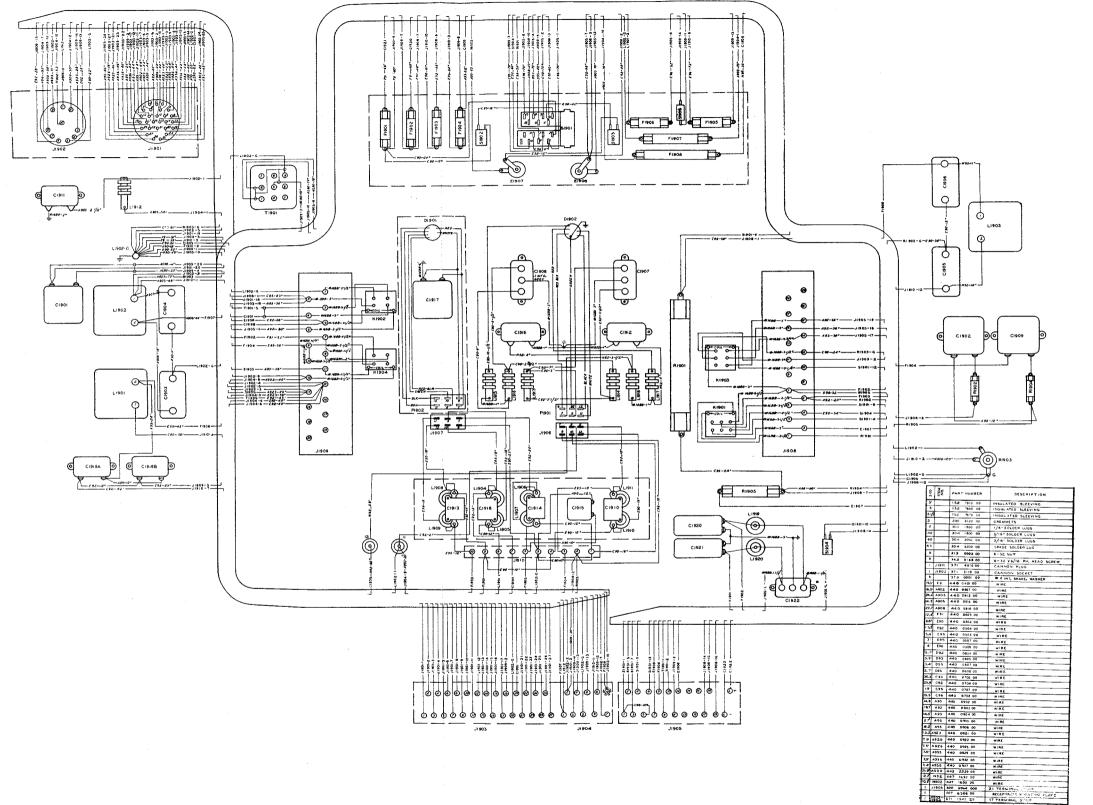
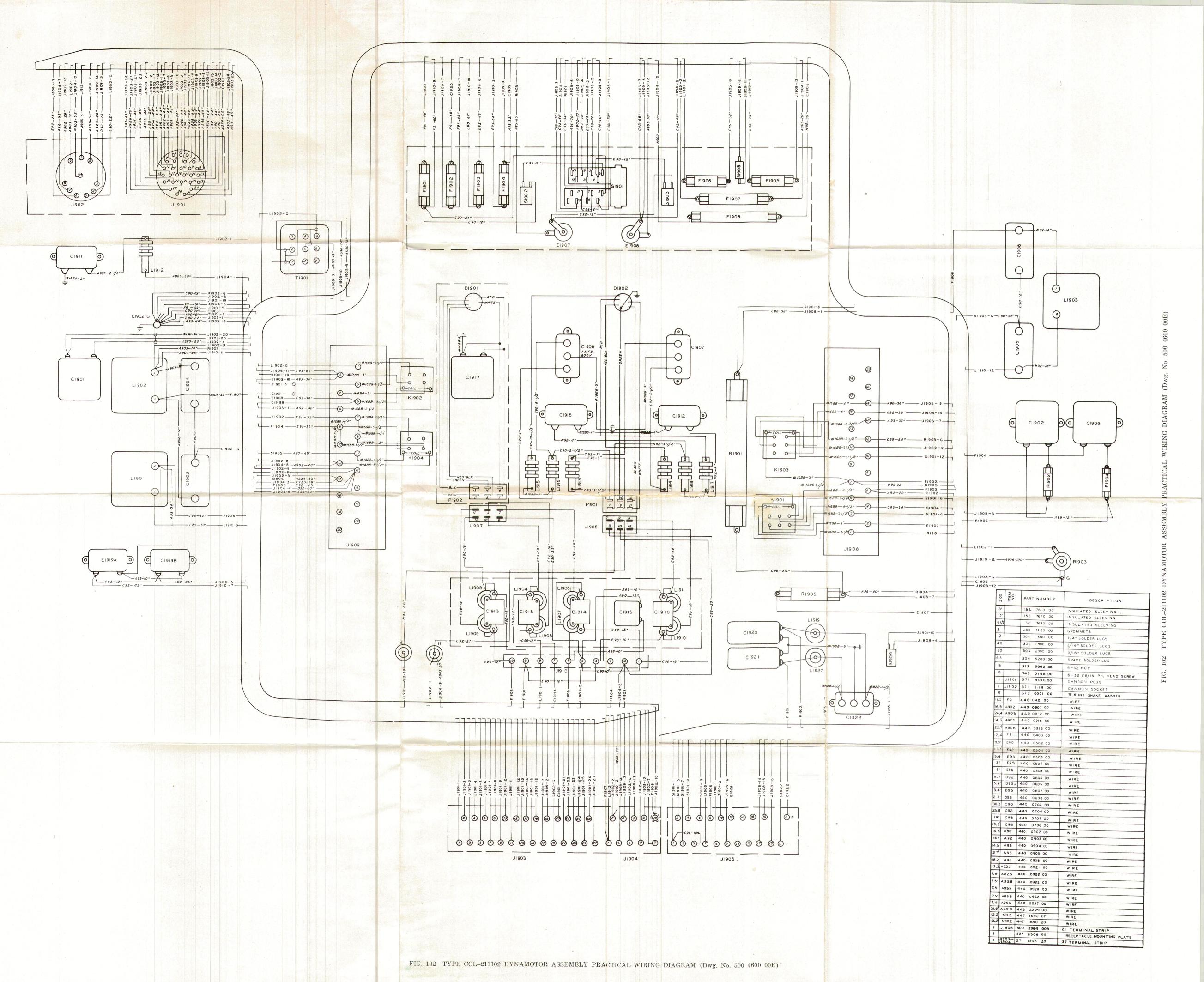



FIG. 101 TYPE COL-211101 MOTOR-GENERATOR-RECTIFIER POWER UNIT PRACTICAL WIRING DIAGRAM (Dwg. No. 500 4446 00F)

| 500         | ITEM NO.                                 | PART<br>NUMBER | PRI     | INT NO.<br>PART NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|-------------|------------------------------------------|----------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.5         |                                          | 152 7610 00    | INSULA  | TED SLEEVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT.  |
| 7.4         | 1000                                     | 152 7640 00    | INSULA  | TED SLEEVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT   |
| 6.5         |                                          | 152 7670 00    | INSUL   | A TED SLEEVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT   |
| 2           | 1.12.12.0                                | 152 7700 00    | INSULA  | TED SLEEVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT.  |
| 7           | 41 - S - 1                               | 304 1500 00    | HEAVY   | A SOLDER LUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 97          | 71                                       | 304 1800 00    | LIGHT   | 3/16 SOLDER LUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 21          | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 304 2000 00    | HEAVY   | 3/16 SOLDER LU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 44          | er an ar a                               | 304 5200 00    |         | SOLDER LUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.S. Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 4.3         | 8814                                     | 421 1420 00    |         | NGLE CONDUCTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 10          | BBIB                                     | 421 1820 00    | # 18 SI | NGLE CONDUCTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 11.3        | F9                                       | 440 0401 00    | # 12    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FT.  |
| 9.6         | F96                                      | 440 0406 00    | @ 12    | and the second | IRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FT.  |
| 11.5        | F902                                     | 440 0 409 00   | # 12    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT   |
| 10.8        | E93                                      | 440 0505 00    | 014     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 7. 8        | E 95                                     | 440 0 507 00   | \$14    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 3.0         | E 902                                    | 440 0509 00.   | 1014    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 7.5         | E903                                     | 440 0510 00    | \$14    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 5.5         | D93                                      | 440 0605 00    | Ø16     | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 14.8        | D95                                      | 440 0607 00    | \$16    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT   |
| 21.6        | D96                                      | 440 0608 00    | 016     | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT   |
| 23.0        | D902                                     | 440 0609 00    | 416     | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FL   |
| 3.6         | D936                                     | 440 0617 00    | 416     | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second sec |      |
| 2.1         | C 90                                     | 440 0702 00    | \$18    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 5.8         | C92                                      | 440 0704 00    | 416     | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |
| 3.2         | C96                                      | 440 0 708 00   | 1918    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 2.4         | 5060                                     | 440 0709 00    | APTIA   | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 6.3         | C902                                     | 440 0710 00    | 418     | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT,  |
| Sector Card |                                          |                | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT.  |
| 8.5         | A9                                       | 4 4 0 0901 00  | \$22    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT,  |
| 20.3        | A902                                     | 4 40 0907 00   | \$22    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT,  |
| 22.3        | A 903                                    | 440 0912 00    | #22     | ROCKBESTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT   |
| 24.3        | A 905                                    | 440 0916 00    | \$22    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 19.1        | A906                                     | 440 0918 00    | 02.2    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F T. |
| 30. 8       | A 90                                     | 440 09 02 00   | 022     | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 34.3        | A92                                      | 440 0903 00    | #22     | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 26.4        | A93                                      | 440 0904 00    | #22     | ROCKBESTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FT.  |
| 35.6        | A95                                      | 440 0905 00    | \$22    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT,  |
| 35.0        | A96                                      | 440 0906 00    | \$22    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT.  |
| 20.9        | A923                                     | 440 0921 00    | \$22    | ROCKBESTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FT   |
| 12.2        | A925                                     | 440 0922 00    | \$22    | ROCKBESTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F    |
| 12.4        | A926                                     | 440 0925 00    | @22     | ROCKBESTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S WIRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EFT  |
| 11.7        | A935                                     | 440 0929 00    | \$ 22   | ROCKBESTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S WIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EF   |
| 10.8        | A936                                     | 440 0932 00    | \$ 22   | ROCKBEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S WIRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EF   |
| 8.0         | A956                                     | 440 0937 00    | # 22    | ROCKBESTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S WIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EF   |
| 22.1        | A590                                     | 443 2229 00    | #22     | SHIELDED ROCKBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STOS WIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EF   |
| 25.0        | N 902                                    | 447 1690 20    | \$16    | ROCKBESTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S WIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RE F |
|             | 1.00                                     |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |

| LEAD   | AWG      | INSULATION                               |
|--------|----------|------------------------------------------|
| PREFIX | INDIC.   | RATE                                     |
| A      | 22       | 1000                                     |
| B      | 20       | 1000                                     |
| С      | 18       | 1000                                     |
| D      | 16       | 1000                                     |
| E      | 14       | 1000                                     |
| F      | 12       | 1000                                     |
| J      | 6        | 1000                                     |
| L      | 20       | 3000                                     |
| N      | 16       | 3000                                     |
| -5     | SHIELDED |                                          |
| 88     | BUS BAR  | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |





Fig. 102 Type COL-211102 Dynamotor Assembly Practical Wiring Diagram (Dwg. No. 500 4600 00E)

Type COL-211102 Dynamotor Assembly Practical Wiring Diagram (Dwg. No. 500 4600 00E) Fig. 102

233

GATE

. . E.



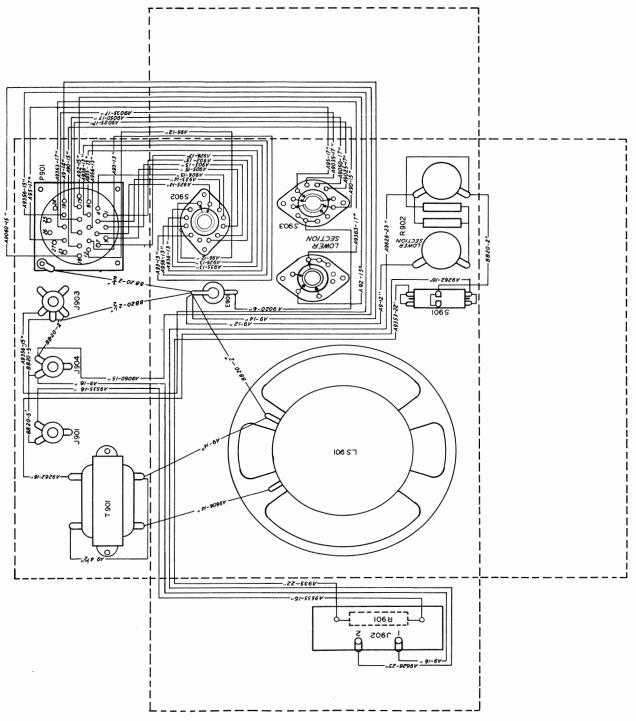
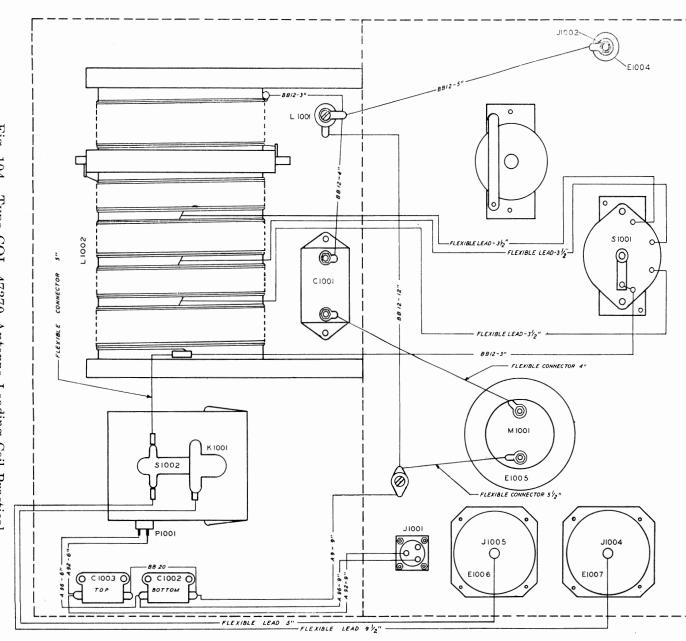
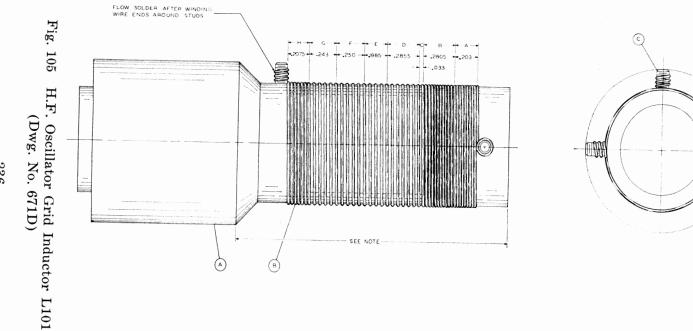




Fig. 103 Type COL-23410 Remote Control Unit Practical Wiring Diagram (Dwg. No. K1064C)

Fig. 104 Type COL-47370 Antenna Loading Coil Practical Wiring Diagram (Dwg. No. K1110C)

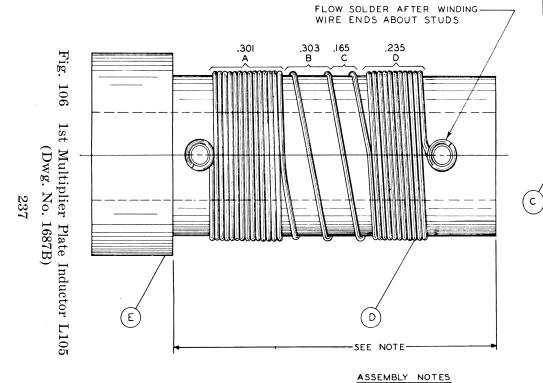



.

 
 II
 PART NG,
 DESCRIPTION

 1
 A. 507 57/8\_00
 COLL\_FORM

 15,8
 4.21 2440.00
 ₹2.4 0,4, write FY,


 2
 C. 31/2\_3480.00
 4.40 A.3/4\_BRASS\_STUD
 MAT'L FIN.

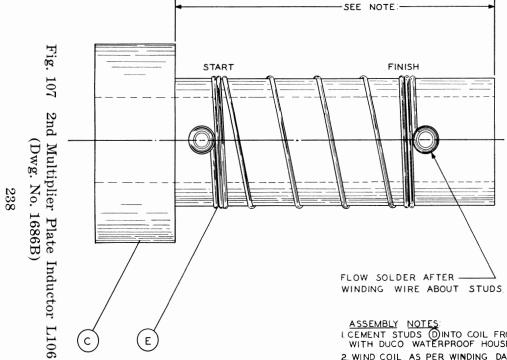


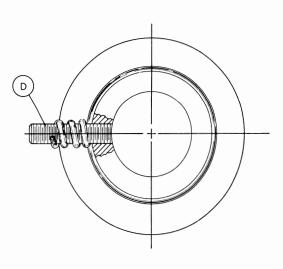
ASSEMBLY NOTES: I. CEMENT STUDS © INTO COL FORM () WITH SAUERISEN CEMENT 2. WIND COLL AS PER WINDING DATA, 3. AFFLY WITH BRUSH ON SPRAY GUN ONE COLT OF POLISTYFERME CEMENT \*912 AFTER WINDING.

|          | WINDING            | DATA   |           |
|----------|--------------------|--------|-----------|
| WINDINGS | NUMBER<br>OF TURNS | PITCH  | TURNS PER |
| ^        | 9                  | .02255 | 44,346    |
| B        | н                  | .0255  | 39,215    |
| с        | 1                  | .0332  | 30        |
| D        | 6                  | .04758 | 21,017    |
| ε        | 4                  | .04962 | 20.154    |
| F        | 5                  | .0500  | 20        |
| G        | 5                  | .0486  | 20, 576   |
| н        | 6 1/4              | .0332  | 30        |

|           | ITEM | DESCRIPTION                           | PART NO.    | MAT'L | FIN. |
|-----------|------|---------------------------------------|-------------|-------|------|
| $\square$ |      |                                       |             |       |      |
| 2         | С    | #2-56x 7/16 BRASS STUD                | 312 3390 00 |       |      |
| 7.        | D    | #24 D.E. WIRE FT                      | 421 2440 00 |       |      |
| 1         | E    | DOUBLER COIL FORM                     | 507 5716 00 |       |      |
|           |      | · · · · · · · · · · · · · · · · · · · |             |       |      |




| 1 |
|---|


# APPENDIX

#### WINDING DATA

| ASSEMBLY NOTES                                                            | wi | NDING | NO. OF<br>TURNS | рітсн | TURNS<br>PER INCH |
|---------------------------------------------------------------------------|----|-------|-----------------|-------|-------------------|
| CEMENT STUDS CINTO COIL FORM C<br>WITH DUCO WATERPROOF HOUSEHOLD CEMENT.  | А  | А     | 4               | ,0215 | 46.51             |
| 2. WIND COIL AS PER WINDING DATA.<br>3. APPLY WITH BRUSH OR SPRAY GUN ONE | В  | В     | 2               | .1515 | 6.61              |
| COAT OF # 1202 CLEAR GLYPTAL CEMENT<br>AFTER WINDING.                     | с  | с     | l               | .165  | 6.06              |
|                                                                           | D  | D     | 11              | .0215 | 46.51             |

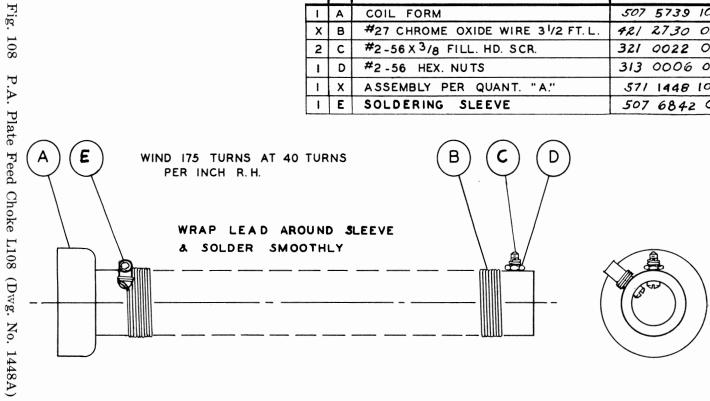
|    | ITEM | DESCRIPTION            | PART NO.    | MAT'L | FIN. |
|----|------|------------------------|-------------|-------|------|
|    |      |                        |             |       |      |
| -  | C    | COIL FORM              | 507 5717 00 |       |      |
| 2  | D    | #2-56 X7/16 BRASS STUD | 312 3390 00 |       |      |
| 3. | E    | #24 DE. WIRE , FT.     | 421 2440 00 |       |      |







ASSEMBLY NOTES: I CEMENT STUDS ØINTO COIL FROM O WITH DUCO WATERPROOF HOUSEHOLD CEMENT.

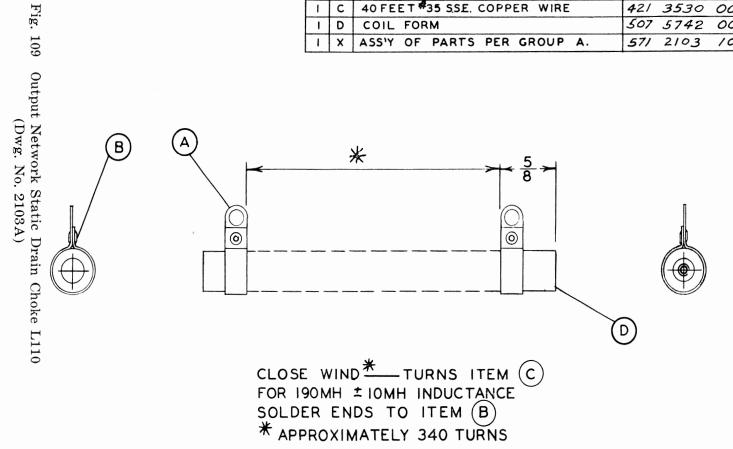

2. WIND COIL AS PER WINDING DATA

3 APPLY WITH BRUSH OR SPRAY GUN ONE COAT OF #1202 CLEAR GLYPTAL CEMENT AFTER WINDING.

#### WINDING DATA

|        | TURNS | PITCH | TOTAL |
|--------|-------|-------|-------|
| START  | 2-3/4 | .022  | .0605 |
|        | 1/4   | .218  | .115  |
|        | 1/2   | .252  | .241  |
|        | V2    | .178  | .330  |
|        | 1/2   | .170  | .415  |
|        | 1/2   | .1 68 | 499   |
|        | 1/2   | .212  | .605  |
|        | 1/2   | .174  | .692  |
|        | 1/4   | .188  | .739  |
|        | 1/2   | .230  | .854  |
| FINISH | 2-1/4 | .023  | .906  |

|   | ιт. | DESCRIPTION                      | PART NO.    | MAT'L | FIN. |
|---|-----|----------------------------------|-------------|-------|------|
| 1 | A   | COIL FORM                        | 507 5739 10 |       |      |
| Х | в   | #27 CHROME OXIDE WIRE 31/2 FT.L. | 421 2730 00 |       |      |
| 2 | С   | #2-56 X 3/8 FILL. HD. SCR.       | 321 0022 00 |       |      |
| 1 | D   | #2-56 HEX. NUTS                  | 313 0006 00 |       |      |
| I | X   | ASSEMBLY PER QUANT. "A."         | 571 1448 10 |       |      |
| 1 | Ε   | SOLDERING SLEEVE                 | 507 6842 00 |       |      |




239

3

GLUE ITEMS C INTO A WITH SOUEREISEN. SOLDER ENDS OF WIRE TO ITEM C.

| K. | ιт. | DESCRIPTION                  | PART NO.    | MAT'L | FIN. |
|----|-----|------------------------------|-------------|-------|------|
| 2  | Α   | CLAMP                        | 139 4600 00 |       |      |
| 2  | в   | .087 ×,167 EYELETS           | 307 2800 00 |       |      |
| 1  | С   | 40 FEET #35 SSE. COPPER WIRE | 421 3530 00 |       |      |
| 1  | D   | COIL FORM                    | 507 5742 00 |       |      |
| 1  | X   | ASS'Y OF PARTS PER GROUP A.  | 571 2103 10 |       |      |



|   | ITEM | DESCRIPTION                    | PART NO.    | MAT'L | FIN. |
|---|------|--------------------------------|-------------|-------|------|
|   | Α    | ROTOR COIL 5 FT. WIRE          | 421 0006 00 | NOTE  |      |
| 2 | В    | ROTOR MTG. BAR # 2             | 507 6092 00 |       |      |
| 2 | С    | ROTOR MTG. BAR#I               | 507 6093 00 |       |      |
| 2 | D    | ROTOR ATTACHMENT PLATE         | 507 6098 00 |       |      |
| 4 | E    | 6-32X 5/16 PH. BRASS SCREW     | 343 0112 00 |       |      |
| 4 | F    | #6 PHOS. BR. INT. SHAKE WASHER | 373 3020 00 |       |      |
| 1 | X    | ASS'Y. OF PARTS PER. QUANT. A  | 571 1246 20 |       |      |

Ε

F

COIL<sup>#</sup>IO (.100) MEDIUM HARD DRAWN SILVER PLATED COPPER WIRE

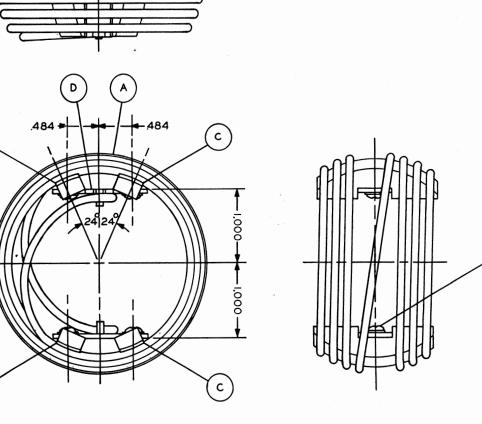
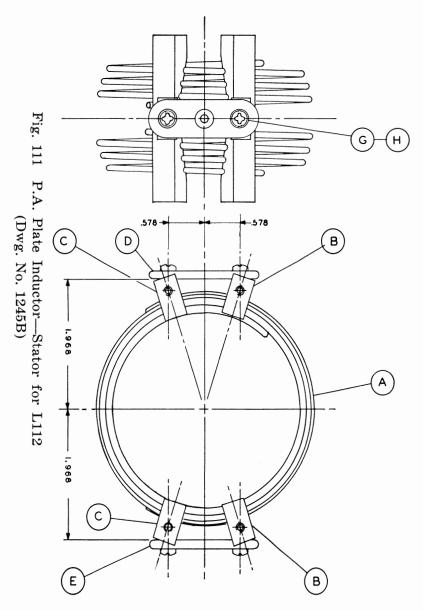
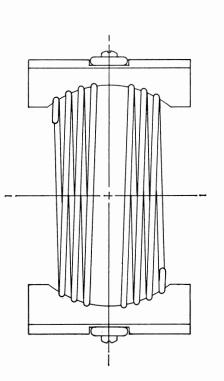



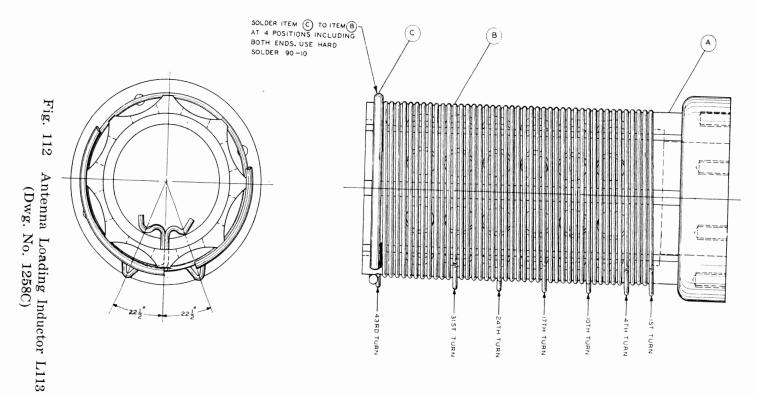

Fig. 110

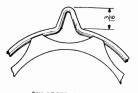
P.A. Plate Inductor—Rotor for L112 (Dwg. No. 1246B) 241

в


в




|   | ITEM | DESCRIPTION                            | PART NO.    | MAT'L | FIN. |
|---|------|----------------------------------------|-------------|-------|------|
|   | Α    | STATOR COIL 5FT. OF WIRE               | 421 000600  | NOTE  |      |
| 2 | В    | MOUNTING BAR #2                        | 507 6100 00 |       |      |
| 2 | с    | MOUNTING BAR #1                        | 507 6099 00 |       |      |
| 1 | D    | ROTOR BEARING BAR #1                   | 507 6090 00 |       |      |
| 1 | Ε    | ROTOR BEARING BAR #2                   | 507 6091 00 |       |      |
|   | F    |                                        |             |       |      |
| 4 | G    | 6-32 x 5/16 PH. BIND. HD. SCREW. BRASS | 3430112 00  |       |      |
| 4 | н    | #6 PHOS. BR. INT. SHAKE. WASHER        | 373 3020 00 |       |      |
| 1 | x    | ASSIY OF PARTS PER QT. "A"             | 571 1245 20 |       |      |

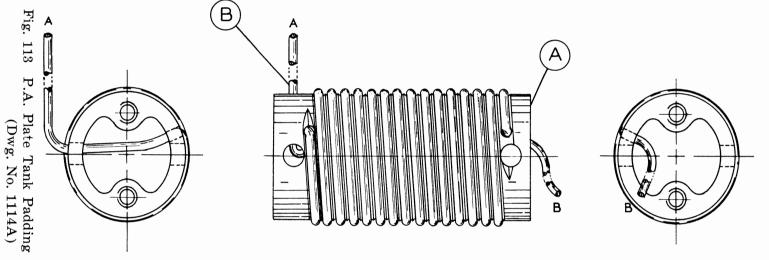

COIL: #10 (.100) MEDIUM HARD DRAWN SILVER PLATED COPPER WIRE.

NOTE: ENDS OF COILS TO BE ROUND AND FREE FROM SHARP EDGES.



|   | 17. | TART NO.    | DESCRIPTION                | MATL | FIN |
|---|-----|-------------|----------------------------|------|-----|
| 1 | A   | 571 1100 20 | COIL FORM                  |      |     |
| 1 | в   | 421 1421 00 | 28 FT. 14 LEAD COVERED COP |      |     |
| 1 | С   | 507 7350 00 | CORONA RING                | ER W | RE  |
|   |     |             | CONCINA MINO               |      | _   |






OF TAP LOOPS

| WINDING | DATA |
|---------|------|
|---------|------|

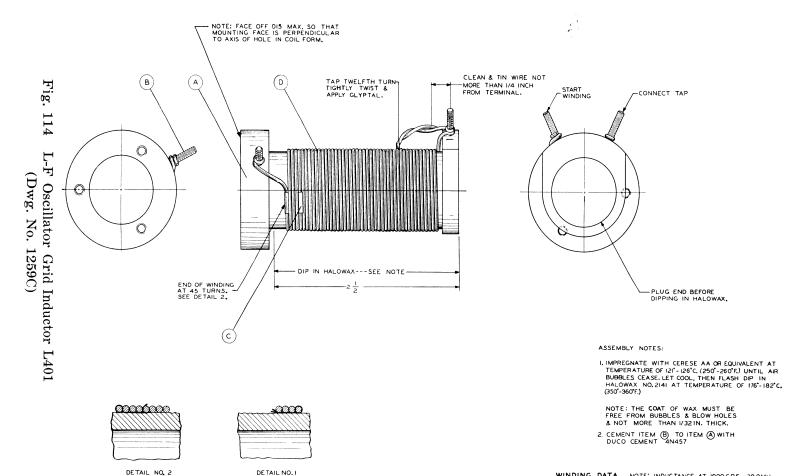
| - 1 |             |       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                             | and the second second second |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |            |    |
|-----|-------------|-------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|----|
|     | WIRE        | GUAGE | NO.                                                                                                            | APPROXIMATE<br>NUMBER OF<br>TURNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | WINDING                      | L.   | Dist. c | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FREQ.                                                                                                           | CAP        | 1  |
| L   | EAD COVERED |       | the second s | CONTRACTOR OF A DESCRIPTION OF A | Print Print Print Print Print |                              |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |            |    |
|     | COPPER WIRE |       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                              |      |         | and the second se | the second se |            |    |
| +   | OUT ER WIRE | 14    | 42: 142: 00                                                                                                    | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SINGLE                        | LAYER                        | ₄гµң |         | 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0M C.                                                                                                         | 150 µµF D. |    |
|     |             |       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                              |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | LL.        | 1  |
|     |             |       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                              |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |            | 1  |
| L   |             |       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                              |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |            | Í. |
|     |             |       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                              | 1    |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |            | 1  |

|                        | ιт. | DESCRIPTION               | PART NO.   | MAT'L | FIN. |
|------------------------|-----|---------------------------|------------|-------|------|
| $\left  \cdot \right $ | A   | COIL FORM                 | 5075922 00 |       |      |
| 4.                     | В   | #16 LEADED COPPER WIRE FI |            |       |      |



P.A. Plate Tank Padding Inductor L114 (Dwg. No. 1114A)

END A IS THREE INCHES LONG

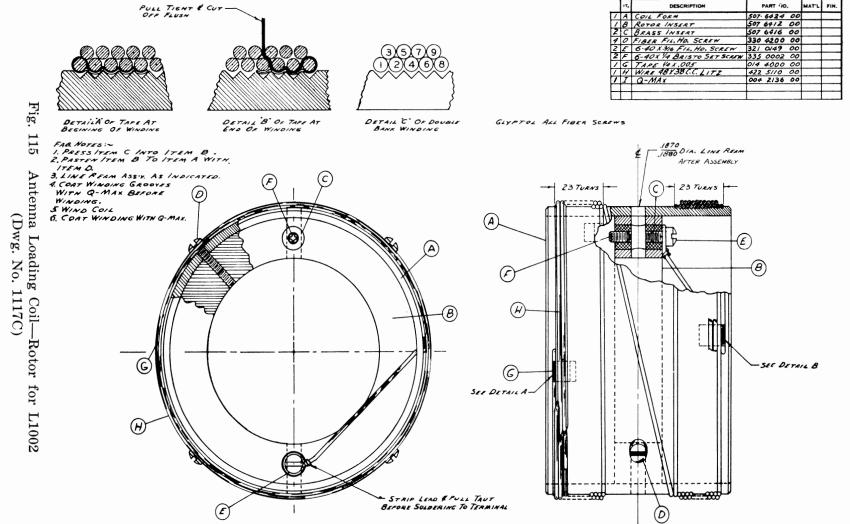

END B' IS ONE INCH LONG

WINDING & TEST DATA (WITH Q METER)

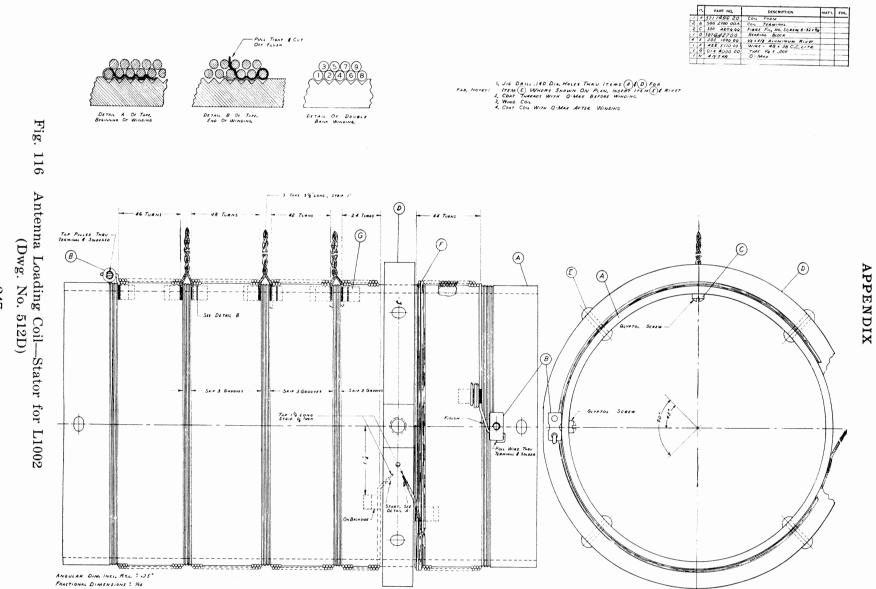
| WIRE                  | GUAGE | PART<br>NUMBER | NO. OF<br>TURNS | TYPE OF<br>WINDING | L.<br>(MIN) سر | Q.            | FREQ.<br>(mc) | CAP.<br>(بوسورد) |
|-----------------------|-------|----------------|-----------------|--------------------|----------------|---------------|---------------|------------------|
| LEADED<br>COPPER WIRE | 16    | 421 1621 00    | 15              | SINGLE LAYER       | 2.1<br>±5%     | 2 70.<br>MIN. | 18.           | 37.              |

244

|     | ıт. | PART NO. |      | PART NO. |                           |  | DESCRIPTION | MAT'L | FIN. |
|-----|-----|----------|------|----------|---------------------------|--|-------------|-------|------|
| T   | A   | 571      | 1868 | 20       | L.F. OSCILLATOR COIL FORM |  |             |       |      |
| 3   | в   | 312      | 3380 | 00       | 2 - 56 X 5/8 STUD         |  |             |       |      |
| 0.2 | С   | 014      | 4000 | 00       | TAPE 1/4 X .005 FT.       |  |             |       |      |
| 130 | D   | 422      | 5100 | 00       | 48-38 LITZ WIRE, FT.      |  |             |       |      |
|     |     |          |      |          |                           |  |             |       |      |



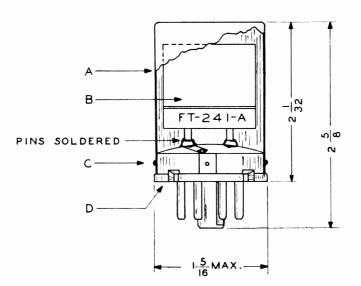

TAPE AT START OF WINDING.


TAPE AT END OF WINDING.

WINDING DATA NOTE: INDUCTANCE AT 1000 C.P.S. 20.0 MH.

| WIRE       | GUAGE | PART NO.    | NO, OF<br>TURNS | TYPE OF WINDING | L.               | DIST.C.    | Q.          | FREQ.     | CAP.     |
|------------|-------|-------------|-----------------|-----------------|------------------|------------|-------------|-----------|----------|
| 48-38 LITZ | 19    | 422 5100 00 | 45              | SINGLE LAYER    | 19.956 μh<br>±1% | 3,166 MMF. | 104<br>± 8% | 2000 K C. | 320 MMF, |




INDUCTANCE 185 MAE 7 MA



CHARACTERISTICS

ELECTRICAL: FREQUENCY- 200 KC CRYSTAL CUT- DT TEMP. RANGE --- - 10°C TO +70°C CALIBRATION - ±.01% THROUGHOUT TEMPERATURE RANGE CONNECTIONS --- PINS #3 & #7, PIN #7 IS GROUND MECHANICAL: SOCKET-STANDARD OCTAL

ELECTRODES - SEE SPECIFICATIONS FT-241-A (SIGNAL CORPS) WEIGHT-1.75 OZ.



SHELL CLINCHED -0 ര ര

QTY. IT. PART NO. DESCRIPTION 292 0001 00 SHELL I A 291 0001 00 FT-241-A CRYSTAL UNIT 1 в DRIVE SCREW 330 2010 00 с 4 292 0002 00 ADAPTOR L D

Fig. 117 Type -40127 Crystal Holder (Dwg. No. 502 0799 002)

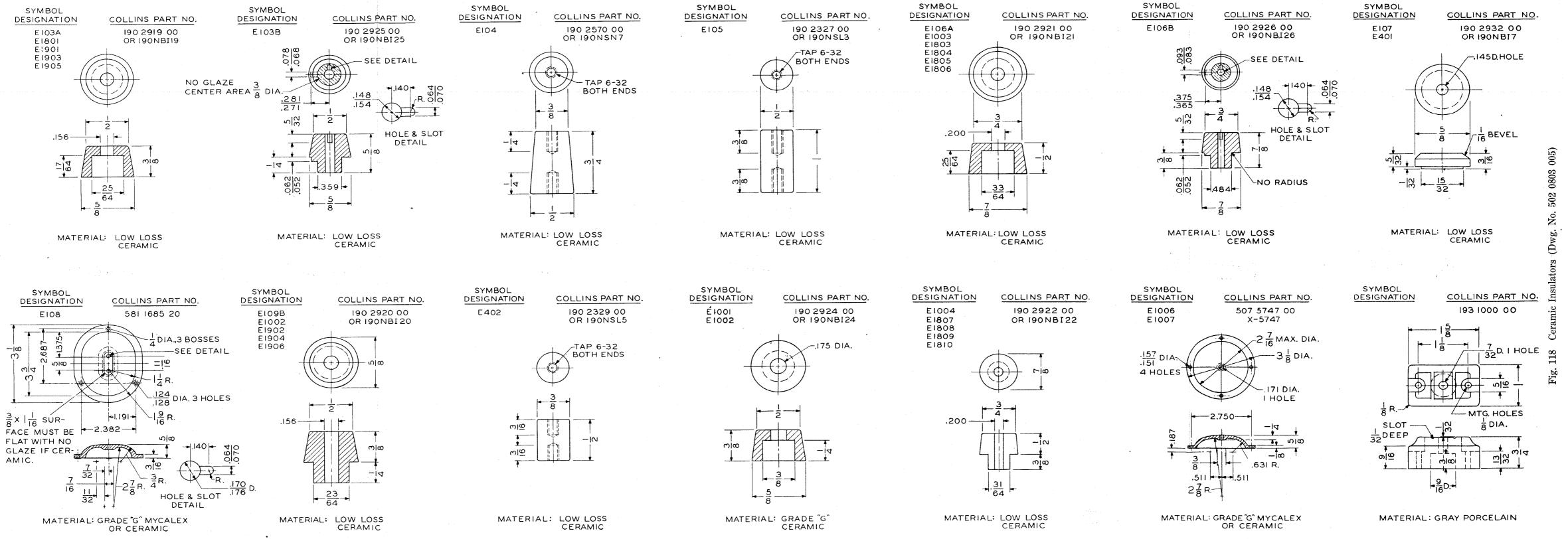
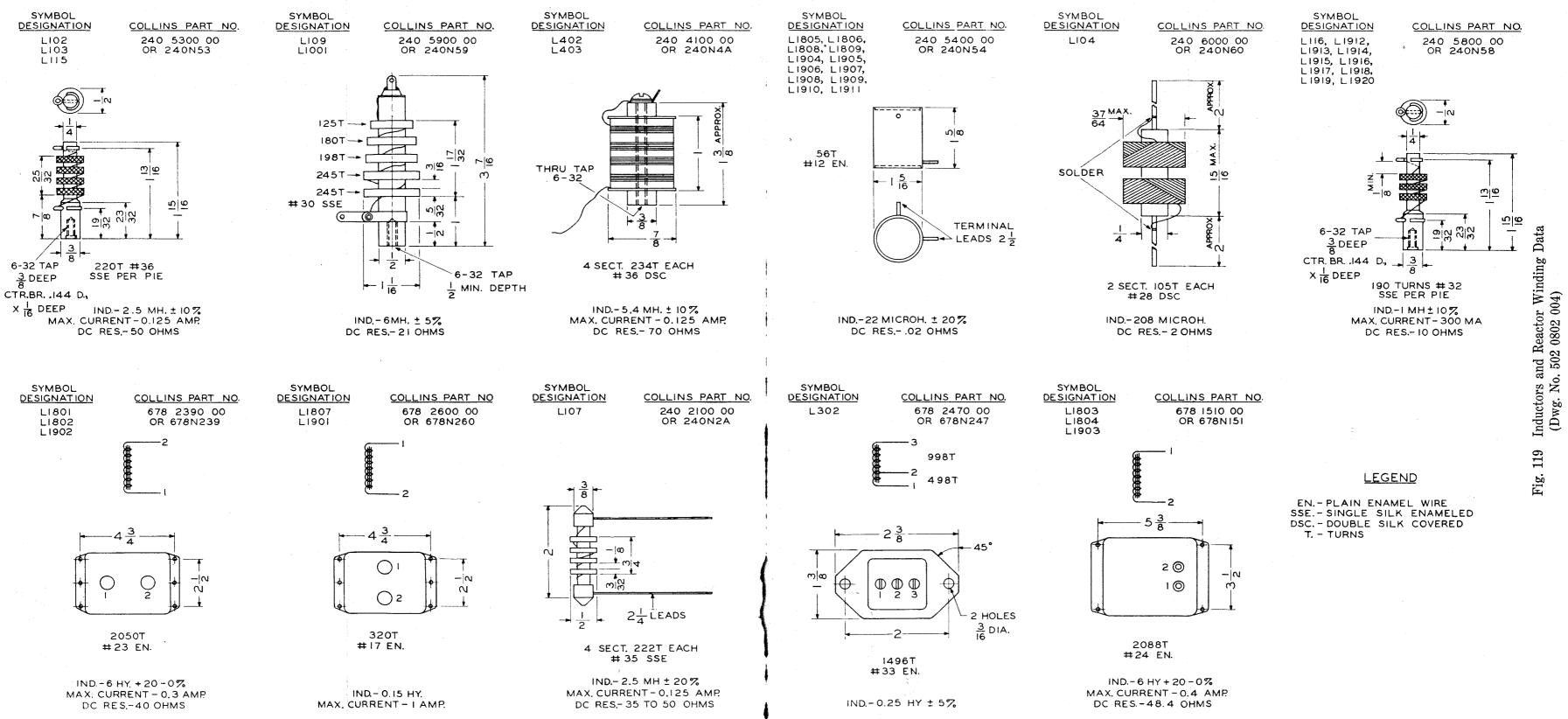




Fig. 118 Ceramic Insulators (Dwg. No. 502 0803 005)





.

Fig. 119 Inductors and Reactor Winding Data (Dwg. No. 502 0802 004)

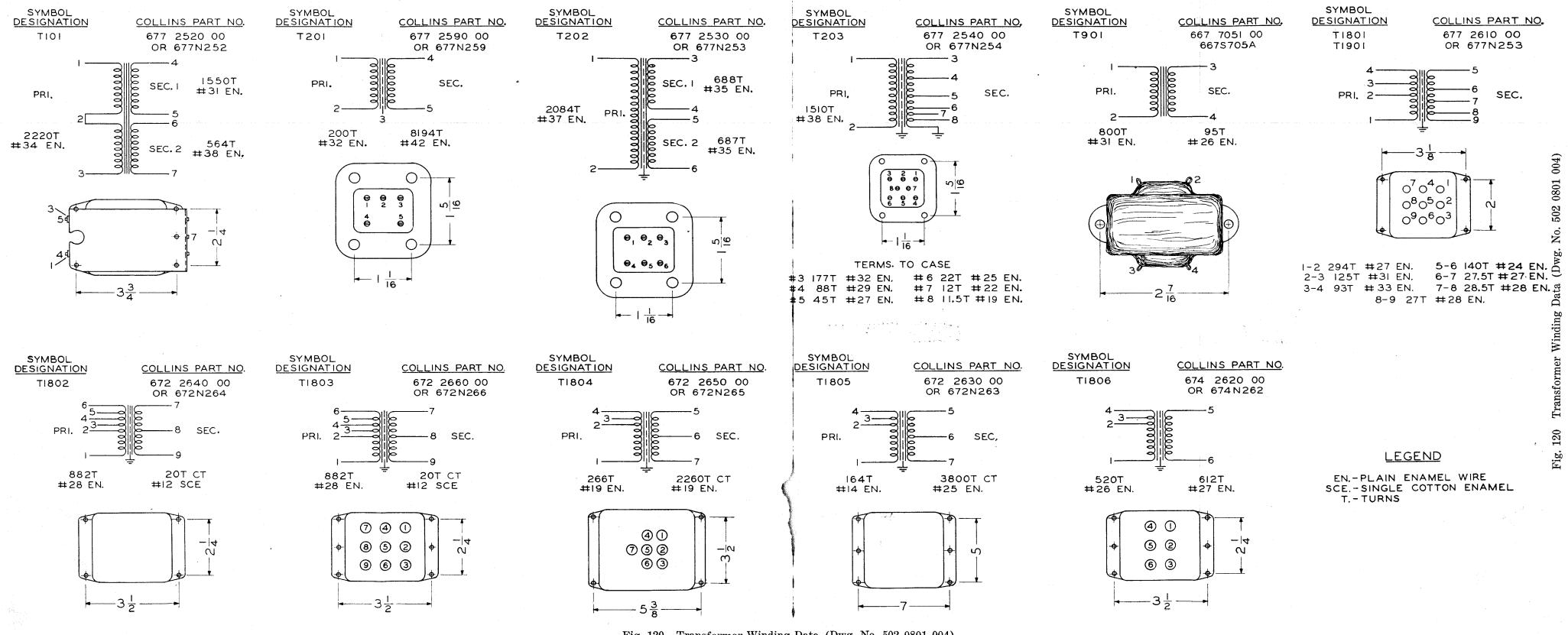



Fig. 120 Transformer Winding Data (Dwg. No. 502 0801 004)

## COMMERCIAL ASSEMBLIES

The following drawings and parts lists cover standard commercial assemblies for which replacement parts are obtainable. Ordering information is given such as to permit identification of any part which is subject to failure as a result of normal wear in service. Because of special design the manufacturers of the following relays consider it impractical to replace parts of these assemblies. If any of these units fail, a complete assembly should be ordered.

Part Number (Item No.)

405NB201A (K101) 410N18 (K105) 405NB204A (K1801) 405NB205A (K1802), (K1902) 405NB208 (K1803), (K1903) 402N18 (K1804) 405NB207 (K1805) 405NB206 (K1806), (K1904) 405NB203A (K1901)

## Function

Autotune Motor Control Relay Output Circuit Selecting Relay Filament Control Relay Carrier Control Relay Keying Relay Time Delay Relay Power Control Delay Relay Plate Power Control Relay Filament Control Relay

Adjustment data on the following items is included:

405NB201A (K101) 410N19A (K102) 410N17 (K103) 410N16 (K104) 410N18 (K105)

## 1. GENERAL REQUIREMENTS FOR SATISFACTORY OPERATION

(a) All screws and nuts should be tight.

(b) All relay assemblies should be securely mounted.

(c) When replacing parts such as coils or contacts, the wires should have a little slack, but not enough to interfere with moving parts. All unnecessary solder should be removed and bare wire should be bent in such a manner that it will not touch adjacent metal parts.

(d) When replacing armatures or contacts, the bushings and springs should be carefully aligned and checked for free operation.

(e) When adjusting contact springs, the

Keying Relay CW Emission Control Relay Voice Emission Control Relay Output Circuit Selecting Relay

Autotune Motor Control Relay

bends in the springs should be gradual rather than sharp bends or kinks.

(f) Contacts should be carefully aligned and under no condition should the contacts be more than one-fourth of the diameter of the contacts out of alignment with respect to each other as gauged by eye.

(g) The coils should measure within  $\pm 5\%$  of the specified d-c resistance. NOTE: The resistance values of the windings are based upon a normal temperature of 68 degrees F. If the resistance is measured at a temperature other than 68 degrees F. corrections should be made for the difference in temperature.

(h) It is important that the relay contacts be kept free from corrosion and pits. The

## COMMERCIAL ASSEMBLIES

relays should be inspected regularly and if the contacts have become corroded a burnishing tool should be used to remove the corrosion.

(i) The armature should not make contact with the core.

## 2. RELAY ADJUSTMENT

## (a) 405NB201A (K101)

The contacts should be adjusted so that when the relay is in the unoperated position the spacing between the movable contact and the stationary contact is between .040 inch and .050 inch. The armature should be adjusted so that the spacing between the armature and the top edge of the field pole is .040 inch. The tension of the armature spring should be adjusted so that the armature back tension is 7 ounces. This relay should operate with a minimum of 16 volts d.c. and a maximum of 32 volts d.c. The d-c resistance of the coil, measured at 68 degrees F., should be 150 ohms.

## (b) 410N19A (K102)

This relay has been provided with three adjusting screws. The two adjusting screws located on the side of the relay opposite the multi-terminal connector plugs, Item 20, control the position and tension of the relay armature when the relay is unoperated. The lower adjusting screw determines the position of the armature and the upper screw determines the tension of the armature return spring. The tension of the armature return spring, as measured at the top of the bakelite strip should be between 23 ounces and 24 ounces.

To set the armature position, leave the relay in the unoperated condition and rotate the lower adjusting screw in a clockwise direction until the movable contacts just begin to lift from the fixed contacts. Then rotate the adjusting screw approximately one-half revolution in a counterclockwise direction. Two of the movable contacts should rest firmly against the fixed contacts. The position of each fixed contact is adjustable and may be set by loosening the locking nut and rotating the contact. Check the adjustment of the remaining fixed contacts by applying between 18 volts d.c. and 32 volts d.c. to the relay coil (terminals 14 and 15 on the multiterminal connector plug, Item 20) and observing the position of the movable contacts. The movable contacts should rest firmly against the corresponding fixed contact.

The contacts of the relay should be adjusted so that the gap between the movable contacts and the fixed contacts, when the relay is unoperated, is between .015 inch and .020 inch. The relay will operate with a minimum of 18 volts d.c. applied to the coil but will only follow keying of eight impulses per second with this voltage. With 24 volts d.c. applied to the relay coil the armature will follow keying at 16 impulses per second. With 28 volts d.c. applied to the relay coil, the armature will follow keying of 35 wordsper-minute. The maximum voltage that should be applied to the relay coil is 32 volts d.c.

#### (c) 260N601 (S116)

This vacuum contact is mounted on relay 410N19A. The vacuum contact must be adjusted to operate properly when the relay 410N19A is adjusted as described in the preceding paragraphs. A single adjusting screw near the multi-terminal connector plug permits the adjustment of the mounting yoke so that the movable contact operating arm will operate the arm to close the contact but will not apply enough pressure to damage the vacuum tube. To adjust the mounting yoke, loosen the studs, Item 17, and with relay unoperated, rotate the adjusting screw, Item 16, in a direction that allows the movable contact within the vacuum tube to rest firmly against the fixed contact that is ordinarily connected to the RECEIVER terminal

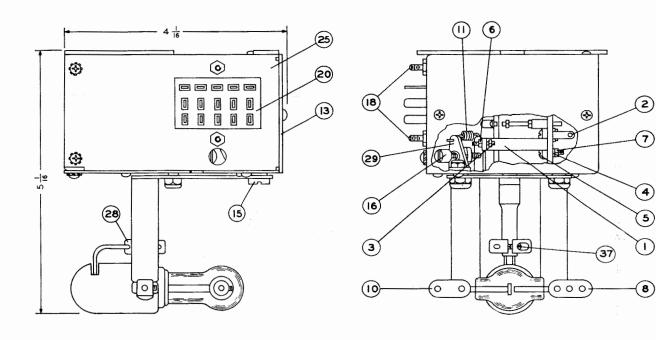
#### COMMERCIAL ASSEMBLIES

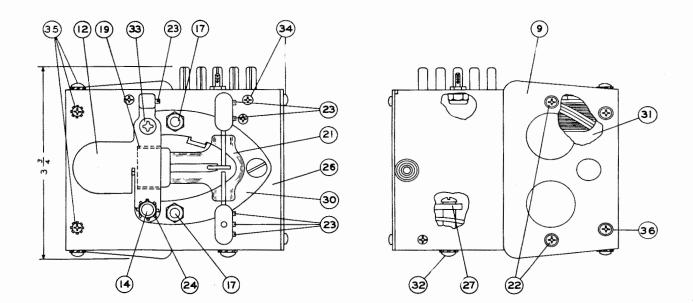
of the transmitter, that is, Item 10 on the relay drawing. When this adjustment has been completed, tighten the studs, Item 17, and apply voltage to the relay coil (Terminals 14 and 15 on the multi-terminal connector plug, Item 20) and, with the relay operated, check the position of the movable contact within the vacuum tube. The movable contact arm should rest firmly against the fixed contact that is ordinarily connected to the COND. terminal on the transmitter. The contact should be firm but the movable arm should not apply enough pressure to the fixed arm to endanger the vacuum seal. If the movable contact is applying too much pressure to the fixed contact when the relay is operated, readjust the lower adjusting screw on the side of relay 410N19A, opposite the connector plug, to reduce the pressure.

## (d) 410N17 (K103)

The contacts of this relay should be adjusted so that when the relay is unoperated the gap between the fixed contact and the movable contact, Item 17, is between .045 inch and .050 inch. The gap between the armature and the front edge of the field piece should be  $\frac{3}{32}$  inch. The armature return spring, Item 8, should be adjusted so that the pressure against the top contacts when the relay is unoperated is between 75 and 80 grams. The pressure between the movable contacts and the fixed contacts when the relay is operated should be between 50 and 55 grams. The d-c resistance of the coil is 125 ohms. The minimum voltage required for satisfactory operation is 18 volts d.c. The voltage applied to the coil should never exceed 32 volts d.c.

## (e) 410N16 (K104)

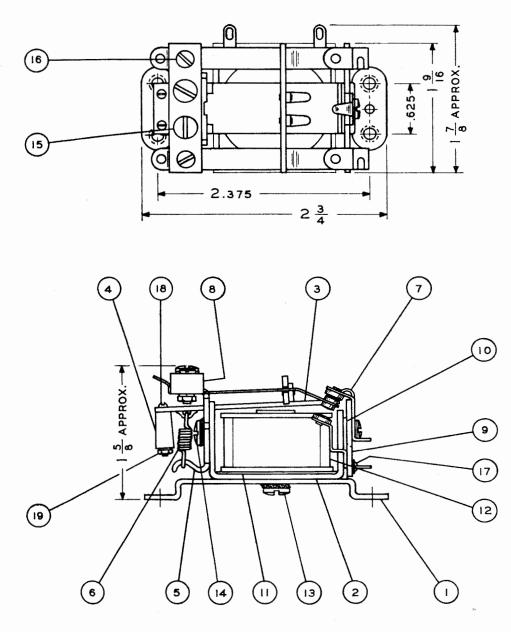

The contacts should be adjusted so that the air gap between the movable contacts. Item 3, and the fixed contacts, Item 9, is .030 inch. The armature return spring, Item 6, should be adjusted so that the pressure between the movable contacts and the upper fixed contacts is 50 grams. When the relay is operated the pressure between the movable contacts and the lower fixed contacts should be 70 grams. The air gap between the field piece and the armature, as measured at the front edge of the field piece, should be .035 inch. The d-c resistance of the coil measured at 68 degrees F. is 150 ohms. The relay should operate with a minimum of 18 volts d.c. and the voltage applied to the coil should never exceed 32 volts d.c.


## (f) 410N18 (K105)

The air gap between the normally open contacts and the fixed contacts should be adjusted to between .015 inch and .020 inch. The normally closed contacts should be adjusted so that the air gap between the contacts when the relay is operated and the fixed contacts is between .055 inch and .060 inch. The d-c resistance of the coil is 125 ohms. The minimum voltage necessary for satisfactory operation is 18 volts d.c. The maximum voltage that should be applied to the relay coil is 32 volts d.c. continuous operation.

# PARTS LIST FOR 410N19A KEYING RELAY (Guardian Type G-32877)

| Item      | Qty.     | Guardian<br>Part No. | Description                                    |
|-----------|----------|----------------------|------------------------------------------------|
| 1         | 1        | BR-599-A             | Contact Mounting Bracket                       |
| 2         | 1        | #2522-4              | Solder Lug                                     |
| 3         | 1        | SW-57-A              | Adj. Contact Screw                             |
| 4         | 2        |                      | #4 Split Lock Washers                          |
| 5         | 2        |                      | 4-40 x 3/8" Binder Head Mch. Screw             |
| 6         | 1        |                      | 4-48 x $\frac{3}{16}''$ Hex. Nuts              |
| 7         | <b>2</b> |                      | 4-40 x $\frac{3}{16}''$ Hex. Nuts              |
| 8         | 1        | BU-110               | Vacuum Tube Terminal                           |
| 9         | 1        | BM-161               | Mounting Plate                                 |
| 10        | 1        | BU-102               | Vacuum Tube Terminal                           |
| 11        | 1        | CS-142               | Adjusting Bracket Spring                       |
| 12        | 1        | CV-81                | Tube End Cover                                 |
| 13        | 1        | CV-94                | Cover (Top)                                    |
| <b>14</b> | 1        | N-19                 | Hex. Cap. Nut                                  |
| 15        | 1        | ST-157               | Lever Bearing Stud                             |
| 16        | 1        | SW-54                | Tube Adjusting Screw                           |
| 17        | 2        | SW-56                | Adjustment Screw                               |
| 18        | 2        | SW-60                | Insert Screw                                   |
| 19        | 1        | X-380                | Rubber Cushion                                 |
| 20        | 1        | X-382                | Contact Plug                                   |
| 21        | 1        | X-399                | Vacuum Switch                                  |
| 22        | 6        |                      | 4-40 x $\frac{3}{8}$ " Flat Head Mch. Screw    |
| 23        | 6        |                      | 4-48 x $\frac{1}{16}$ " Bristol Head           |
| 24        | 1        |                      | #8 External Shakeproof Washer                  |
| 25        | 1        | CVA-20               | Side Cover Assembly                            |
| 26        | 1        | CVA-21               | Side Cover Assembly                            |
| 27        | 1        | X-386                | Terminal Block Assembly                        |
| 28        | 1        | X-381                | Collar & Arm Assembly                          |
| 29        | 1        | BRA-97               | Stop Bracket Assembly                          |
| 30        | 1        | BRA-98               | Tube Adjusting Bracket Assembly                |
| 31        | 1        | FIA-85               | Coil & Armature Assembly                       |
| 32        | 2        |                      | 6-32 x $\frac{1}{4}$ " Binder Head Mch. Screw  |
| 33        | 1        |                      | 8-32 x 5⁄8″ Binder Head Mch. Screw             |
| 34        | 6        |                      | 4-40 x $\frac{5}{16}$ " Binder Head Mch. Screw |
| 35        | 6        |                      | 4-40 x 3⁄16" Binder Head Mch. Screw            |
| <b>36</b> | 2        |                      | 4-40 x $\frac{3}{16}$ " Flat Head Mch. Screw   |
| 37        | 1        |                      | 2-56 x 3⁄8″ Round Head Mch. Screw              |
|           |          |                      |                                                |

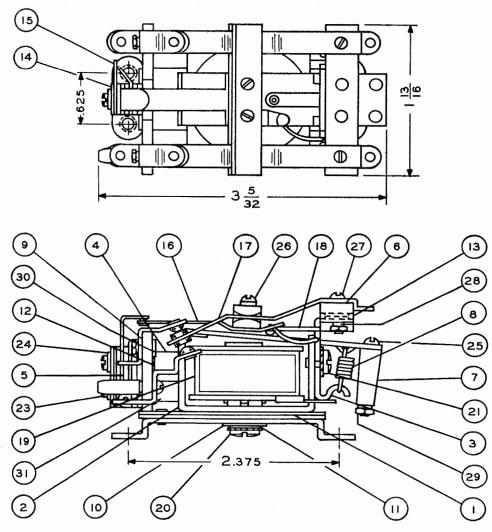


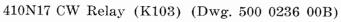



410N19A Keying Relay (K102) (Dwg. 500 0240 00C)

# PARTS LIST FOR 410N16 RELAY (Guardian Type G-32734)

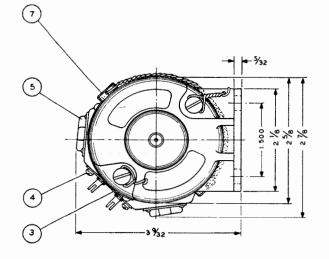
| Item | Qty. | Guardian<br>Part No. | Description                                            |
|------|------|----------------------|--------------------------------------------------------|
| 1    | 1    | BR-611-B             | Relay Mounting Brkt.                                   |
| 2    | 1    | FI-48                | Field Piece                                            |
| 3    | 1    | <b>ARA-319</b>       | Armature Assembly                                      |
| 4    | 1    | X-241                | Counterweight                                          |
| 5    | 1    | BR-487               | Armature Retainer Bracket                              |
| 6    | 1    | CS-120               | Armature Spring                                        |
| 7    | 1    | US-128-C             | Armature Stop Bracket                                  |
| 8    | 1    | BBA-74               | Contact Block & Spring Assembly                        |
| 9    | 1    | BBA-61               | Contact Bracket & Block Assembly                       |
| 10   | 1    | BB-141               | Spacer Block                                           |
| 11   | 1    | FP-23                | Coil Insulator                                         |
| 12   | 1    | SP-220-W             | Coil Assembly                                          |
| 13   | 1    |                      | 8-32 x <sup>3</sup> / <sub>8</sub> " Binder Head Screw |
| 14   | 1    |                      | 8-32 x $\frac{3}{16}''$ Binder Head Screw              |
| 15   | 2    |                      | 6-32 x <sup>3</sup> / <sub>8</sub> " Binder Head Screw |
| 16   | 2    |                      | 6-32 x 7/16" Binder Head Screw                         |
| 17   | 1    |                      | 2-56 x $\frac{3}{16}''$ Round Head Screw               |
| 18   | 2    |                      | 2-56 x 5⁄8″ Round Head Screw                           |
| 19   | 2    |                      | 2-56 x $\frac{3}{16}$ " Hex. Nuts                      |

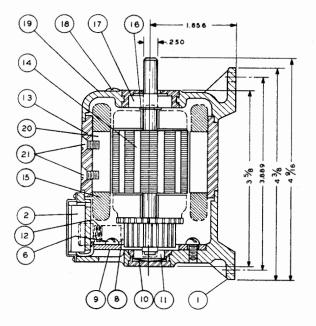


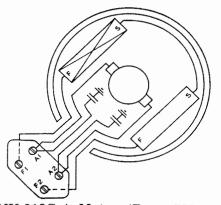


410N16 "Voice" Relay (K104) (Dwg. 500 0231 00B)

# PARTS LIST FOR 410N17 RELAY (Guardian Type G-32811)

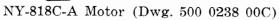
.

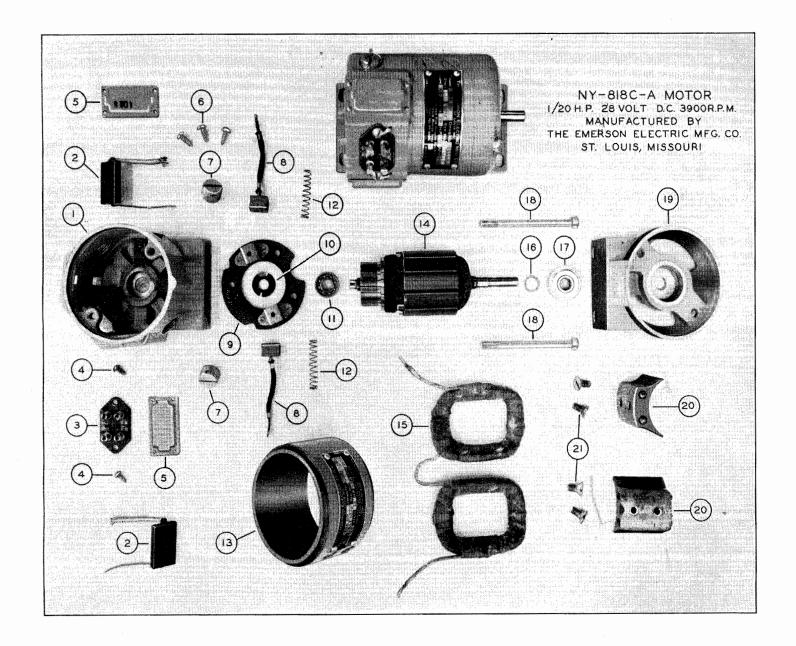

| Item     | Qty.     | Guardian<br>Part No. | Description                                           |
|----------|----------|----------------------|-------------------------------------------------------|
|          | <u> </u> |                      |                                                       |
| 1        | 1        | <b>BRA-101</b>       | Mounting Bracket Assembly                             |
| 2        | 1        | FI-64                | Field Piece                                           |
| 3        | 1        | BR-487A              | Armature Retainer Bracket                             |
| 4        | 2        | SPA-85               | Spacers                                               |
| <b>5</b> | 1        | CXA-829              | A-2 Contact Assembly                                  |
| 6        | 1        | B-179                | Contact Spring Mounting Bar                           |
| 7        | 1        | X-389                | Counterweight                                         |
| 8        | 1        | CS-122               | Armature Spring                                       |
| 9        | 1        | BBA-76               | Contact Bracket & Block Assembly                      |
| 10       | 1        | FW-16                | Bakelite Washer                                       |
| 11       | 1        | MW-47-D              | Plain Brass Washer                                    |
| 12       | 2        | FW-90                | Cushion Washers                                       |
| 13       | 4        | FW-91                | Cushion Washers                                       |
| 14       | 1        | CS-18-J              | Separator Plate                                       |
| 15       | 1        | CX-21                | Lug Adapter                                           |
| 16       | 1        | ARA-424              | Armature Assembly                                     |
| 17       | 2        | CX-350               | Contact Spring Assembly                               |
| 18       | - 1      | BRA-99-A             | Armature Bracket Assembly                             |
| 19       | 1        | SP-222-W             | Coil Assembly                                         |
| 20       | 1        |                      | 8-32 x 1⁄2″ Binder Head Screw                         |
| 21       | 1        |                      | 8-32 x 3/16" Binder Head Screw                        |
| 22       | 2        |                      | #8 Shakeproof                                         |
| 23       | 2        |                      | 5-40 x 5⁄8″ Fillister Head Screw                      |
| 24       | 2        |                      | #5 Split Lock Washers                                 |
| 25       | 2        |                      | 2-56 x 7⁄8" Round Head Screw                          |
| 26       | 2        |                      | 2-56 x <sup>3</sup> ⁄ <sub>8</sub> " Round Head Screw |
| 27       | 2        |                      | 2-56 x 7/16" Round Head Screw                         |
| 28       | 6        |                      | #2 Split Lock Washers                                 |
| 29       | 4        |                      | 2-56 x $\frac{3}{16}''$ Hex. Nuts                     |
| 30       | 2        |                      | $2-56 \ge \frac{1}{4}$ Special Mch. Screw             |
| 31       | 2        |                      | 2-56 x ¼" Round Head Screw                            |




# PARTS LIST FOR EMERSON MOTOR NY-818C-A


| Item     | Qty. | Guardian<br>Part No. | Description                       |
|----------|------|----------------------|-----------------------------------|
| Item     |      |                      |                                   |
| 1        | 1    | 94716-D              | Brushholder End Bracket           |
| 2        | 2    | 96580-A              | Condenser                         |
| 3        | 1    | 96953-A              | Terminal Assembly                 |
| 4        | 2    | 96030-A-15           | Terminal Screws                   |
| <b>5</b> | 2    | 96509-A              | Condenser Covers                  |
| 6        | 3    | 96030 - A - 14       | Brushholder Mounting Screws       |
| 7        | 2    | 96254-A              | Brushholder Cap                   |
| 8        | 2    | 94718-A              | Brush                             |
| 9        | 1    | 94717-B              | Brushholder                       |
| 10       | 1    | 3520-14              | Bearing Load Spring               |
| 11       | 1    | S1DD7                | Bearing                           |
| 12       | 2    | 95320-A              | Brush Spring                      |
| 13       | 1    | 94713-B              | Motor Yoke                        |
| 14       | 1    | 94715-B              | Armature Ass'y. (without bearing) |
| 15       | 1    |                      | Field Coil                        |
| 16       | 1    | 96065 - A - 17       | Thrust Washer                     |
| 17       | 1    | 37DD                 | Bearing                           |
| 18       | 2    | 94719-A              | Motor Stud                        |
| 19       | 1    | 94714-D              | End Bracket                       |
| 20       | 2    |                      | Pole Piece Assembly               |
| 21       | 4    |                      | Pole Piece Screws                 |








.





## TABLE XIX-TUBE COMPLEMENT

| Tube         |       |                          |
|--------------|-------|--------------------------|
| Type         | Quan. | Function                 |
|              |       |                          |
| 837          | 1     | H-F Oscillator           |
| 1625         | 1     | 1st Frequency Multiplier |
| 1625         | 1     | 2nd Frequency Multiplier |
| 813          | 1     | Power Amplifier          |
| 811          | 2     | Modulators               |
| 12SJ7        | 1     | Audio Amplifier          |
| 6V6GT        | 1     | Audio Driver             |
| 6V6GT        | 1     | Sidetone Amplifier       |
| 12SJ7        | 1     | Calibration Oscillator   |
| 12SJ7        | 1     | MCW Oscillator           |
| 1625         | 1     | L-F Oscillator           |
| $866/866A^*$ | 2     | L.V. Rectifiers          |
| $866/866A^*$ | 2     | H.V. Rectifiers          |
|              |       |                          |

**WARNING:** In order to obtain satisfactory tube life the following precautions must be taken:

- 1. Operate all tube filaments within  $\pm 5\%$  of rated voltage.
- 2. Do not exceed rated plate current in any of the tubes during normal operation of the equipment.
- 3. When tuning, do not exceed rated plate current except for periods of short duration.

Failure to observe the above precautions may result in the destruction of the tubes.

ALL TUBES SUPPLIED WITH THE EQUIPMENT OR AS SPARES ON THE EQUIPMENT CONTRACT SHALL BE USED IN THE EQUIP-MENT PRIOR TO EMPLOYMENT OF TUBES FROM GENERAL STOCK.

The following tube data is reproduced by permission of Radio Corporation of America.

\* Use when employing the COL-211101 Power Unit.

# 837

#### **R-F POWER AMPLIFIER PENTODE**

| Heater • Coated Unipote                                                                                              | ential   | Cathod   | e      |       |             |
|----------------------------------------------------------------------------------------------------------------------|----------|----------|--------|-------|-------------|
| Voltage <sup>II</sup> 12                                                                                             | .6       |          | a-c    | or    | d-c volts   |
|                                                                                                                      | .7       |          |        |       | amp.        |
| Transconductance for                                                                                                 | •        |          |        |       |             |
|                                                                                                                      | 00       |          |        |       | µmnhos      |
| Direct Interelectrode Capacita                                                                                       |          |          |        |       | pinitos     |
|                                                                                                                      |          |          | 0 20   | -     |             |
| Grid to Plate (with external                                                                                         | shield   | ding)    |        | max.  |             |
| Input                                                                                                                |          |          | 16     |       | μµf         |
| Ouțput                                                                                                               |          |          | 10     |       | μµf         |
| Maximum Overall Length                                                                                               |          |          |        |       | 5-7/8"      |
| Maximum Diameter                                                                                                     |          |          |        |       | 2-1/16"     |
| Bulb                                                                                                                 |          |          |        |       | ST-16       |
| Сар                                                                                                                  |          |          |        | Smi   | all Metal   |
| Base                                                                                                                 | Mediu    | n 7-Pir  | Cera   | anic  | . Bayonet   |
|                                                                                                                      |          |          | -      |       |             |
| MAXIMUM RATINGS and TYPE                                                                                             | CAL OP   | ERATING  | CON    |       | DAS         |
| R-F POWER AMPLIFIER                                                                                                  | - Clas   | s B Te   | lepho  | ny    |             |
| Carrier conditions per tube for use                                                                                  | with a   | sax. mod | ulatio | on fa | ctor of 1.0 |
| D-C Plate Voltage                                                                                                    |          |          |        | max   |             |
| D-C Suppressor Voltage (Grid #                                                                                       | 3)       |          |        | max   |             |
| D-C Screen Voltage (Grid #2)                                                                                         |          |          |        | max   |             |
| D-C Plate Current                                                                                                    |          |          |        | тах   |             |
|                                                                                                                      |          |          |        | max   |             |
| Plate Input                                                                                                          |          |          |        |       |             |
| Suppressor Input                                                                                                     |          |          |        | max   |             |
| Screen Input                                                                                                         |          |          |        | max   |             |
| Plate Dissipation                                                                                                    |          |          | 12     | max   | . watts     |
| Typical Operation:                                                                                                   |          |          |        |       | 1           |
| D-C Plate Voltage                                                                                                    | 400      | 500      | 500    |       | volts       |
| D-C Suppressor Voltage                                                                                               | 0        | 0        | 40     |       | volts       |
| D-C Screen Voltage                                                                                                   | 200      | 200      | 200    |       | volts       |
| D-C Grid Voltage (Grid #1)                                                                                           | -25      | -25      | -25    |       | volts       |
| Peak R-F Grid Voltage                                                                                                | 28       | 25       | 24     |       | volts       |
| Internal Shield                                                                                                      | Connec   | ted to a | athod  | e at  | socket      |
| D-C Plate Current                                                                                                    | 35       | 30       | 30     |       | ma.         |
| D-C Screen Current                                                                                                   | 10       | 15       | 12     |       | ma.         |
| D-C Grid Current                                                                                                     | 1        | 0        | 0      | арр   | rox.ma.     |
| Driving Power *                                                                                                      | 0.4      | 0.2      | 0.1    | app   | rox.watt    |
| Power Output                                                                                                         | 4        | 5        | 5.5    |       | rox.watts   |
| * At crest of a-f cycle with modula                                                                                  | tion fac | tor of t | 1.0.   | -     |             |
| SUPPRESSOR-MODULATED R-F POWER                                                                                       | AMPLI    | FIER -   | Class  | s C   | Telephony   |
| Carrier conditions per tube for use                                                                                  |          |          |        |       |             |
| D-C Plate Voltage                                                                                                    | with a   |          |        | max   |             |
|                                                                                                                      |          |          |        | max   |             |
| D-C Screen Voltage (Grid #2)                                                                                         |          |          | -200   |       |             |
| D-C Grid Voltage (Grid #1)                                                                                           |          |          |        |       |             |
| D-C Plate Current                                                                                                    |          |          |        | max   |             |
| D-C Grid Current.                                                                                                    |          |          |        | max   |             |
| Plate Input                                                                                                          |          |          |        | max   |             |
| Screen Input                                                                                                         |          |          |        | max   |             |
| Plate Dissipation                                                                                                    |          |          | 12     | max   | . watts     |
| $\sigma$ should not deviate more than $\pm 10$ from rated value. See NOTE on DATA 3 page. $\pm$ -indicates a change. |          |          |        |       |             |
| See NOTE on DATA 3 page.                                                                                             |          |          | •      |       |             |
| - indicates a change.                                                                                                |          |          |        |       | 1           |
|                                                                                                                      |          |          |        |       |             |

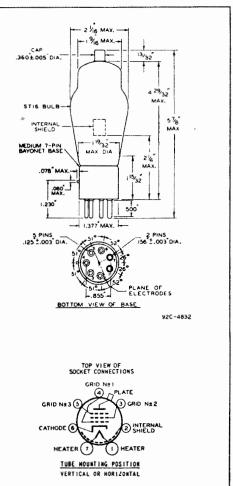
## 837 **R-F POWER AMPLIFIER PENTODE**

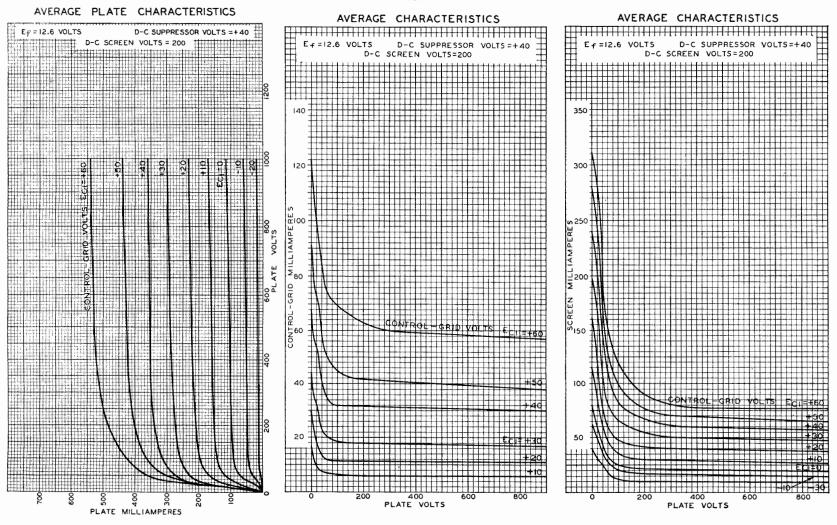
# 837

## **R-F POWER AMPLIFIER PENTODE**

| (continued from preceding page)                                          | )                    |           | (continued from preceding page)              |                              |                |
|--------------------------------------------------------------------------|----------------------|-----------|----------------------------------------------|------------------------------|----------------|
| Typical Operation:                                                       |                      |           | D-C Grid Current                             |                              | max. ma.       |
| D-C Plate Voltage 400                                                    | 500                  | volts     | Plate Input                                  |                              | max. walls     |
| D-C Suppressor Voltage (Grid #3) -55                                     | -65                  | volts     | Screen Input                                 |                              | max. waits     |
| D-C Screen Voltage (Gru #37 -55                                          |                      | ohms      | Suppressor Input                             |                              |                |
|                                                                          | -20                  | volts     | Plate Dissipation                            |                              |                |
| D-C Grid Voltage S                                                       | 5700                 |           | Typical Operation:                           | 0                            | max. watts     |
| 12000                                                                    |                      | chms      |                                              |                              |                |
| Peak A-F Suppressor Voltage 55                                           | 65                   | volts     | D-C Plate Voltage                            | 400                          | volts          |
| Peak R-F Grid Voltage 45                                                 | 32                   | volts     | D-C Suppressor Voltage                       | 40                           | volts          |
| Internal Shield connected to cathor                                      |                      |           | D-C Screen Voltage #                         | { 13000                      | ohms           |
| D-C Plate Current 35                                                     | 30                   | ma.       | D-C Screen Vorlage *                         | l 140                        | volts          |
| D-C Screen Current 37                                                    | 23                   | ma.       | D-C Grid Voltage §                           | ∫ -40                        | volts          |
| D-C Grid Current 8                                                       | 3.5 appro            | x.ma.     |                                              | l 8000                       | ohms           |
| Driving Power 0.4                                                        | 0.1 appro            | x.watt    | Peak R-F Grid Voltage                        | 60                           | volts          |
| Power Öutput 4                                                           | 5 appro              | x.watts   | Internal Shield connected to                 | cathode at s                 | socket         |
| △ Voltage taken from unmodulated plate-voltage sup                       | ply through r        | esistor.  | D-C Plate Current                            | 45                           | ma.            |
| From fixed supply or grid-leak resistor.                                 |                      |           | D-C Screen Current                           | 20                           | ma.            |
|                                                                          |                      |           | D-C Grid Current                             | 5                            | approx.ma.     |
| GRID-MODULATED R-F POWER AMPLIFIER - Cla                                 | iss c letep          | nony      | Driving Power                                |                              | approx.watt    |
| Carrier conditions per tube for use with a max. Not                      | dulation fact        | or of 1.0 | Power Output                                 |                              | approx.watts   |
| D-C Plate Voltage                                                        | 500 max.             | volts     | # From modulated fixed supply or modulated p | late-voltage                 | supply through |
| D-C Suppressor Voltage (Grid #3)                                         | 200 max.             | volts     | resistor.                                    |                              | suppry through |
| D-C Screen Voltage (Grid #2)                                             | 200 max.             | volts     | PLATE-MODULATED R-F POWER AMPLIFIER          | 2 - Class C                  | Telephony      |
|                                                                          | -200 max.            | volts     | fetrode Connection - Grids \$2 4             |                              |                |
| D-C Plate Current                                                        | 40 max.              | ma.       | Carrier conditions per tube for use with a m |                              |                |
| Plate Input                                                              | 16 max.              | watts     | D-C Plate Voltage                            |                              | max. volts     |
| Suppressor Input                                                         | 5 max.               | watts     | D-C Screen Voltage (Grids #2 & #3)           |                              |                |
| Screen Input                                                             | 5 max.               | watts     | D-C Grid Voltage (Grid #1)                   |                              | max. volts     |
| Plate Dissipation                                                        | 12 max.              | watts     | D-C Grid Voltage (Grid #1)                   | -200                         |                |
| Typical Operation:                                                       | 12 1104.             | Hatts     | D-C Plate Current                            |                              | max. ma.       |
| D-C Plate Voltage 400 500                                                | 500                  | volts     | D-C Grid Current                             |                              | max. ma.       |
| D-C Suppressor Voltage 0 0                                               | 40                   | volts     | Plate Input<br>Screen Input                  |                              | max. watts     |
| D-C Screen Voltage 200 200                                               | 200                  | volts     |                                              |                              | max. watts     |
| D-C Grid Voltage 5 -50 -45                                               | -43                  | volus     | Plate Dissipation<br>Typical Operation:      | 8                            | max. watts     |
| Peak R-F Grid Voltage 58 48                                              | 44                   | volts     |                                              | 100                          | . 1            |
| Peak A-F Grid Voltage 25 20                                              | 18                   | volts     | D-C Plate Voltage                            | 400                          | volts          |
| Internal Shield Connected to cathod                                      |                      |           | D-C Screen Voltage ##                        | { 10000<br>100               | ohms           |
| D-C Plate Current 35 30                                                  | 30                   | ma.       |                                              | ( <u>100</u><br>( <u>-70</u> | volts          |
| D-C Screen Current 9 7                                                   | 6                    | ma.       | D-C Grid Voltage §                           | 10000                        | volts          |
| D-C Grid Current 1 0                                                     | 0 appro              | x.ma.     | Peak R-F Grid Voltage                        | 100                          | ohms           |
| Driving Power * 0.5 0.2                                                  | 0.15 appro           | x.watt    |                                              | ,                            | volts          |
| Power Output 4 5                                                         | .5.5 appro           |           | D-C Plate Current                            | cathode at s<br>45           |                |
| * At crest of a-f cycle with modulation factor of t                      |                      |           | D-C Screen Current                           | 45<br>30                     | ma.<br>ma.     |
| PLATE-MODULATED R-F POWER AMPLIFIER - C1                                 |                      | han i     | D-C Grid Current                             |                              |                |
| Pentode Connection                                                       | ass c rerea          | Shorty    | Driving Power                                |                              | approx.ma.     |
|                                                                          |                      |           | Power Output                                 |                              | approx.watt    |
| Carrier conditions per tube for use with a max. mod<br>D-C Plate Voltage | 400 max.             | volts     |                                              |                              | approx.waits   |
|                                                                          | 400 max.<br>200 max. |           | ## Preferably from unmodulated plate-voltage | supply throu                 | igh resistor.  |
| D-C Suppressor Voltage (Grid #3)                                         |                      | volts     | Obtained by grid-leak resistor or by parties | ial self-bias                | methods.       |
| D-C Screen Voltage (Grid #2)                                             | 200 max.             | volts     | § See end of tabulation.                     |                              |                |
|                                                                          | -200 max.            | volts     | ← Indicates a change.                        |                              |                |
| D-C Plate Current                                                        | 50 max.              | ma.       |                                              |                              |                |
| § See end of tabulation.                                                 |                      |           |                                              |                              |                |
| ← indicates a change.                                                    |                      |           |                                              |                              |                |

## 837 **R-F POWER AMPLIFIER PENTODE**


|    | (continued from preceding page)                                          |          |         |          |        |           |  |  |
|----|--------------------------------------------------------------------------|----------|---------|----------|--------|-----------|--|--|
|    | R-F POWER AMPLIFIER & OSCILLATOR - Class C Telegraphy                    |          |         |          |        |           |  |  |
|    | Pentode Connection<br>Key-down conditions per tube without modulation 00 |          |         |          |        |           |  |  |
|    |                                                                          | r tube   | withou  | t noaui  | 41107  | 1.        |  |  |
|    | D-C Plate Voltage                                                        |          |         | 0        | max.   | volts     |  |  |
|    | D-C Suppressor Voltage (Grid                                             | #31      |         |          | max.   | volts     |  |  |
|    | D-C Screen Voltage (Grid #2)                                             |          |         |          | max.   | volts     |  |  |
|    | D-C Grid Voltage (Grid #1)                                               |          |         | -200     |        | volts     |  |  |
|    | D-C Plate Current                                                        |          |         | 80       | max.   | ma.       |  |  |
|    | D-C Grid Current                                                         |          |         | 8        | max.   | ma.       |  |  |
|    | Plate Input                                                              |          |         | 32       | max.   | watts     |  |  |
|    | Suppressor Input                                                         |          |         | 5        | max.   | watts     |  |  |
|    | Screen Input                                                             |          |         | 8        | max.   | watts     |  |  |
|    | Plate Dissipation                                                        |          |         | 12       | max.   | watts     |  |  |
|    | Typical Operation:                                                       |          |         |          |        |           |  |  |
|    | D-C Plate Voltage                                                        | 400      | 500     | 0 500    |        | volts     |  |  |
|    | D-C Suppressor Voltage                                                   |          |         |          |        | volts     |  |  |
|    | 0-C Suppresso: Torrage                                                   | f 200    |         |          |        | volts     |  |  |
|    | D-C Screen Voltage                                                       | 2        |         | 20000    |        | ohms      |  |  |
|    | b c borcen rorrage                                                       | 1 6300   |         |          |        |           |  |  |
| -  | D-C Grid Voltage®§                                                       | { -4(    |         |          |        | volts     |  |  |
|    | -                                                                        | 1 5000   |         |          |        | ohms      |  |  |
|    | Peak R-F Grid Voltage                                                    | 70       |         |          |        | volts     |  |  |
|    | Internal Shield Co                                                       | nnected  | to ca   | thode a  | at soc | ket       |  |  |
|    | D-C Plate Current                                                        | 70       | ) 6(    | 0 60     |        | ma.       |  |  |
|    | D-C Screen Current                                                       | 32       | 2 3     | 0 15     |        | ma.       |  |  |
|    | D-C Grid Current                                                         | 1        | 3 1     | 8 4      | aopro  | ox.ma.    |  |  |
|    | Driving Power                                                            | 0.       | 5 0.1   | 8 0.4    |        | ox.watt   |  |  |
|    | Power Output                                                             | 16       |         |          |        | ox.walts  |  |  |
|    | Tomer output                                                             | -        | , 2     |          | appro  |           |  |  |
|    | R-F POWER AMPLIFIER & OSC                                                | OTALLS   | R - C1  | ass C T  | elear  | aphy      |  |  |
|    | fetrode Connection - 0                                                   |          |         |          |        | <u>E</u>  |  |  |
|    | ley-down conditions per                                                  | *****    |         | and a la | tion   | 00        |  |  |
|    | D-C Plate Voltage                                                        |          |         | 500      | max.   | volts     |  |  |
|    |                                                                          |          |         |          | max.   | volts     |  |  |
| -> | D-C Screen Voltage (Grids #2                                             | ,,       |         | -200     |        | volts     |  |  |
|    | D-C Grid Voltage (grid #1)                                               |          |         |          |        |           |  |  |
|    | D-C Plate Current                                                        |          |         |          | max.   | ma.       |  |  |
|    | D-C Grid Current                                                         |          |         |          | max.   | ma.       |  |  |
|    | Plate Input                                                              |          |         |          | max.   | watts     |  |  |
|    | Screen Input                                                             |          |         | 8        | max.   | watts     |  |  |
|    | Plate Dissipation                                                        |          |         | 12       | max.   | watts     |  |  |
|    | Typical Operation:                                                       |          |         |          |        |           |  |  |
|    | D-C Plate Voltage                                                        |          | 400     | 500      |        | volts     |  |  |
|    | D=C flate fortage                                                        | ( 11     | .600    | 28000    |        | ohms      |  |  |
| 1  | D-C Screen Voltage 🕈                                                     |          | 110     | 80       |        | volts     |  |  |
|    | b d bereen retage                                                        | 2.0      |         | 8700     |        |           |  |  |
|    | D-C Grid Voltage "§                                                      | 1 2      | 3700    | 0.00     |        | ohms      |  |  |
|    | U-C SITU VOILage 3                                                       | l        | -70     | -70      |        | volts     |  |  |
|    | Peak R-F Grid Voltage                                                    |          | 115     | 110      |        | volts     |  |  |
|    | Internal Shield Com                                                      | nected   | to cat  | hode at  | sock   | et        |  |  |
|    |                                                                          |          |         |          |        |           |  |  |
|    | modulation essentially negative                                          | may be   | used    | if the p | ositiv | e peak of |  |  |
|    | the audio-frequency envelope do<br>ditions.                              | es not é | Aceed 1 | 128 01 1 | ne car | tiet con- |  |  |
|    | e see next page.                                                         |          | 8       | See end  | of tab | ulation.  |  |  |
|    | - Indicates a change.                                                    |          | 3       |          |        |           |  |  |
|    |                                                                          |          |         |          |        |           |  |  |


# 837 **R-F POWER AMPLIFIER PENTODE**

| (continued from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | preceding page                                    |                   |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------|------------|
| D-C Plate Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                                                | 60                | ma.        |
| D-C Screen Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                | 15                | ma.        |
| D-C Grid Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                 |                   | rox.ma.    |
| Driving Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.75                                              | 0.7 <u>app</u>    |            |
| Power Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                |                   | rox.watts  |
| Obtained from fixed supply or pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                   |            |
| Obtained by grid-leak resistor or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                   |            |
| § Maximum total effective grid ci<br>25000 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rcuit resistance                                  | should no         | ot exceed  |
| NOTE. In circuits where the cathod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e is not direct                                   | ly connecte       | ed to the  |
| heater, the potential diffe<br>100 volts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rence between th                                  | em should i       | not exceed |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                   |            |
| The 837, as a crystal-control i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                   |            |
| tode or tetrode connection, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                   |            |
| ditions shown for class C tele<br>internal shielding in this tub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                   | ive, it    |
| generally is necessary to in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                   |            |
| those circuits which depend on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                   |            |
| pacity for oscillation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the control-                                      | -gi 10-t0-p       | nate ca-   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                   |            |
| For use of the 837 at the highe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                   | o sheet    |
| TRANS. TUBE RATIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IGS VS FREQUEN                                    |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                   |            |
| OPERATION CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ARACTERISTIC                                      | .s                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                 |                   |            |
| D-C PLATE VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 12.6 VOLTS                                      | 1                 |            |
| D-C SCREEN V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DLTS = 200                                        | 1                 |            |
| D-C SUPPRESSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VOLTS = 0                                         | 1                 |            |
| INTERNAL SHIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CONNECTED TO<br>CATHODE                           | 5                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CATHODE<br>US VALUES IGNORE<br>DUS R-F COMPONENTS | 터뷰                |            |
| SUPPRESS<br>C SUPPRESS<br>C SRID<br>TO-C SRID<br>TO- | OUS R-F COMPONENTS                                | ARBITRARY UNITS   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0,;                                              |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J`*¥                                              | ∐₹                |            |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / ೪. ೮೮/                                          | Ĕ                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 V.                                            | ē ·               |            |
| 25v. +c +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00v. /                                            | 14                |            |
| © Нв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /+                                                | 12                |            |
| C NEPFAK P-F CRID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AGE VOLTS                                         | L. i              |            |
| 60-MEPEAK R-F GRID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ON                                                | 7'35              |            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | 1 5               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 . 1/1                                           | 1                 |            |
| Z TYPICAL<br>W 40- CARRIER<br>W CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + // +                                            | 10 2              |            |
| CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TINK                                              | 1.5               |            |
| % <del>         </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | - F               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   | 5 2               |            |
| ±20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .2                                                | OUTPUT CURRENT (1 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   | 0                 |            |
| Constructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 161                                               | 3-F               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 40                                              | 60                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RID VOLTS (M)                                     | 920-4             | 4596       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                   |            |

837

## **R-F POWER AMPLIFIER PENTODE**





#### 

APPENDIX

Except for the heater rating, the electrical characteristics of the 1625 are the same as those of the 807 shown below. The heater rating of the 1625 is 12.6 volts, 0.45 amp.

807

#### 807

#### 807

#### TRANSMITTING BEAM POWER AMPLIFIER

#### TRANSMITTING BEAM POWER AMPLIFIER

# TRANSMITTING BEAM POWER AMPLIFIER

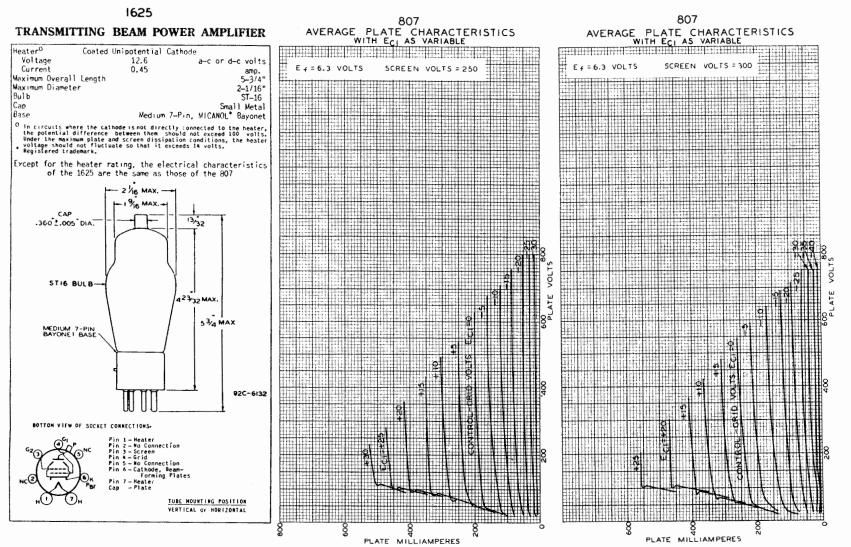
| meterCoales of modern and callodeare or d-c voltsCurrent0.9armsTransconductance forplate cur. of 72 ma.6000 approx.pmbosplate cur. of 72 ma.6000 approx.pmbosplate cur. of 72 ma.6000 approx.pmbosGrid-Screen Mu-Factor8D-C Plate VoltageDirect Interelectrode Capacitances:0.2 max. pufInput11pufMaximum Overall Length5-3/4"Maximum Diameter2-1/16"BulbST-16BaseMedium S-Pin, MICANOLFBaseMedium S-Pin, MICANOLFMaxSignal Plate Input600 max.JCS = Constances Comercial and service205JCS = Intermitient Comercial and serviceMaxSignal Plate Input600 max.JD-C Plate Voltage0.2 for at creat of ar cycle withD-C Plate Voltage0.3 max.D-C Plate Voltage0.0 max.JD-C Screen Voltage (Grid #2)300 max. voltsMaxSignal Plate Input3.5 max.D-C Plate Voltage0.0 300D-C Grid Voltage750 voltsD-C Grid Voltage78 78 78D-C Plate Voltage70 300 300D-C Grid Voltage78 78 78D-C Flate Voltage0.2 cortinoCarrent Stance800 1060 1600Typical Operation:10 ma.Carrent Stance800 1060 1600Typical Operation:0.2 cortinoTypical Operation:0.2 cortinoTypical Operation:0.2 cortinoTypical Oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                        |            |           |              |    |                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|------------|-----------|--------------|----|--------------------------------------------------------------|
| Current 0.9 amp.<br>Transconductance for plate cur. of 72 ma. 6000 approx. public<br>Grid Screen Mu-Factor 8<br>Grid to Plate (With external shielding) 0.2 max. µµf<br>Input 0utput 7 µµf<br>Maximum Diameter 2-1/16"<br>Bulb 5-7-16<br>Bulb 5-7-16<br>Bulb 5-7-16<br>Bulb 5-7-16<br>Bulb 5-7-16<br>MAXIMUM CCS and ICAS RATINGS<br>with TPPICAL OPERATING CONDITIONS<br>Carre Continuous Commercial Service<br>ICAS = Contenuous Seconferencial Service<br>ICAS = Contenuous Seconferencial Service<br>ICAS = Contenuous Commercial Service<br>ICAS = Contenuous Seconferencial Service<br>ICAS = Contenuous Seconfe                                                                                                  |                                                                      |                        | 1 Cathode  |           |              |    | (continued                                                   |
| Transconductance for<br>plate curr. of 72 ma.<br>Grid xcPlate (With external shielding)       0.2 max. µµf         Direct Interelectrode Capacitances:<br>Grid to Plate (With external shielding)       0.2 max. µµf         Input       11       µµf         Naximum Diameter       2-1/16"         Bulb       5-3/4"         Waximum Diameter       2-1/16"         Bub       Small Metal         Base       Medium 5-Pin, MICANOL*         MAXIMUM CCS and ICAS RATINGS<br>with TYPICAL OPERATING CONDITIONS       D-C Grid Voltage         Cost = continues commercial struce       IAAF         A-F POWER AMPLIFIER & MODULATOR - Class AB2#       PLATE-MODULAED R-F POW         MaxSignal Plate Input*       60 max.<br>3.5 max.       30 max. watts         D-C Streen Voltage Grid #21<br>MaxSignal Plate Input*       30 max.       90 max. watts         D-C Streen Voltage 300 300 300       300 volts       D-C Flate Voltage         D-C Grid Voltage       78 78 78 92 volts       D-C Grid Voltage         Grid Voltage       78 78 78 92 volts       D-C Screen Voltage 0         Grid Voltage       75 0 max.       D-C Grid Voltage 4 {         Greid Voltage       800 1060 1600       1740 ohms       D-C Screen Voltage 0         C Grid Voltage       75 78 00 120 eporoxwatt       D-C Grid Voltage 4 {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      | 6.3                    |            | a-c or    |              |    | R-F FUMER AMPLI                                              |
| plate cur. of 72 ma.       6000 approx.       µmhos         Grid-Screen Mu-Eactor 8          Direct Interelectrode Capacitances:       0-C Plate Voltage         Grid to Plate (With external shielding)       0.2 max. µµf         Input       7         Maximum Overall Length       5-3/4"         Maximum CCS and ICAS RATINGS       5-C Creat Voltage         Carrier constring       5-3/4"         Maximum CCS and ICAS RATINGS       5-C Creat Voltage         D-C Plate Voltage       600 max.         Screen Input       90 max.         MaxSignal D-C Plate Cur.*       120 max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | 0.9                    |            |           | amp.         |    | Carrier conditions per tube for                              |
| Grid-Screen Mu-Eactor       8         Direct Interelectrode Capacitances:       9         Grid to Plate (with external shielding)       0.2 max. µµf         Input       11       µµf         Maximum Diameter       2-1/16"         Bulb       5-3/4"         Base       Medium 5-Pin, MICANOL*         Maximum Diameter       2-1/16"         Base       Medium 5-Pin, MICANOL*         Core and the constructure of the constructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                        |            |           |              |    |                                                              |
| Grid-Screen Mu-actor<br>Grid to Plate (With external shielding) 0.2 max. µµf<br>Untput<br>Maximum Overall Length 5-3/4"<br>Maximum Overall Length 2-1/16"<br>Bulb 5-2-2 frate Current<br>Bulb 5-2-2 frate Current<br>Bulb 5-2-2 frate Current<br>Maximum Cos and ICAS RATINGS<br>With TYPICAL OPERATING CONDITIONS<br>CCS = Continuous Connercial Service<br>A-F POWER AMPLIFIER & MODULATOR - Class AB2*<br>D-C Plate Voltage Ind Screen Voltage (Grid \$1)<br>Peak A-F Grid Voltage 10-C Grid Voltage Cord<br>MaxSignal Plate Input 60 max.<br>D-C Plate Voltage Grid \$2)<br>MaxSignal Plate Input 7-5 -25 -30<br>C Grid Voltage 78 78 78 92 volts<br>Frate Dissipation<br>CFired Voltage 78 78 78 92 volts<br>CFired Voltage 775 78 80 120 soprox.matt<br>CFired Sirb and circuits worten dissingtion conditions, the heater<br>Voltage Nowd not frituate so that if exceeds 7.0 volts.<br>CFired Voltage 775 78 80 120 soprox.matt<br>CFired Sirb and circuits soft the cord of the cord                                                               |                                                                      | 6000 app               | rox.       |           | µmhos        |    |                                                              |
| Grid to Plate (with external shielding) 0.2 max. puf<br>Input 0.utput 7 Jupt<br>Maximum Diameter 2.2.1/16"<br>Bulb S-3/4"<br>Waximum Diameter 2.2.1/16"<br>Bulb S-3/4"<br>Maximum Diameter 2.2.1/16"<br>Strate Dissipation 2.2.5<br>D-C Plate Voltage Constructed Comportance Composition 2.5<br>D-C Plate Voltage 600 max. 120 max. wolts<br>D-C Plate Voltage 600 max. 200 max. wolts<br>D-C Plate Voltage 600 max. 300 max. volts<br>Screen Input 3.5 max. 3.5 max. watts<br>Screen Input 3.5 max. 3.5 max. watts<br>D-C Plate Voltage 400 500 600 750 volts<br>D-C Screen Voltage 200 300 300 yoolts<br>D-C Grid Voltage 78 78 78 92 volts<br>Carrier constituents specified, values are for 2 tubes<br>D-C Screen Voltage 78 78 78 92 volts<br>Carro-Sig. D-C Plate Cur. 100 100 60 660 ma.<br>MaxSig. D-C Plate Cur. 200 240 ma.<br>(Fixed bias, Grid \$1) -25 -25 -30 -32 volts<br>D-C Grid Voltage 78 78 78 92 volts<br>Carro-Sig. D-C Screen Cur. 10 10 10 10 ma.<br>Load Resistance<br>(Per tube) 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ancs (Plate to plate) 3200 4240 6400 6950 ohms<br>Effective Load Resist-<br>ancs (Plate to plate) 3200 4240 6400 6950 ohms<br>Freend Grid Input Power 0.2 0.2 0.1 0.2 approximatif<br>* in circuits where the cathod lised directly connected to the mature, the point and ifference between the shall of cord from grid fr                                                                                                                         |                                                                      | 8                      |            |           |              | -  |                                                              |
| Input11µµfMaximum Overall Length7-3/4"Maximum Overall Length5-3/4"Maximum Diameter2-1/15"BulbST-16CapSmall MetalBaseMedium 5-Pin, MICANOL*Maximum Cos = Constructs Commercial and Anateur ServiceICAS = Constructs Commercial ServiceICAS = Constructs Commercial ServiceICAS = Constructs Commercial ServiceA-F POWER AMPLIFIER & MODULATOR - Class ABp#D-C Plate VoltageCC Plate VoltageMaxSignal D-C Plate Cur.*D-C Plate VoltageCorrid VoltageMaxSignal D-C Plate Cur.*D-C Plate VoltageD-C Plate VoltageMaxSignal D-C Plate Cur.D-C Plate VoltageD-C Plate VoltageMaxSignal D-C Plate Cur.D-C Plate VoltageMaxSignal D-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                        |            |           |              |    |                                                              |
| Output7JufMaximum Overall Length5-3/4"Maximum Overall Length5-3/4"Maximum Dimeter2-1/16"BulbST-16BulbST-16BaseMedium 5-Pin, MICANOL4Maximum Dirate and ScatcerSmall MetalMaximum Cost and ICAS RATINGSD-C Grid VoltageD-C Screen VoltageGord ScatcerICIS = Intermitient Commercial ServiceICIS = Continuous Commercial ServiceICIS = Intermitient Commercial ServiceICIS = Continuous Commercial ServiceICIS = Intermitient Commercial ServiceD-C Plate VoltageGord Max.D-C Screen Voltage Cori #20 max.120 max.MaxSignal Plate InputSo max.D-C Screen Voltage200 300 300D-C Grid VoltageICIS = InputPlate DissipationICIS = InputD-C Flate VoltageICIS = InputD-C Screen VoltageICIS = InputD-C Grid VoltageICIS = InputD-C Grid VoltageICIS = InputD-C Grid Voltage <t< td=""><td></td><td>nal shie</td><td>elding)</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | nal shie               | elding)    |           |              |    |                                                              |
| Maximum Overall Length5-3/4"Maximum Diameter2-1/16"BuibST-16CapSmall MetalBaseMedium 5-Pin, MICANOL4MAXIMUM CCS and ICAS RATINGSD-C Grid Volt. (Grid \$1)with TYPICAL OPERATING CONDITIONSCCS = Continuous Connercial ServiceA-F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Plate CurrentA-F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Plate CurrentD-C Plate VoltageCCSA-F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Plate CurrentMaxSignal D-C Plate Cur.*120 max.D-C Screen Voltage (Grid #2)300 max.MaxSignal D-C Plate Cur.*120 max.D-C Flate Voltage600 max.MaxSignal D-C Plate Cur.*120 max.D-C Grid Voltage300 max.MaxSig. D-C Plate Cur.55 max.D-C Grid Voltage750 voltsD-C Grid Voltage78 78 78Yeren Sig. D-C Screen Cur.10 10MaxSig. D-C Plate Cur.10 10MaxSig. D-C Clate Cur.10 10MaxSig. D-C Screen Cur.10 10MaxSig. D-C Screen Cur.10 10MaxSig. D-C Clate Cur.10 10MaxSig. D-C Screen Cur.10 10MaxSig. D-C Screen Cur.10 10MaxSig. D-C Screen Cur.10 10MaxSig. D-C Screen Cur.10 10Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                        |            | 11        |              |    | Screen Input                                                 |
| Maximum Diameter2-1/16"BulbST-16BulbSmall MetalBaseMedium 5-Pin, MICANOL4MAXINUM CCS and ICAS RATINGSwith TYPICAL OPERATING CONDITIONSCGS = Continuous Comarcial ServiceICIS = Internition Commercial ad inateur ServiceA-F POWER AMPLIFIER & MODULATOR - Class AB2*D-C Plate VoltageCC Screen VoltageMaxSignal D-C Plate Cur.*D-C Plate VoltageMaxSignal D-C Plate Cur.*Typical Operation:Typical Operation:(Fixed bias, Grid #1)-C Grid VoltageCronsig, D-C Plate Cur.Co Screen Curate(Fixed bias, Grid #1)-25-25MaxSig, D-C Plate Cur.C Grid Voltage(Fixed bias, Grid #1)-25-26Cronsig, D-C Screen Cur.Co Screen Curate(Per tube)800MaxSig, D-C Screen Cur.126Correen Current(Per tube)800126MaxSig, D-C Screen Cur.127128129129120120120120121121122 <td></td> <td></td> <td></td> <td></td> <td>μµf</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                        |            |           | μµf          |    |                                                              |
| Builb<br>Cap<br>Base Small Metal<br>Medium 5-Pin, MICANOLA<br>MAXIMUM CCS and ICAS RATINGS<br>with TYPICAL OPERATING CONDITIONS<br>CCS = Continuous Connercial Service<br>ICAS = Continuous Connercial Service<br>ICAS = Continuous Connercial Service<br>A-F POWER AMPLIFIER & MODULATOR - Class AB2#<br>D-C Clate Voltage<br>CCS = Continuous Connercial Service<br>A-F POWER AMPLIFIER & MODULATOR - Class AB2#<br>D-C Clate Voltage<br>D-C Plate Voltage<br>CCS = Continuous Connercial Service<br>A-F POWER AMPLIFIER & MODULATOR - Class AB2#<br>D-C Class Connercial Service<br>CCS = Continuous Connercial Service<br>A-F POWER AMPLIFIER & MODULATOR - Class AB2#<br>D-C Class Connercial Service<br>CCS = Continuous Connercial Service<br>CCS = Contence Contence Contence Contence Contence<br>(A-F POWER AMPLIFIER & MODULATOR - Class AB2#<br>D-C Class Contence C                                                                                                                                                          |                                                                      |                        |            |           |              |    |                                                              |
| Cap<br>BaseSmall Metal<br>Medium 5-Pin, MICANOL*BaseMAXIMUW CCS and ICAS RATINGS<br>with TYPICAL OPERATING CONDITIONSCCS = Continuous Connercial Service<br>ICAS = Interstitent Connercial and Anateur ServiceA-F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Plate VoltageCOS<br>600 max.D-C Plate VoltageCOS<br>600 max.D-C Plate VoltageCOS<br>600 max.D-C Plate VoltageCOS<br>600 max.MaxSignal Plate Input*300 max.NexSignal Plate Input*300 max.D-C Grid VoltageCorid Current<br>90 max.D-C Grid VoltageCorid Current<br>90 max.D-C Grid Voltage25 max.D-C Grid Voltage300 300D-C Grid Voltage200 300 300D-C Grid Voltage78 78 78<br>92 voltsPeak A-F Grid -to-<br>Grid Voltage78 78 78<br>92 voltsCFiate Curr.10 10D-C Screen Voltage800 1060 1600MaxSig. D-C Creen Cur. 5 5 5 5<br>max.MaxSig. D-C Screen Cur. 5 7 80MaxSig. Power Output* 55 77 80MaxSig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                        |            |           |              |    |                                                              |
| BaseMedium 5-Pin, MICANOL*MAXIMUM CCS and ICAS RATINGS<br>with TYPICAL OPERATING CONDITIONSPeak R-F Grid Voltage<br>D-C Plate CurrentCCS = Continuous Commercial ServiceD-C Plate CurrentA-F POWER AMPLIFIER & MODULATOR - Class AB2#Driving Power (Approx.)D-C Plate VoltageCCS<br>GOO max.D-C Plate Voltage (Grid #2)<br>MaxSignal Plate Input*GOO max.<br>300 max.D-C Plate VoltageCCS<br>GOO max.MaxSignal Plate Input*GO max.<br>3.5 max.D-C Plate VoltageCCS max.<br>3.5 max.D-C Plate VoltageGrid #1)<br>D-C Screen VoltageD-C Plate Voltage300 300D-C Screen Voltage300 300D-C Screen Voltage300 300D-C Screen Voltage300 300D-C Screen Voltage750 volts<br>D-C Grid VoltageD-C Screen Voltage78 78 78<br>32 voltsPeak A-F Grid Voltage78 78 78<br>320Peak A-F Grid Voltage700 100 60Grid Voltage78 78 78<br>32Peak A-F Grid Voltage700 100 10Corres Sig. D-C Creen Cur. 10 10 1010 ma.<br>10 ma.MaxSig. D-C Creen Cur. 10 10 1010 ma.<br>10 ma.<br>10 max.Cord Field to plate 13200 4240 6400Peak R-F Grid Voltage<br>10 wolt voltage800 1060 1600MaxSig. D-C Screen Cur. 10 10 1010 ma.<br>10 max.Peak Grid Input Power*0.2 0.2 0.1 0.2 pprox.watts<br>100 doms and the effect<br>100 doms and the effect<br>100 bots and the effect<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                        |            |           |              |    | D-C Screen Voltage                                           |
| MAXINUM CCS and ICAS RATINGS<br>with TYPICAL OPERATING CONDITIONSCOS = Continuous Connercial Service<br>ICIS = Interstitient Connercial ServiceA-F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Plate VoltageCOS =<br>(A-F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Plate VoltageCOS =<br>(A-F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Screen VoltageCOS =<br>(GO max.Icas AB2#D-C Screen VoltageCOS =<br>(GO max.Icas AB2#D-C Screen VoltageCon max.120 max.120 max.MaxSignal D-C Plate Curr.*120 max.30 max. waitsScreen Input*3.5 max.3.5 max.30 max. waitsD-C Screen Voltage200 500 600750 voltsD-C Screen Voltage300 300 300300 voltsD-C Grid VoltageCorriet conditionsD-C Screen Voltage78 78 7892 voltsCreate Voltage78 78 7892 voltsCreate Load Resistance100 1010 ma.Chate Load Resistance800 1060 16001740 ohmsCreate Corrent Ucade Resistance800 1060 16001740 ohmsChate Current D-C Screen Curr. 10 10 1010 ma.MaxSig. D-C Screen Curr. 10 10 10MaxSig. Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                        |            |           |              |    |                                                              |
| MAXIMUM CCS and ICAS RATINGS<br>with TYPICAL OPERATING CONDITIONSCCS = Continuous Commercial Service<br>ICAS = Intermitient Commercial ServiceA_F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Plate VoltageA_F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Plate VoltageGCS = Continuous Commercial ServiceA_F POWER AMPLIFIER & MODULATOR - Class AB2#D-C Plate VoltageGCS = Continuous Commercial ServiceMaxSignal D-C Plate Cur.*MaxSignal D-C Plate Cur.*MaxSignal Plate Input*Screen Input*Plate Dissipation*D-C Screen VoltageMaxSignal Plate Input*D-C Plate VoltageD-C Plate VoltageMaxSignal D-C Plate Cur.D-C Screen VoltageD-C Screen Cur.D-C Screen Cur.D-C Screen Cur.Sig. D-C Screen Cur.D-C Screen Cur.Sig. D-C Screen Cur.Sig. D-C Screen Cur.Sig. D-C Screen Cur.D-C Screen Cur.Sig. D-C Screen Cur.Sig. D-C Screen Cur.D-C Screen CurrentD-C Screen CurrentD-C Screen CurrentD-C Screen CurrentD-C Screen CurrentD-C Screen CurrentD-C Scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Base                                                                 |                        | Medium     | 5-Pin,    | MICANOL      |    | Peak R-F Grid Voltage                                        |
| with TYPICAL OPERATING CONDITIONSCCS = Continuous Connercial ServiceICIS = Intermitient Connercial ServiceICIS = Intermitient Connercial ServiceA-F POWER AMPLIFIER & MODULATOR - Class ABp#D-C Plate VoltageC-C Plate VoltageC-C Plate VoltageGo max.JO-C Screen Voltage (Grid #2)MaxSignal D-C Plate Cur.*120 peration*Typical Operation*D-C Screen VoltageMaxSignal Plate Input*Corrid VoltageD-C Screen VoltageCorrid VoltageD-C Screen VoltageCorrid VoltageD-C Screen Cur.Tirked bias, Grid #1)-25 -25 -30-32 voltsPeak A-F Grid-to-Grid VoltageRax-Sig. D-C Screen Cur.D-C Screen VoltageBox Sig. D-C Screen Cur.Box Sig. D-C Screen Cur.D-C Screen Cur.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                        |            | •         |              |    |                                                              |
| CCS = Continuous Commercial Service<br>ICLS = Intermitient Commercial and Ansteur Service       Dec Crid Curr. (Approx.)<br>Power Qutput (Grid #1)<br>D-C Crid Voltage (Grid #1)<br>D-C Crid Voltage (Grid #1)<br>D-C Plate Current<br>Power Qutput (Approx.)<br>Power Qutput (Approx.) |                                                                      |                        |            |           |              |    | D-C Screen Current                                           |
| CCS = Continuous Commercial ServiceIntermitient Commercial Andew ServiceIntermitient Commercial and Andew ServiceDel Ciss Thermitient Commercial and Andew ServiceA=F POWER AMPLIFIER & MODULATOR - Class ABp#Del Ciss AMPLIFIER & MODULATOR - Class ABp#Del Ciss Commercial ServiceDel Plate VoltageCommercial ServiceDel Plate VoltageMaxSignal D-C Plate Curr.*120 max.Jong Colspan="2">Del Plate VoltageOf Colspan="2">Contact CurrentMaxSignal Plate InputScreen Input*Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">ConstantionTypical Operation:Colspan="2">Cond Karsen dissipationCond Karsen dissipat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | with ITPICAL 0                                                       | PERAIIR                | G CONDIT   | UNS       |              |    | D-C Grid Cur. (Approx.)                                      |
| ICLS = Interaction: Convertical and Interest Service         A_F POWER AMPLIFIER & MODULATCR - Class AB2#         D-C Plate Voltage       Good max.         D-C Plate Voltage       Good max.       300 Carrier conditions per tube for         D-C Plate Input*       3.5 max.       300 D-C C Cid Voltage       D-C Plate Voltage       D-C C Fid Voltage       D-C C Fid Voltage       D-C Plate Cur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCS = Continuous Conner                                              | rcial Se               | ruice      |           |              |    | Driving Power (Approx.)00                                    |
| A-F POWER AMPLIFIER & MODULATOR - Class AB₂#<br>D-C Plate Voltage <u>600</u> max.<br>D-C Screen Voltage (Grid #2) 300 max. 300 max. volts<br>MaxSignal D-C Plate Cur.* 120 max.<br>MaxSignal Plate Input* 60 max.<br>Screen Input* 25 max.<br>Plate Dissipation* 25 max.<br>D-C Plate Voltage 400 500 600 750 volts<br>D-C Screen Voltage 300 300 300 300 volts<br>D-C Screen Voltage 300 300 300 volts<br>D-C Screen Voltage 78 78 78 92 volts<br>Peak A-F Grid Voltage 78 78 78 92 volts<br>Zero-Sig. D-C Plate Cur. 100 100 60 60 ma.<br>MaxSig. D-C Plate Cur. 240 240 200 240 ma.<br>Zero-Sig. D-C Screen Cur. 10 10 10 10 ma.<br>Load Resistance<br>(Fixed bias, Grid #1) -25 -25 -30 -32 volts<br>MaxSig. D-C Plate Cur. 100 100 60 60 ma.<br>MaxSig. D-C Screen Cur. 10 10 10 10 ma.<br>Load Resistance<br>(Fret ubel 800 1060 1600 1740 ohms + Feak R-F Grid Voltage 4 f<br>Zero-Sig. D-C Screen Cur. 10 10 10 10 ma.<br>Load Resistance<br>(Fret ubel 800 1060 1600 1740 ohms + Feak R-F Grid Voltage 77 78 78 120 max.<br>Peak R-F Grid Voltage 78 78 78 92 volts<br>MaxSig. D-C Screen Cur. 5 5 5 ma.<br>HaxSig. D-C Screen Cur. 5 75 80 120 max.<br>Peak R-F Grid Voltage 70 0.2 0.2 0.1 0.2 approx.watts<br>* MaxSig. Power Output* 55 75 80 120 approx.watts<br>* Averaged over any adio-frequency cycle of sine-wave form.<br>* Avera                                                                                                                                        | ICAS = Internittent Con                                              | mercial                | and ina    | teur Se   | ruice        |    | Power Output (Approx.)                                       |
| D-C Plate Voltage Grid #2) 300 max.<br>D-C Screen Voltage (Grid #2) 300 max.<br>MaxSignal D-C Plate Cur.* 120 max.<br>MaxSignal Plate Input* 60 max.<br>Screen Input* 3.5 max.<br>Plate Dissipation* 25 max.<br>D-C Plate Voltage (Grid #1)<br>D-C Screen Voltage (Grid #1)<br>D-C Plate Voltage (Grid #1)<br>D-C Plate Voltage (Grid #1)<br>D-C Plate Voltage 300 300 300 volts<br>D-C Grid Voltage 300 300 300 volts<br>D-C Grid Voltage 78 78 78 92 volts<br>Carrier conditions per tube for<br>D-C Grid Voltage 78 78 78 92 volts<br>D-C Plate Voltage 00 500 600 ma.<br>Grid Voltage 78 78 78 92 volts<br>D-C Screen Voltage 0 200 240 ma.<br>MaxSig. D-C Plate Cur. 100 100 60 60 ma.<br>Typical Operation:<br>Freak A-F Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>Zero-Sig. D-C Screen Cur. 10 10 10 ma.<br>Load Resistance<br>(Plate to plate) 3200 4240 6400 6950 ohms<br>I no ircuits where the cathode is not directly connected to the heater,<br>the potamial difference Detween them should not exceed 100 volts.<br>I no ircuits where the cathode is not directly connected to the heater,<br>the potamial difference Detween them should not exceed 100 volts.<br>I no ircuits where the cathode is not directly connected to the heater,<br>the potamial difference Detween them should not exceed 100 volts.<br>I no ircuits where the cathode is not directly connected to the heater,<br>the potamial difference Detween them should not exceed 100 volts.<br>I waveregid over any audio-frequency cycle of sine-wave form.<br>A waveregid over any audio-frequency cycle of                                                                                                                                  | A-F POWER AMPLIFIER                                                  | & MODUL                | ATOR - C   | lass AB   | 2#           |    |                                                              |
| D-C Screen Voltage (Grid #2) 300 max.<br>MaxSignal D-C Plate Cur.* 120 max.<br>MaxSignal Plate Input* 60 max.<br>Screen Input* 3.5 max.<br>Plate Dissipation* 25 max.<br>Typical Operation:<br>Grid Voltage 400 500 600 750 volts<br>D-C Plate Voltage 400 500 600 750 volts<br>D-C Screen Voltage 300 300 300 300 volts<br>D-C Grid Voltage 300 300 300 volts<br>D-C Grid Voltage 78 78 78 92 volts<br>Peak A-F Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>MaxSig. D-C Plate Cur. 100 100 60 60 ma.<br>MaxSig. D-C Plate Cur. 240 240 200 240 ma.<br>Load Resistance<br>(Per tubel 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400<br>Peak Grid Input Power 0.2. 0.2 0.1 0.2 approx.watts<br>* Averaged over any audio-frequency cycle of sine-wave form.<br>* Averaged over any audio-frequency cycle of sine-wave form.                                                                                                                                         |                                                                      | c                      | 205        | ICAS      | -            |    | PLATE-MODULATED R-F POW                                      |
| D-C Screen Voltage (Grid #2) 300 max. 120 max. ma.<br>MaxSignal D-C Plate Cur.* 120 max. 120 max. ma.<br>MaxSignal Plate Input* 60 max. 30 max. waits<br>Screen Input* 3.5 max. 3.5 max. waits<br>Plate Dissipation* 25 max. 30 max. waits<br>D-C Screen Voltage (Grid #1)<br>D-C Plate Current<br>Plate Input<br>D-C Screen Voltage 300 300 300 volts<br>D-C Grid Voltage 400 500 600 750 volts<br>D-C Grid Voltage 300 300 300 volts<br>D-C Grid Voltage 78 78 78 92 volts<br>Peak A-F Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>Tereo-Sig. D-C Plate Cur. 100 100 60 60 ma.<br>MaxSig. D-C Plate Cur. 240 240 200 240 ma.<br>Load Resistance<br>(Plate to plate) 3200 4240 6400 6950 ohms<br>Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400 6950 ohms<br>* Averaged Curr any audio-frequency cycle of sine-maxe form.<br>* Suvscript 2 indicates that gif current films fouring some part of the specified parts form form fouring some part of the specified parts form form fouring some part of the specified parts form form fouring some part of the specified parts form form fouring some part of the specified form fouring fouring fouring some part of the specified form fouring four                                                                                                                                                                  | D-C Plate Voltage                                                    | 6                      | 00 max.    | 750       | max. volts   |    | Carrier conditions per tube for                              |
| MaxSignal Plate Input*       60 max.       90 max. watts         Screen Input*       3.5 max.       3.5 max. watts         Plate Dissipation*       25 max.       30 max. watts         Typical Operation:       3.5 max.       30 max. watts         D-C Plate Voltage       400 500 600       750 volts         D-C Screen Voltage       300 300       300 volts         D-C Grid Voltage       300 300       300 volts         D-C Grid Voltage       -25 -25 -30       -32 volts         Feak A-F Grid-to-       78 78 92       volts         Grid Voltage       78 78 92       volts         Zero-Sig. D-C Plate Cur. 100 100 60       60 ma.       D-C Grid Voltage 4 {         MaxSig. D-C Screen Cur. 5 5 5       5 ma.       D-C Crid Voltage 4 {         WaxSig. D-C Screen Cur. 10 10 10       10 ma.       D-C Crid Voltage 4 {         Peak R-F Grid Noltage 0       2.0.2 0.1 0.2 approx.watts       D-C Crid Voltage 4 {         MaxSig. Power Output*       55 75 80       120 approx.watts       Dotained preferably from more 300 ones and the effect         * he specified pae that is avered to volts.       90 totained preferably from more 300 ones and the effect       100 totained preferably from more 300 ones and the effect         WaxSig. Power Output*       55 75 80       120 approx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D-C Screen Voltage (Grid #2)                                         | 3                      | 800 max.   | 300       | max. volts   |    |                                                              |
| MaxSignal Plate Input*       60 max.       90 max. watts         Screen Input*       3.5 max.       3.5 max. watts         Plate Dissipation*       25 max.       30 max. watts         Typical Operation:       3.5 max.       30 max. watts         D-C Plate Voltage       400 500 600       750 volts         D-C Screen Voltage       300 300       300 volts         D-C Grid Voltage       300 300       300 volts         D-C Grid Voltage       -25 -25 -30       -32 volts         Feak A-F Grid-to-       78 78 92       volts         Grid Voltage       78 78 92       volts         Zero-Sig. D-C Plate Cur. 100 100 60       60 ma.       D-C Grid Voltage 4 {         MaxSig. D-C Screen Cur. 5 5 5       5 ma.       D-C Crid Voltage 4 {         WaxSig. D-C Screen Cur. 10 10 10       10 ma.       D-C Crid Voltage 4 {         Peak R-F Grid Noltage 0       2.0.2 0.1 0.2 approx.watts       D-C Crid Voltage 4 {         MaxSig. Power Output*       55 75 80       120 approx.watts       Dotained preferably from more 300 ones and the effect         * he specified pae that is avered to volts.       90 totained preferably from more 300 ones and the effect       100 totained preferably from more 300 ones and the effect         WaxSig. Power Output*       55 75 80       120 approx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MaxSignal D-C Plate Cur.*                                            | 1                      | 120 max.   | 120       | max. ma.     |    | D-C Plate Voltage                                            |
| Screen Input3.5 max.3.5 max.3.5 max.3.5 max. wattsPlate Dissipation25 max.30 max. wattsD-C Grid Voltage (Grid #1)Plats otherwise specified, ualues are for 2 tubesD-C Plate Current,D-C Plate Voltage400 500 600750 voltsD-C Grid Voltage300 300300 voltsD-C Grid Voltage300 300300 voltsD-C Grid Voltage78 78 92 voltsFeak A-F Grid-to-73 78 78 92 voltsGrid Voltage78 78 78 92 voltsMaxSig, D-C Plate Cur. 100 100 60 60 ma.MaxSig, D-C Plate Cur. 240 240 200AmaxSig, D-C Screen Cur. 5 5 5 ma.MaxSig, D-C Screen Cur. 10 10 10 10 ma.Load ResistanceImaxSig, Power Output*55 75 80 120 approxwattsThe circuits where the catode is not directly connected to the heater,<br>the potatial difference between them should not exceed 100 volts.* Averaged over any audio-frequency cycle of sine-wave form.* Averaged over any audio-frequency cycle of sine-wave form. <td></td> <td></td> <td></td> <td>90</td> <td>max. watts</td> <td></td> <td>D-C Screen Voltage (Grid #</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                        |            | 90        | max. watts   |    | D-C Screen Voltage (Grid #                                   |
| Plate Dissipation*<br>Typical Operation:<br>Balass otherwise specified, values are for 2 tubes<br>D-C Plate Voltage 400 500 600 750 volts<br>D-C Screen Voltage 300 300 300 300 volts<br>D-C Grid Voltage 300 300 300 300 volts<br>D-C Grid Voltage 78 78 78 92 volts<br>Peak A-F Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>Zero-Sig. D-C Plate Cur. 100 100 60 60 ma.<br>MaxSig. D-C Plate Cur. 240 240 200 240 ma.<br>Load Resistance<br>(Per tube) 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400<br>Peak Grid Input Fower 0.2 0.2 0.1 0.2 approx.watts<br>* Averaged over any audio-frequency cycle of sine-wave form.<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of<br>* Suvscript 2 indicates that gif durrent flows during some part of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                        |            |           |              |    |                                                              |
| Typical Operation:<br>Briess otherwise specified, values are for 2 tubes<br>D-C Plate Voltage 400 500 600 750 volts<br>D-C Screen Voltage 300 300 300 300 volts<br>D-C Grid Voltage 78 78 78 92 volts<br>Fried bias, Grid #11 -25 -25 -30 -32 volts<br>Peak A-F Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>Zero-Sig. D-C Plate Cur. 100 100 60 60 ma.<br>Zero-Sig. D-C Plate Cur. 240 240 200 240 ma.<br>Zero-Sig. D-C Screen Cur. 5 5 5 5 ma.<br>MaxSig. D-C Screen Cur. 10 10 10 10 ma.<br>Load Resistance<br>Peak Re-F Grid Voltage 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400 6950 ohms<br>* Averaged Cver any audio-frequency cycle of sine-wave form.<br>* Averaged Cver any audio-frequency cycle of sine-wave form.<br>* Averaged Cver any audio-frequency cycle of sine-wave form.<br>* Suvscript 2 indicates that gif current for source source of the source of                                                                                                                                                                              |                                                                      |                        |            |           |              | 1  |                                                              |
| Bnless otherwise specified, values are for 2 tubes       Plate Input         D-C Plate Voltage       400       500       600       750       volts         D-C Screen Voltage       300       300       300       volts       Plate Input         D-C Grid Voltage       300       300       300       volts       Plate Dissipation         Fixed bias, Grid #1)       -25       -25       -30       -32       volts       Plate Dissipation         Feak A-F Grid-to-       Grid Voltage       78       78       92       volts       D-C Screen Voltage       D-C Screen Voltage       D-C Screen Voltage       D-C Screen Voltage 4       Plate Cur.       D-C Screen Voltage 4       Plate Supprise       Plate Supprise       D-C Screen Voltage 4       Plate Supprise       Plate Voltage 4       Plate Supprise       D-C Screen Voltage 4       Plate Supprise       Plate Voltage 4       Plate Supprise       Plate Voltage 4       Plate Supprise       Plate Voltage 4       Plate Voltage 4       Plate Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                        | 20 110/0   | 1 /       |              |    |                                                              |
| D-C Plate Voltage 400 500 600 750 volts<br>D-C Crid Voltage 300 300 300 volts<br>Fixed bias, Grid #1) -25 -25 -30 -32 volts<br>Peak A-F Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>Peak A-F Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>Zero-Sig. D-C Plate Cur. 100 100 60 60 ma.<br>MaxSig. D-C Plate Cur. 240 240 200 240 ma.<br>Zero-Sig. D-C Screen Cur. 5 5 5 5 ma.<br>MaxSig. D-C Screen Cur. 10 10 10 10 ma.<br>Load Resistance<br>(Per tube) 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400 6950 ohms<br>in circuits where the catode is not directly connected to the heater,<br>the potential difference between them should not exceed 100 volts.<br>Max.+Sig. Power Output** 55 75 80 120 approx.watts<br>in circuits where the catode is not directly connected to the heater,<br>the potential difference between them should not exceed 100 volts.<br>Wader the maximum plate and screen dissipation conditions, the heater<br>* Averaged over any addo-frequency cycle of sine-wave form.<br>* Averaged over any addo-frequency cycle of sine-wave form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | fied, va               | lues are   | for 2     | tudes        |    |                                                              |
| D-C Screen Voltage 300 300 300 300 volts<br>D-C Grid Voltage 78 78 72 volts<br>Peak A-F Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>Zero-Sig. D-C Plate Cur. 100 100 60 60 ma.<br>MaxSig. D-C Plate Cur. 240 240 200 240 ma.<br>Zero-Sig. D-C Screen Cur. 5 5 5 5 ma.<br>MaxSig. D-C Screen Cur. 5 5 5 5 ma.<br>Load Resistance<br>(Per tube) 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ance C Plate Sister 3200 4240 6400 6950 ohms<br>Effective Load Resist-<br>ance C Plate Dister 3200 4240 6400 6950 ohms<br>MaxSig. Power Output* 55 75 80 120 approxwatts<br>'n circuits where the catode is not directly connected to the heater,<br>the potential difference Detween them should not exceed 100 volts.<br>Wack r-Hamman plate and screen dissipation conditions, the heater<br>'Not the maximum plate and screen dissipation conditions, the heater<br>'Not the solutial difference Detween them isould not exceed 100 volts.<br>'Averaged over any audio-frequency cycle of sine-maxe form.<br>'Averaged over any audio-frequency cycle of sine-maxe form.<br>'Not the contex is the sind of the contex is the sine contex is                                                                                                                                            | D-C Plate Voltage                                                    | 400 5                  | 500 600    | 1 750     | volts        |    |                                                              |
| D-C Grid Voltage<br>[Fixed bias, Grid #1] -25 -25 -30 -32 volts<br>Peak A-F Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>Peak PG Grid-to-<br>Grid Voltage 78 78 78 92 volts<br>MaxSig. D-C Plate Cur. 100 100 60 60 ma.<br>Zero-Sig. D-C Plate Cur. 240 240 240 ma.<br>Zero-Sig. D-C Screen Cur. 2 5 5 5 ma.<br>Load Resistance<br>(Per tubel 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400 6950 ohms<br>I n circuits where the catode is not directly connected to the heater,<br>the potential difference between them should not exceed 100 volts.<br>WaxSig. Power Output* 55 75 80 120 approx.watts<br>I n circuits where the catode is not directly connected to the heater,<br>the potential difference between them should not exceed 100 volts.<br>Waxsig. and of the directly connected to the heater,<br>the potential difference between them should not exceed 100 volts.<br>Wax.es and the directly connected to the heater,<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during some part of<br>Subscript 2 indicates that grid current thoms during so                                                                                                                                              |                                                                      | 300 3                  | 300 300    | 300       | volts        | 1  |                                                              |
| (Fixed bias, Grid #1)       -25       -25       -30       -32       volts         Peak A-F Grid-to-<br>Grid Voltage       78       78       92       volts       D-C Plate Voltage ◊         Zero-Sig. D-C Plate Cur. 100       100       60       ma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | / /                    |            | 1         |              |    |                                                              |
| Peak A-F Grid-to-<br>Grid Voltage       78       78       78       92       volts         Grid Voltage       78       78       78       92       volts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | -25 -                  | -25 -30    | -32       | volts        |    |                                                              |
| Grid Voltage       78       78       78       92       volts       Voltage       Voltage of the cur. Screen Voltage of the current of the point of the specified part of t                                                                                                                                                                                                                                                                                                                |                                                                      | 20 -                   | 20         |           | 10113        |    |                                                              |
| Zero-Sig. D-C Plate Cur. 100 100 60 60 ma.<br>MaxSig. D-C Plate Cur. 240 240 200 240 ma.<br>Zero-Sig. D-C Screen Cur. 5 5 5 5 ma.<br>Load Resistance<br>(Pert ube) 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400 6950 ohms<br>Fack (Plate to plate) 3200 4240 6400 6950 ohms<br>Teak (Plate to plate) 3200 4240 6400 6950 ohms<br>The poker 10 lower 0.2 0.2 0.1 0.2 approx.watts<br>The poker is is and screen dissipation conditions, the heater,<br>the maximum plate and screen dissipation conditions, the heater<br>wortinge should not requency cycle of sine-wave form.<br>Exwerged over any audio-frequency cycle of sine-wave form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | 78                     | 78 78      | 92        | volts        |    | D-C Screen Voltage Ø                                         |
| MaxSig. D-C Plate Cur. 240       240       ma.         Zero-Sig. D-C Screen Cur. 5       5       ma.         MaxSig. D-C Screen Cur. 10       10       10       ma.         Load Resistance       0       100       10       ma.         (Per tube)       800       1060       1740       ohms         Effective Load Resist-       ance (Plate to plate)       3200       4240       6400       6950       ohms         Peak Grid Input Power       0.2       0.2       0.1       0.2 approx.watt       •       •         *       MaxSig. Power Output*       55       75       80       120 approx.watts       •       •         *       In circuits where the cathode is not directly connected to the heater, voltage should not frequency cycle of sine-wave form.       •       •       Pate supply through resiston of either though combination of either though combinati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                        |            |           |              |    |                                                              |
| Zero-Sig. D-C Screen Cur. 5 5 5 5 ma.<br>MaxSig. D-C Screen Cur. 10 10 10 10 ma.<br>Load Resistance<br>(Per tube) 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400 6950 ohms<br>Peak Grid Input Power 0 0.2 0.2 0.1 0.2 approx.watt<br>Max.+Sig. Power Output* 55 75 80 120 approx.watts<br>In circuits where the cathode is not directly connected to the heater,<br>the potential difference between them should not exceed 100 volts.<br>Wader the maximum plate and screen dissipation conditions, the heater<br>voltage should hot created screed s. Volts.<br>Averaged over any audio-frequency cycle of sine-maye form.<br>Averaged over any audio-frequency cycle of sine-maye form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                        |            |           |              | 1  | D-C Grid Voltage 🛉 🕴                                         |
| MaxSig. D-C Screen Cur. 10       10       10       ma.         Load Resistance       0-C Plate Current         (Pert tube)       800       1060       1740       ohms         Effective Load Resist-       ance (Plate to plate)       3200       4240       6400       6950       ohms         Peak Grid Input Fower 0.2       0.2       0.1       0.2 approx.watt       -       -       Obtained preferably from more istage with the specified pael         In circuits where the catode is not directly connected to the heater, the potatial difference between them should not exceed 100 volts.       -       -       Obtained preferably from m resiston presiston conditions, the heater stage with current from souring some part of source and isense to the it lows down and in the specified pael         Woldrer the maximum plate and screen dissipation conditions, the heater stage with a consisting of the specified and screed sized source of the sourced source and the source of the source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                        |            |           |              |    | Pool PECaid Valtage                                          |
| Load Resistance<br>(Per tube) 800 1060 1600 1740 ohms<br>Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400 6950 ohms<br>Peak Grid Input Power 0 0.2 0.2 0.1 0.2 approx.watt<br>Max. +Sig. Power Output* 55 75 80 120 approx.watts<br>in circuits where the cathode is not directly connected to the heater,<br>Where the maximum plate and screen dissipation conditions, the heater,<br>wolting a bould not frequency cycle of sine-wave form.<br>Averaged over any audio-frequency cycle of sine-wave for                                                                                                                                            |                                                                      |                        |            |           |              |    |                                                              |
| Image: Projective Load Resist-<br>ance (Plate to plate)       800       1060       1740       ohms         Effective Load Resist-<br>ance (Plate to plate)       3200       4240       6400       6950       ohms         Peak Grid Input Power       0.2       0.2       0.1       0.2 approx.watt<br>0.2 approx.watt       +       +         In circuits where the catode is not directly connected to the heater,<br>the potential difference Detween them should not exceed 100 volts.<br>Woder the maximum plate and screen dissipation conditions, the heater<br>voltage should not fuctuate so that it exceeds 7.0 volts.       •       •       •         Averaged over any audio-frequency cycle of sine-wave form.       *       •       •       •       •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      | 10                     | 10 10      | 1 10      | 100.         |    |                                                              |
| Effective Load Resist-<br>ance (Plate to plate) 3200 4240 6400 6950 ohms<br>Peak Grid Input Power 0.2 0.2 0.1 0.2 approx.watt<br>Max.+Sig. Power Output* 55 75 80 120 approx.watts<br>In circuits where the cathode is not directly connected to the heater,<br>the potential difference between them should not exceed 100 volts.<br>Woder the maximum plate and screen dissipation conditions, the heater<br>voltage should not fluctuate so that it exceeds 7.0 volts.<br>* Averaged over any audio-frequency cycle of sine-wave form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | 900 10                 | 60 1600    | 1740      | ohmo         | 1  |                                                              |
| <ul> <li>freak Grid input Fower 0.2 0.2 0.1 0.2 approx.walt + sponse frequency should not Max. +Sig. Power Output* 55 75 80 120 approx.walts + obtained preferably from mo plate supply through resiston to pheter. The potential difference between them should not exceed 100 volts.</li> <li>Under the maximum plate and screen dissipation conditions, the heater voltage should not fluctuate so that it exceeds 7.0 volts.</li> <li>Averaged over any audio-frequency cycle of sine-wave form.</li> <li>Subscript 2 indicates that grid current flow ouring some part of screen-voltage regulation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      | 000 10                 | 1000       | 1/40      | onnis        | -  | Driver stage should be capabl                                |
| <ul> <li>freak Grid input Fower 0.2 0.2 0.1 0.2 approx.walt + sponse frequency should not Max. +Sig. Power Output* 55 75 80 120 approx.walts + obtained preferably from mo plate supply through resiston to pheter. The potential difference between them should not exceed 100 volts.</li> <li>Under the maximum plate and screen dissipation conditions, the heater voltage should not fluctuate so that it exceeds 7.0 volts.</li> <li>Averaged over any audio-frequency cycle of sine-wave form.</li> <li>Subscript 2 indicates that grid current flow ouring some part of screen-voltage regulation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      | 200 42                 | 00.00      | 6050      | ohmo         | ١. | resistance per grid circuit                                  |
| MaxSig. Power Output** 55 75 80 120 approx.watts<br>In circuits where the cathode is not directly connected to the heater,<br>the potential difference between them should not exceed 100 volts.<br>Under the maximum plate and screen dissipation conditions, the heater<br>voltage should not fluctuate so that it exceeds 7.0 volts.<br># Averaged over any audio-frequency cycle of sine-wave form.<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of<br># Subscript 2 indicates that grid current flows during some part of the source some some some some some some some som                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                        |            |           |              |    | low 500 ohms and the effect                                  |
| <ul> <li>in circuits where the cathode is not directly connected to the heater, the potential difference between them should not exceed 100 volts.</li> <li>under the maximum plate and screen dissipation conditions, the heater voltage should not fluctuate so that it exceeds 7.0 volts.</li> <li>Averaged over any audio-frequency cycle of sine-wave form.</li> <li>Subscript 2 indicates that grid current flow Quring some part of screen-voltage regulation, and 34</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                        |            |           |              | •  | Obtained preferably from mo                                  |
| Under the maximum plate and screen dissipation conditions, the heater<br>voltage should not fluctuate so that it exceeds 7.0 volts.<br># Averaged ever any audio-frequency cycle of sine-wave form.<br># Subscript 2 indicates that grid current flows during some part of<br>a screen-voltage regulation, a screen-voltage                                                                                                                                                                                                         |                                                                      |                        |            |           |              | -  | plate supply through resisto                                 |
| Under the maximum plate and screen dissipation conditions, the heater<br>voltage should not fluctuate so that it exceeds 7.0 volts.<br># Averaged ever any audio-frequency cycle of sine-wave form.<br># Subscript 2 indicates that grid current flows during some part of<br>a screen-voltage regulation, a screen-voltage                                                                                                                                                                                                         | " In circuits where the cathode i                                    | s not dir              | ectly conr | ected to  | the heater,  |    | May be obtained from grid res<br>though combination of eithe |
| Averaged over any audio-frequency cycle of sine-wave form.<br>Subscript 2 indicates that grid current flows during some part of screen-voltage regulation, a<br>construction does not exceed 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the potential difference betw<br>Under the maximum plate and sci     | veen them<br>reen diss | ipation co | onditions | the heater   |    | ** grid resistor and fixed supp                              |
| # Subscript 2 indicates that grid current flows during some part of screen-voltage regulation, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | voltage should not fluctuate set                                     | o that it              | exceeds /  | .U VOILS  |              |    | With zero-impedance driver a                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Averaged over any audio-frequent<br># Subscript 2 indicates that are | ncy cycle              | t flower   | ave form  | me part of   |    | screen-voltage regulation, a                                 |
| <pre>6-Indicates a change. 0, **: See next page. T see end of tabulation.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | input cycle.                                                         |                        |            |           | trademark.   |    | greater than 55, 55, and 35,                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <-Indicates a change.                                                |                        | c          | , **: Se  | e next page. |    | I see end of tabutation.                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                        |            |           |              | -  |                                                              |

| D-C Screen Voltage (Grid #2) 300 max. 300 max. wolts<br>D-C Screen Voltage (Grid #2) 300 max. 90 max. ma.<br>Plate Input 37.5 max. 45 max. watts<br>Screen Input 2.5 max. 2.5 max. watts<br>Plate Dissipation 25 max. 30 max. watts<br>D-C Plate Voltage 400 500 600 750 volts<br>D-C Screen Voltage 250 250 300 volts<br>D-C Screen Voltage 250 250 300 volts<br>D-C Screen Voltage 250 250 300 volts<br>D-C Screen Voltage 30 30 20 27 volts<br>D-C Screen Voltage 30 30 20 27 volts<br>D-C Screen Voltage 30 30 20 27 volts<br>D-C Screen Voltage (Approx.) 0 0 0 0 ma.<br>D-C Grid Volt. (Approx.) 9 12.5 12.5 15 watts<br>PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telegraphy<br>Carrier conditions per tube for use with a max. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony<br>Carrier conditions per tube for use with a max. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony<br>Carrier conditions per tube for use with a max. modulation factor of 1.0.<br>D-C Screen Voltage (Grid #1) -200 max. 300 max. volts<br>D-C Screen Voltage (Grid #1) -200 max. 100 max. ma.<br>D-C Screen Voltage (Grid #1) -200 max. 200 max. volts<br>D-C Grid Voltage (Grid #1) -200 max. 100 max. ma.<br>D-C Grid Current 7.5 6 7 6 ma.<br>D-C Grid Current 7.5 6 7 5 0 ma.<br>D-C Grid Current 7.5 6 7 5 0 ma.<br>D-C Grid Current 83 max. 100 max. ma.<br>D-C Grid Current 83 max. 100 max. ma.<br>D-C Grid Current 83 max. 100 max. ma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRANSMITTING BEAM                          | FUWER          | AMPLI         | ILK      | IRANSMITTING DEAM FOWER AMPL                                 |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|---------------|----------|--------------------------------------------------------------|-----------|
| Interfer conditions per take for use with a sax. sectuation factor of 1.0DeC Plate Voltage600 max.DeC Plate Voltage600 max.DeC Plate Voltage12.0 max.DeC Plate Voltage12.0 max.DeC Plate Voltage12.0 max.DeC Plate Voltage12.0 max.Plate Input27.5 max.Streen Input25.7 max.DeC Plate Voltage12.0 max.Plate Input25.7 max.DeC Crid Current (Age Control (Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fcontinued from pr                         | eceding page)  |               |          |                                                              |           |
| Garrier conditions for use if the a max. redulation factor of 1.0D-C Plate Voltage $(164)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $(25)$ $($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R-F POWER AMPLIFIER - 0                    | Class B Tele   | ephony        | 1        |                                                              |           |
| $\begin{array}{cccccc} \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Carrier conditions per tube for use will   | th a sar. sods | lation facto  | r of 1.0 |                                                              |           |
| $ \begin{array}{c} D_{\rm c} P_{\rm late} \ Voltage \\ D_{\rm c} C Screen Voltage \\ Crid Voltage \\ $                                                                                                                               |                                            |                |               | ,        |                                                              |           |
| $\begin{array}{c} D_{C} Plate Current & 100 max. & 90 max. ma. \\ Plate Input & 27.5 max. & 2.5 max. & watts \\ Screen Input & 2.5 max. & 2.5 max. watts \\ 30 max. watts \\ D_{C} Plate Voltage & 400 500 600 750 volts \\ D_{C} C Frid Voltage & 250 250 250 300 volts \\ D_{C} C Frid Voltage & 250 250 250 300 volts \\ D_{C} C Frid Voltage & 300 20 27 volts \\ D_{C} C Frid Voltage & 300 20 27 volts \\ D_{C} C Frid Voltage & 300 20 27 volts \\ D_{C} C Frid Voltage & 300 0.25 0.25 0.2 0.12 watt \\ D_{C} C Frid Voltage & 300 0.25 0.25 0.2 0.12 watt \\ D_{C} C Frid Voltage & 300 0.25 0.25 0.2 0.12 watt \\ D_{C} C Frid Voltage & 41 0.0 0.25 0.25 0.2 0.12 watt \\ D_{C} C Frid Voltage & 41 0.0 0.25 0.25 0.2 0.12 watt \\ D_{C} C Frid Voltage & 41 0.0 0.25 0.25 0.2 0.12 watt \\ D_{C} C Frid Voltage & 41 0.0 0.25 0.25 0.2 0.12 watt \\ D_{C} C Frid Voltage & 41 0.0 0.25 0.25 0.2 0.12 watt \\ D_{C} C Frid Voltage & 41 0.0 0.25 0.25 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 55 0.5 0.5 0.2 0.12 watt \\ D_{C} C Frid Voltage & 6 0.5 0 max. volts \\ D_{C} C Frid Voltage & 6 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D-C Plate Voltage                          | 600 max.       | 750 max.      | volts    | Power Output (Approx.) 11.5 22.5 21.51 42.5                  | Walls     |
| D-C Plate Current80 max.<br>35 max.90 max. mats<br>55 max.75 max.<br>55 max.75 max.<br>55 max.75 max.<br>35 max.75 max.<br>35 max.75 max.<br>35 max.75 max.<br>30 max. waits<br>D-C Plate Voltage (Grid #2)<br>D-C Screen Voltage (Grid #2)<br>200 max.75 max.<br>200 max.<br>200 max.<br>200 max.75 max.<br>200 max.<br>200 max.<br>200 max.<br>200 max.<br>200 max.75 max.<br>200 max.<br>200 max.<br>200 max.<br>200 max.75 max.<br>200 max.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D-C Screen Voltage (Grid #2)               | 300 max.       | 300 max.      | volts    | R-F POWER AMPLIFIER & OSCILLATOR - Class C Telegra           | phy       |
| Plate Input       2/.5 max.       25 max.       30 max. waits       30 max. waits         Plate Dissipation       25 max.       30 max. waits       30 max. waits       30 max. waits         D-C Plate Voltage       400 500 600       750 volts       D-C Screen Voltage (Grid #1)       -200 max.       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D-C Plate Current                          | 80 max.        | 90 max.       | ma.      |                                                              |           |
| Plate Dissipation       25 max.       30 max. wolts       30 max. wolts       300 max.       300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Plate Input                                |                |               |          |                                                              |           |
| Plate Dissipation       25 max.       30 max. wolts       30 max. wolts       300 max.       300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Screen Input                               |                |               |          | D_C Plate Voltage 600 max. 750 max                           | , volts   |
| $ \begin{array}{c} \label{eq:product} \end{tabular} \en$                                                                                                                                                                                                                                                                           | Plate Dissipation                          | 25 max.        | 30 max.       | watts    | D=C Screen Voltage (Grid #2) 300 max. 300 max                | . volts   |
| D-C Plate Voltage 400 500 600 750 volts<br>D-C Grid Volt. (Grid 41) + -25 -25 -25 -25 volts<br>Peak R-F Grid Voltage 30 30 20 27 volts<br>Peak R-F Grid Voltage 30 30 20 27 volts<br>D-C Grid Current 75 76 62.5 60 ma.<br>D-C Grid Current 75 76 62.5 15 watts<br>Typical Doperation:<br>D-C Grid Voltage 5 250 250 250 volts<br>PLATE-MODULATED R-F POWER AMPLIFIER - Class C Telephony<br>Carrier conditions per tube for use with a wax. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER - Class C Telephony<br>Carrier conditions per tube for use with a wax. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER - Class C Telephony<br>Carrier conditions per tube for use with a wax. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER - Class C Telephony<br>Carrier conditions per tube for use with a wax. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER - Class C Telephony<br>Carrier conditions per tube for use with a wax. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER - Class C Telephony<br>Carrier conditions per tube for use with a wax. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER - Class C Telephony<br>Carrier conditions per tube for use with a wax. modulation factor of 1.0.<br>D-C Plate Current 83 max.<br>D-C Grid Voltage (Grid #2) 2000 max.<br>D-C Grid Current 7, 5 6 7 6 ma.<br>D-C Grid Voltage (Grid #2) 2000 max.<br>D-C Grid Current 7, 5 6 7 6 ma.<br>D-C Grid Current 25 max.<br>Screen Input 25 max.<br>D-C Grid Voltage (Drid #1) -200 max.                                                                                                                                                                                                |                                            |                |               |          |                                                              | . volts   |
| D-C Screen Voltage250250250250voltsD-C Grid Volt. (Grid \$1)+2-25-25voltsD-C Plate Current757562.5D-C Screen Current443D-C Grid Cur. (Approx.)000D-C Grid Cur. (Approx.)000PLATE-MODULATED R-F POWER AMPLIFIER - Class C TelephonyD-C Grid Current75C-C Plate Voltage(Grid \$2)300 max. voltsD-C Grid Current83 max.D-C Plate Voltage (Grid \$2)300 max. voltsD-C Grid Current83 max.D-C Plate Voltage (Grid \$2)300 max. voltsD-C Grid Current7560D-C Grid Voltage (Grid \$2)300 max. voltsD-C Grid Current7560D-C Grid Current7575D-C Flate Voltage (Grid \$2)300 max. voltsD-C Grid Current7575D-C Grid Voltage (Grid \$2)300 max.D-C Grid Current7575D-C Grid Current7575D-C Grid Voltage (Grid \$2)300 max.D-C Grid Current7575D-C Grid Voltage (Grid \$2)300 max.D-C Grid Voltage (Grid \$2)300 max.D-C Grid Current7575D-C Grid Voltage (Grid \$2)300 max.Staped (Grid \$2)250 max.D-C Grid Voltage25D-C Grid Voltage (Grid \$2)300 max.D-C Grid Voltage (Grid \$2)25D-C Grid Voltage25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                |               |          |                                                              |           |
| D-C Grid Volt. (Grid #1) $-25$ -25 -25 -35 volts<br>D-C Brid Current 75 75 62.5 60 ma.<br>D-C Grid Current 75 75 62.5 60 ma.<br>D-C Grid Cur. (Approx.) 0 0 0 0 ma.<br>Driving Power (Approx.) 0 0.25 0.25 0.2 0.12 watt<br>Pewer Output (Approx.) 9 12.5 12.5 15 watts<br>$\frac{PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony Garrier conditions per tube for use with a max. modulation factor of 1.0. PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony Garrier conditions per tube for use with a max. modulation factor of 1.0. D-C Grid Voltage (Grid #1) -200 max. Plate Input 2.5 max. Plate Dissipation 16.5 max. D-C Grid Voltage 325 400 475 600 volts D-C Grid Voltage 4 1 22500 22800 21300 22500 ohms D-C Grid Voltage 4 1 22500 22800 21300 22500 ohms D-C Grid Voltage 4 1 22500 22800 21300 22500 ohms D-C Grid Voltage 4 1 22500 22800 21300 22500 ohms D-C Grid Voltage 4 1 2500 22800 21300 22500 ohms D-C Grid Voltage 4 1 2500 22800 21300 22500 ohms D-C Grid Voltage 4 1 2500 22800 21300 22500 ohms D-C Grid Voltage 4 1 2500 22800 21300 22500 ohms D-C Grid Voltage 4 1 2500 22800 21300 22500 ohms D-C Screen Current 5 5.75 5 6.5 ma. \frac{1}{0} Driver stage should be capable of supplying the gride from fixed supply, by grid resistor of volue shown.D-C Grid Voltage 4 1 2500 22800 21300 22500 ohmsD-C Screen Current 5 5.75 5 6.5 ma.\frac{1}{0} Driver stage should be capable of supplying the gride from fixed supply, by grid resistor fixed supply, by grid r$                                                                                                                                                                                                                                                                                                       |                                            |                |               |          |                                                              |           |
| Peak R-F Grid Voltage30302027voltsD-C Plate Voltage00ma.3.5 max.3.5 max.3.5 max.30 max. wattsD-C Screen Current443ma.Dissipation25 max.30 max. wattsD-C Grid Cur. (Approx.)000ma.Dissipation250250250voltsDriving Power (Approx.)912.51.5wattsD-C Plate Voltage400500600750voltsPLATE_MODULATED R-F POWER AMPLIFIER-Class C TelephonyGrid voltage1262202202202202202000 max.D-C Plate Voltage475max.100 max.500max. voltsD-C Grid Voltage128012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280012800128001280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                |               |          |                                                              | . watts   |
| D-C Plate Current 75 75 62.5 60 ma.<br>D-C Screen Current 4 4 3 ma.<br>D-C Grid Cur. (Approx.) 0 0 0 ma.<br>Driving Power (Approx.) 0 0.25 0.25 0.2 0.12 wait<br>Power Output (Approx.) 0 12.5 12.5 13 waits<br>$^{00}$ At crest of a-f cycle with modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony<br>Carrier conditions per tube for use with a max. modulation factor of 1.0.<br>D-C Plate Voltage (Grid #1) -200 max. Volts<br>D-C Grid Voltage (Grid #1) -200 max. volts<br>D-C Plate Current 8 max. 5 max. ma.<br>Plate Input 40 max. 60 max. waits<br>D-C Grid Voltage (Grid #1) -200 max. 5 max. ma.<br>Plate Dissipation 16.5 max. 2.5 max. ma.<br>Plate Dissipation 25 max. 30 max. waits<br>D-C Grid Voltage (Grid #2) 300 max. 5 max. ma.<br>Plate Dissipation 16.5 max. 2.5 max. ma.<br>D-C Grid Voltage 325 400 475 600 volts<br>D-C Screen Voltage 0 225 225 225 225 275 volts<br>D-C Grid Voltage 4 (2500 22800 21300 22800 0 somo soms<br>D-C Grid Voltage 4 (2500 2280 0 21300 22800 o soms<br>D-C Grid Voltage 9 95 110 115 volts<br>D-C Plate Voltage 9 95 100 110 volts<br>D-C Screen Current 5 5.75 5 6.5 ma.<br>D-C Grid Voltage 4 (2500 22800 21300 22800 0 somo soms<br>D-C Grid Voltage 9 95 110 115 volts<br>D-C Plate Current 80 80 83 100 ma.<br>D-C Screen Current 5 5.75 5 6.5 ma.<br>D-C Plate Current 80 80 83 100 ma.<br>D-C Screen Current 5 5.75 5 6.5 ma.<br>D-C Plate Current 5 5.75 5 6.5 ma.<br>D-C Screen Current 5 0.500 2000 2000 20000 2000 20000 20000                                                                                                                                                                                         |                                            |                |               | volts    |                                                              |           |
| D-C Screen Current 4 4 3 3 ma.<br>D-C Grid Curr. (Approx.) 0 0 0 0 ma.<br>D-C Grid Curr. (Approx.) 0 0.25 0.25 0.2 0.12 watt<br>Power Cutput (Approx.) 9 12.5 12.5 15 watts<br>$^{00}$ At crest of a-f cycle with modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony<br>Carrier conditions per tube for use with a ease. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony<br>Carrier conditions per tube for use with a ease. modulation factor of 1.0.<br>D-C Plate Voltage $\frac{CGS}{475}$ max. $\frac{Cds}{600}$ max. volts<br>D-C Grid Voltage (Grid #1) -200 max200 max. volts<br>D-C Grid Voltage (Grid #1) -200 max200 max. wolts<br>D-C Grid Voltage (Grid #1) -200 max200 max. wolts<br>D-C Grid Current, 5 max. $\frac{100}{25}$ max. $\frac{100}{25}$ max. watts<br>Screen Input 2.5 max. $\frac{25}{255}$ 225 225 225 225 225 225 225 225 225 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D-C Plate Current 75                       | 75 62.5        | 60            | ma.      |                                                              |           |
| D-C Grid Curr. (Approx.) 0 0 0 0 0 ma.<br>Driving Power (Approx.) 0 0.25 0.25 0.2 0.2 watt<br>Power Output (Approx.) 9 12.5 12.5 15 watts<br>0 At crest of a-f cycle with modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER - Class C Telephony<br>Carrier conditions per tube for use with a max. modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER - Class C Telephony<br>Carrier conditions per tube for use with a max. modulation factor of 1.0.<br>D-C Plate Voltage $\frac{475}{1280}$ max. $\frac{1245}{1280}$ $\frac{1245}{1280}$ $\frac{1280}{12800}$ 12800 12800 12800 1000 ma.<br>D-C Grid Voltage (Grid #1) -200 max. volts<br>D-C Grid Voltage (Grid #1) -200 max. $\frac{300}{1280}$ max. wolts<br>D-C Grid Voltage (Grid #1) -200 max. $\frac{50}{1280}$ max. wolts<br>D-C Grid Current 83 max. 100 max. ma.<br>D-C Grid Current $\frac{5}{1280}$ max. $\frac{5}{250}$ max. watts<br>Screen Input $\frac{255}{225}$ 225 $\frac{255}{250}$ volts<br>D-C Plate Voltage $\frac{225}{225}$ 225 $\frac{255}{250}$ volts<br>D-C Grid Current $\frac{255}{230}$ $\frac{400}{50}$ source $\frac{165}{200}$ max. $\frac{50}{200}$ max. watts<br>Screen Input $\frac{255}{225}$ 400 475 $\frac{15}{250}$ volts<br>D-C Crid Voltage $\frac{225}{225}$ $\frac{225}{255}$ volts<br>D-C Grid Voltage $\frac{225}{225}$ $\frac{225}{255}$ volts<br>D-C Screen Voltage $\frac{225}{225}$ $\frac{225}{225}$ $\frac{255}{255}$ volts<br>D-C Screen Voltage $\frac{225}{225}$ $\frac{225}{255}$ volts<br>D-C Screen Voltage $\frac{225}{225}$ $\frac{225}{255}$ volts<br>D-C Screen Voltage $\frac{225}{225}$ $\frac{225}{255}$ volts<br>D-C Grid Voltage $\frac{1}{5}$ $\frac{-75}{80}$ $\frac{-90}{50}$ volts<br>D-C Screen Voltage $\frac{90}{510}$ $\frac{115}{115}$ volts<br>D-C Screen Current $\frac{5}{5.75}$ $\frac{5}{5.5}$ $\frac{5}{6.5}$ ma.<br>$\frac{9}{100}$ volts $\frac{100}{100}$ resistor $\frac{12800}{12800}$ , by cathode<br>resistor (at0), or by combination methods.<br>D-C Screen Current $\frac{5}{5.75}$ $\frac{5}{6.5}$ ma.<br>$\frac{9}{100}$ volts $\frac{100}{100}$ resistor $\frac{12800}{12800}$ , by cathode<br>resistor fut be specified peak values at low discrition. The effective grid eristor $\frac{12800}{12800}$ , by cathode<br>$\frac{100}{100}$ resistor $\frac{100}{100}$ resistor $\frac{12800}{12800}$ , by cathode<br>$\frac{100}{10$ | D-C Screen Current 4                       | 4 3            | 3             | ma.      | i luce - les parte                                           |           |
| Driving Power (Approx.) $^{00}$ 0.25 0.25 0.21 0.12 watt<br>Power Output (Approx.) 9 12.5 12.5 15 watts<br>$^{00}$ At crest of a -f cycle with modulation factor of 1.0.<br>PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony<br>Carrier conditions per tube for use with a max. modulation factor of 1.0.<br>D-C Plate Voltage (Grid #2) 300 max. 300 max. volts<br>D-C Plate Voltage (Grid #1) -200 max200 max. volts<br>D-C Grid Voltage (Grid #1) -200 max200 max. volts<br>D-C Grid Current 83 max. 100 max. ma.<br>D-C Grid Current 5 max. 5 max. ma.<br>Plate Input 40 max. $2.5 max.$ $2.5 max. watts Plate Dissipation 16.5 max. 25 max. watts D-C Grid Voltage 325 400 475 600 volts D-C Riate Voltage 4 f 2.5 max. 2.5 max. wattsD-C Grid Voltage 9 95 110 115 voltsD-C Grid Voltage 9 95 110 115 voltsD-C Screen Current 80 80 83 100 ma.D-C Screen Current 80 80 83 100 ma.D-C Grid Voltage 9 95 110 115 voltsD-C Screen Current 80 80 83 100 ma.D-C Screen Current 80 80 83 100 ma.D-C Grid Voltage 9 95 110 115 voltsD-C Screen Current 80 80 83 100 ma.D-C Screen Current 90 95 100 115 voltsD-C Screen Current 90 95 100 100$                                                                                                                                                                                                                                                                                                                                                        | D-C Grid Cur. (Approx.) 0                  | 0 0            | 0             | ma.      |                                                              | volts     |
| Power Output (Approx.) 9 12.5 12.5 1 15 watts<br>PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony Carrier conditions per tube for use with a max. modulation factor of 1.0. PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony Carrier conditions per tube for use with a max. modulation factor of 1.0. D-C Plate Voltage $CS$ ICS<br>D-C Grid Voltage (Grid #1) -200 max. job max. volts<br>D-C Grid Voltage (Grid #1) -200 max200 max. volts<br>D-C Grid Voltage (Grid #1) -200 max200 max. volts<br>D-C Grid Current 83 max. 100 max. ma.<br>Plate Input 2.5 max. 5 max. ma.<br>Plate Input 2.5 max. 5 max. ma.<br>Plate Input 2.5 max. 2.5 max. watts<br>Screen Input 2.5 max. 2.5 max. watts<br>D-C Rid Voltage 325 400 475 600 volts<br>D-C Screen Voltage 0 2320 22500 chms<br>D-C Grid Voltage 4 1 $Z25 = 225 = 225 = 275 volts$<br>D-C Grid Voltage 4 1 $Z25 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 = 200 =$                                                                                                                                                                                                                                                                        | Driving Power (Approx.) <sup>00</sup> 0.25 | 0.25 0.2       | 0.12          | watt     | [ 2E0 2E0 2E0 2E0                                            |           |
| <ul> <li>At crest of a-f cycle with modulation factor of 1.0.</li> <li><u>PLATE-MODULATED R-F POWER AMPLIFIER-Class C Telephony</u></li> <li>Carrier conditions per tube for use with a max. modulation factor of 1.0.</li> <li><u>Carrier conditions per tube for use with a max. modulation factor of 1.0.</u></li> <li>D-C Plate Voltage (Grid #2) 300 max. wolts</li> <li>D-C Grid Voltage (Grid #1) -200 max200 max. volts</li> <li>D-C Grid Voltage (Grid #1) -200 max200 max. wolts</li> <li>D-C Grid Current, 5 max. 5 max. ma.</li> <li>D-C Grid Current, 5 max. 5 max. ma.</li> <li>Plate Input 40 max. 60 max. watts</li> <li>Plate Input 2.5 max. 2.5 max. watts</li> <li>Plate Dissipation 16.5 max. 2.5 max. watts</li> <li>D-C Screen Voltage 325 400 475 600 volts</li> <li>D-C Screen Voltage 4 (25000 30000 50000 50000 ohms.</li> <li>D-C Grid Voltage 4 (-75 -80 -85) -90 volts</li> <li>D-C Grid Voltage 4 (-75 -80 -85) -90 volts</li> <li>D-C Grid Voltage 4 (-75 -80 -85) -90 volts</li> <li>D-C Grid Voltage 4 (-75 -80 -85) -90 volts</li> <li>D-C Grid Voltage 9 9 5 110 115 volts</li> <li>D-C Grid Voltage 4 (-75 -80 -85) -90 volts</li> <li>D-C Grid Voltage 9 9 5 110 115 volts</li> <li>D-C Screen Current 5 5.75 5 6.5 ma.</li> <li>* The class AB2 stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids desired recere resistance per grid circuit of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids desired recere resistance per grid circuit of the class AB2 stage should be capable of supplying the grids desired recere resistance per grid circ</li></ul>                                                                                                                                                                                                                                                                         | Power Output (Approx.) 9                   | 12.5 12.5      | 15            | watts    |                                                              |           |
| PLATE-MODULATED R-F POWER AMPLIFIER-class C Telephony<br>Carrier conditions per tube for use with a max. modulation factor of 1.0<br>CCSD-C Grid Voltage 112800 12800 12800 12800 ohms<br>410 410 410 410 0hms<br>410 0hms<br>DC Grid Voltage (Grid #2) 300 max. 300 max. volts<br>D-C Grid Voltage (Grid #1) -200 max200 max. volts<br>D-C Grid Current 83 max. 100 max. ma.<br>D-C Grid Current 55 max. 2.5 max. ma.<br>Plate lipsitD-C Grid Voltage 0100 100 100 100 ma.<br>D-C Grid Current 7.5 6 7 6 ma.<br>D-C Grid Current 7.5 6 7 6 ma.<br>D-C Grid Current 83 max. 100 max. ma.<br>Plate lipsitD-C Grid Voltage 02.0 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 At crest of a-f cycle with modulatin    | on factor of p |               |          |                                                              |           |
| Garrier conditions for use with a wax. modulation factor of 1.0D-C Plate VoltageGCSICASD-C Plate Voltage (Grid #2)300 max.600 max.D-C Screen Voltage (Grid #1)-200 max200 max.D-C Grid Voltage (Grid #1)-200 max200 max.D-C Grid Current83 max.100 max.D-C Grid Current83 max.100 max.Plate Input40 max.60 max. woltsD-C Grid Current5 max.5 max.Plate Input2.5 max.2.5 max.Plate Dissipation16.5 max.2.5 max. wattsTypical Operation:-225 225 225 275 voltsD-C Screen Voltage \$225 225 225 275 voltsD-C Grid Voltage \$225 225 225 275 voltsD-C Grid Voltage \$-75 -80 -85 -90 voltsD-C Grid Voltage \$-75 -80 -85 -90 voltsD-C Grid Voltage \$95 110 115 voltsD-C Grid Voltage \$90 51 101 115 voltsD-C Grid Voltage \$90 51 101 115 voltsD-C Screen Current5 .75 5 6.5 ma.O-C Riate Current80 83 100 ma.D-C Screen Current5 .75 5 6.5 ma.* ortic rease should be capable of supelying the grids of the class AB2 stage should be capable of supelying the grids of the class AB2 stage should be capable of supelying the grids desirer reasers* ortic reasers should not exceed 100 ohns.D-C Grid Voltage \$Ff creuency should not exceed 100 ohns.D-C Grid Voltage \$0 stained iron the distortion.Power of Voltage \$0 stained iron the distortion.D-C Grid Voltage \$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                |               |          |                                                              |           |
| Carrier conditions per tube for use with a max. modulation factor of 1.0D-C Plate VoltageCSICIND-C Plate Voltage (Grid #2)300 max.300 max. voltsD-C Grid Voltage (Grid #1)-200 max.300 max. voltsD-C Plate CurrentB3 max.100 max. ma.D-C Plate CurrentB3 max.100 max. ma.D-C Grid Current,5 max.5 max.D-C Grid Current,5 max.5 max.D-C Grid Current,5 max.5 max.D-C Flate Current80 max.60 max. waitsD-C Grid Current,5 max.5 max.Plate Input40 max.60 max. waitsPlate Dissipation16.5 max.2.5 max. waitsThe total effective grid-circuit resistance should not exceed 25000D-C Screen Voltage (225 225 225 275 volts)225 voltsD-C Grid Voltage * 125000 22800 2130022500 ohmsD-C Grid Voltage * 4-75 -80 -85 -90 voltsD-C Screen Current5 .75 56.5D-C Screen Current5 .75 5D-C Screen Current <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                |               |          |                                                              |           |
| CCRIcdsIcdsD-C Plate Voltage475 max.300 max. voltsD-C Screen Voltage (Grid #1)-200 max.300 max. voltsD-C Grid Voltage (Grid #1)-200 max200 max. voltsD-C Grid Current83 max.100 max. ma.D-C Grid Current5 max.5 max. ma.Plate Input40 max.60 max. wattsScreen Input2.5 max.2.5 max. wattsPlate Dissipation16.5 max.25 max. wattsD-C Riate Voltage225 225 225 275 voltsD-C Grid Voltage * †2.5000 22800 21300 22500 ohmsD-C Screen Current5 .75 5D-C Screen Current80 max.D-C Grid Voltage * †5.75 5D-C Screen Current5.75 5D-C Screen Current5.75 5D-C Grid Voltage * †2.5000 22800 21300 22500 ohmsD-C Screen Current5 .75 5D-C Screen Current<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carrier conditions per tube for use wi     | th a max. mode | ulation facto | r of 1.0 |                                                              |           |
| Unc Plate Voltage4/5 max.600 max. voltsD-C Screen Voltage (Grid #2)300 max.300 max. voltsD-C Grid Voltage (Grid #1)-200 max200 max. voltsD-C Grid Voltage (Grid #1)-200 max.100 max. woltsD-C Grid Current83 max.100 max. ma.D-C Grid Current,5 max.5 max.Plate Input40 max.60 max. wattsScreen Input2.5 max.2.5 max.Plate Dissipation16.5 max.2.5 max. wattsTypical Operation:225 225 225 225 225 227 voltsD-C Screen Voltage 0225 225 225 225 275 voltsD-C Grid Voltage 4-75 -80 -85 -90 voltsD-C Grid Voltage 4-75 -80 -85 -90 voltsD-C Grid Voltage 90 95 110 115 volts-75 -80 -85 -90 voltsD-C Screen Current5 5.75 5 6.5 ma.D-C Screen Current5 5.75 5 6.5 ma.O-C Rid Voltage 90 95 110 115 voltsD-C screen CurrentD-C Rid Current80 83 100 ma.D-C Screen Current5 5.75 5 6.5 ma.O-C Screen Current5 0.5 ma.O-C Screen Should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should be effective or supplying the grids of the class AB2 stage should be effective or supplying the grids of the class AB2 stage should be effective or supplying the grids of the class AB2 stage should be effective or supplying the grids of the class AB2 stage should be effective or supply to su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                |               |          |                                                              |           |
| D-C Grid Voltage (Grid #2) 200 max. 200 max. volts<br>D-C Grid Voltage (Grid #2) 200 max. 200 max. volts<br>D-C Grid Current 83 max. 100 max. ma.<br>D-C Grid Current, 5 max. 5 max. ma.<br>Plate Input 40 max. 60 max. watts<br>Screen Input 2.5 max. 2.5 max. watts<br>Plate Dissipation 16.5 max. 25 max. watts<br>D-C Flate Voltage 325 400 475 600 volts<br>D-C Grid Voltage 325 400 475 600 volts<br>D-C Grid Voltage 4 { -75 -80 -85 -90 volts<br>D-C Grid Voltage 4 { -75 -80 -85 -90 volts<br>D-C Grid Voltage 90 95 110 115 volts<br>D-C Grid Voltage 90 95 110 115 volts<br>D-C Screen Current 5 5.75 5 6.5 ma.<br>Priore stage should be capable of supplying the grids of the class AB2<br>stage with the specified peak vues at 10m distortion. The effective<br>resistance per grid circuit of the class AB2<br>stage should be capable of supplying the grids of the class AB2<br>stage with the specified peak vues at 10m distortion. The effective<br>resistance per grid circuit of the class AB2<br>stage should be capable of supplying the grids of the class AB2<br>stage should be capable of supplying the grids of the class AB2<br>stage should not exceed 700 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D-C Plate Voltage                          |                |               |          |                                                              |           |
| U-C Grid Voltage (Grid #1)       -200 max.       -200 max.       volts         D-C Plate Current       83 max.       100 max. ma.       Driving Power (Approx.)       0.2       0.2       0.2       watt         Plate Input       40 max.       60 max. watts       5       The total effective grid-circuit resistance should not exceed 25000         Screen Input       2.5 max.       2.5 max.       watts         Plate Dissipation       16.5 max.       25 max. watts         D-C Plate Voltage       225 225 225       275 volts         D-C Screen Voltage 0       225 225 225       275 volts         D-C Grid Voltage 4       25000 28000 50000       50000 oms.         D-C Screen Voltage 90       95 110       115 volts         D-C Screen Current       80 80 83       100 ma.         D-C Screen Current       5 sort 5       6.5 ma.         * priver stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should not exceed 700 ohs.         * obtained prequencies should not exceed 700 ohs.       * of the distortion.         * obtained prequencies should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should not exceed 700 ohs.         * obtained prequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D-C Screen Voltage (Grid #2)               |                |               |          |                                                              |           |
| Unc. Grid CurrentB3 max.100 max. ma.PLC Grid Current5 max.5 max.9 max.Plate Input40 max.60 max. wattsScreen Input2.5 max.2.5 max. wattsPlate Dissipation16.5 max.2.5 max. wattsTypical Operation:0 days25 25 275 voltsD-C Plate Voltage 0225 225 225 275 voltsD-C Screen Voltage 0225 225 225 275 voltsD-C Grid Voltage 4-75 -80 -85 -90 voltsD-C Grid Voltage 995 110 115 voltsD-C Plate Current5 5.75 5D-C Screen Current5 5.75 5D-C Screen Current5 5.75 5Orier stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids of the class AB2 stage should not exceed 100 ohms.Orier stage should be capable of supplying the grids of the class AB2 stage should not exceed 100 ohms.Obstained prom stage should not exceed 100 ohms.O-C Screen Stage should not exceed 100 ohms.D-C Screen Current5 .75 5D-C Screen Current5 .75 5D-C Screen Current5 .75 5D-C Screen Current5 .75 5O-C Screen Current5 .75 5O-C Screen Stage Should not exceed 100 ohms.D-C Screen Stage Should not exceed 100 ohms.O-C Screen Stage Should not exceed 100 ohms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | -200 max.      | -200 max.     | volts    |                                                              |           |
| <ul> <li>Dick Grid Current, 5 max. 5 max. ma.</li> <li>Plate Input 40 max. 60 max. watts</li> <li>Screen Input 2.5 max. 2.5 max. watts</li> <li>Plate Dissipation 16.5 max. 25 max. watts</li> <li>The total effective grid-circuit resistance should not exceed 25000 obms.</li> <li>D-C Plate Voltage 325 400 475 600 volts</li> <li>D-C Plate Voltage 325 400 475 600 volts</li> <li>D-C Screen Voltage 4 { 2525 225 275 volts 20000 30000 50000 50000 obms.</li> <li>D-C Grid Voltage 4 { -75 -80 -85 -90 volts 25000 22800 21300 22500 obms.</li> <li>Peak R-F Grid Voltage 90 95 110 115 volts 25000 22800 21300 22500 obms.</li> <li>D-C Screen Current 80 80 83 100 ma.</li> <li>D-C Screen Current 5 5.75 5 6.5 ma.</li> <li><sup>9</sup> Driver stage should be capable of supplying the grids of the class A82 stage should be capable of supplying the grids of the class A82 stage should be capable of supplying the grids desired resistone resistance per grid circuit of the class A82 stage should be capable of supplying the grids desired resistone resistance per grid circuit of the class A82 stage should be capable of supplying the grids of the class A82 stage should be capable of supplying the grids desired resistance per grid circuit of the class A82 stage should be capable of supplying the grids desired resistance per grid circuit of the class A82 stage should be capable of supplying the grids desired resistance per grid circuit of the class A82 stage should be capable of supplying the grids desired resistance per grid circuit of the class A82 stage should be capable of supplying the grids desired resistance per grid circuit of the class A82 stage should be capable of supplying the grids desired resistance per grid circuit of the class A82 stage should be capable of supplying the grids desired resistance per grid circuit of the class A82 stage should be capable of supplying the grids desired resistance per grid circuit of the class A82 stage should be capable of supplying the grids desired resistance per grid circuit of the class A82 stage should</li></ul>                                                                                                                                                                                                                                                                     | D-C Plate Current                          | 83 max.        | 100 max.      | ma.      |                                                              |           |
| Screen Input       2.5 max.       2.5 max. watts         Plate Dissipation       16.5 max.       25 max. watts         Typical Operation:       25 400 475       600       volts         D-C Plate Voltage       325 400 475       600       volts         D-C Screen Voltage 0       225 225       275       volts         D-C Grid Voltage 4       -75 -80 -85       -90       volts         D-C Grid Voltage 9       95 110       115       volts         D-C Screen Current       80 80 83       100 ma.         D-C Screen Current       5 5.75       5       6.5         0 briver stage should be capable of supplying the grids of the class AB2 stage should be capable of supplying the grids desired response frequency should not exceed 700 ohms.       The lass dB2 stage should be capable of supplying the grids desired response frequency should not exceed 700 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D-C Grid Current,                          |                | 5 max.        | ma.      | Power output (Approx.) 25 00 401 50                          | Walls     |
| Screen input       2.5 max.       2.5 max.       2.5 max. watts         Plate Dissipation       16.5 max.       25 max. watts         Typical Operation:       225 max.       25 max. watts         D-C Plate Voltage       325 400 475 600       volts         D-C Screen Voltage 0       225 225 225 275 volts       series resistor of value shown, series resistor value sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Plate Input                                | 40 max.        | 60 max.       | watts    |                                                              | ed 25000  |
| Plate Dissipation 16.5 max. 25 max. watts<br>Typical Operation:<br>D-C Plate Voltage 325 400 475 600 volts<br>D-C Screen Voltage 0 225 225 275 volts<br>D-C Grid Voltage ↓ { -75 -80 -85 -90 volts<br>25000 22800 21300 22500 ohms<br>Peak R-F Grid Voltage 90 95 110 115 volts<br>D-C Screen Current 80 80 83 100 ma.<br>D-C Screen Current 5 5.75 5 6.5 ma.<br><sup>0</sup> Driver stage should be capable of supplying the grids of the class AB <sub>2</sub><br>stage with the specified peak values at the highest desired re-<br>sponse frequency should not exceed 700 ohms.<br>Other and the specified peak values at the highest desired re-<br>sponse frequency should not exceed 700 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 2.5 max.       | 2.5 max.      | watts    |                                                              | peak of   |
| D_C Plate Voltage 325 400 475 600 volts<br>D_C Plate Voltage 325 225 225 275 volts<br>D_C Screen Voltage 4 ↑ {25000 30000 50000 50000 ohms<br>D_C Grid Voltage 4 ↑ {75 -80 -85 -90 volts<br>25000 22800 21300 22500 ohms<br>D_C Plate Current 8 80 83 100 ma.<br>D_C Screen Current 5 5.75 5 6.5 ma.<br><sup>0</sup> Drained from separate source, from a potentiometer, or from plate<br>supply through a series resistor of value shown.<br><sup>1</sup> Dotained from fixed supply, by grid resistor (12800), by cathode<br>resistor of value shown.<br><sup>1</sup> Dotained from fixed supply. by grid resistor (12800), by cathode<br>supply through a series resistor of value shown.<br><sup>1</sup> Dotained from fixed supply. by grid resistor (12800), by cathode<br><sup>1</sup> Dotained from fixed supply. by grid resistor (12800), by cathode<br><sup>1</sup> Dotained from fixed supply. by grid resistor (12800), by cathode<br><sup>1</sup> Dotained from separate source, from a potentiometer, or from plate<br><sup>1</sup> Dotained from fixed supply. by grid resistor (12800), by cathode<br><sup>1</sup> Dotained from fixed supply. by grid resistor (12800), by cathode<br><sup>1</sup> Dotained from separate source, from a potentiometer, or from plate<br><sup>1</sup> Dotained from fixed supply. by grid resistor (12800), by cathode<br><sup>2</sup> Dotained from fixed supply.<br><sup>2</sup> Dotained from separate source, fr                                                                                                                       |                                            | 16.5 max.      | 25 max.       | watts    | the audio-frequency envelope does not exceed 115% of the can | rier con- |
| D-C Plate Voltage       325       400       475       600       volts         D-C Screen Voltage (2000)       225       225       275       volts         D-C Grid Voltage (2000)       20000       50000       50000       obtained from fixed supply, by grid resistor (12800), by cathode resistor (410), or by combination methods.         D-C Grid Voltage (2000)       -75       -80       -85       -90       volts         D-C Grid Voltage (2000)       22800       21300       22500       obtained from fixed supply, brough a series resistor of value snown, by grid resistor (410), or by combination methods.         D-C Grid Voltage (2000)       -75       -80       -85       -90       volts         D-C Grid Voltage (2000)       22800       21300       22500       ohns       bata on operating frequencies for the 807 are given on the sheet TRANS. TUBE RATINGS vs FREQUENCY.         D-C Plate Current (2000)       80       81       100       ma.         D-C Screen Current (2000)       5.5.75       5       6.5       ma.         Oriver stage should be capable of supplying the grids of the class A82       stage with the specified pack values at 10m distortion. The effective resistance per grid circuit of the class A82 stage should be effective impedance at the highest desired resistor resistance per grid circuit of the class A82 stage should be restered resiston of the class A82 stage should be frective res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Typical Operation:                         |                |               |          | 6 Obtained from separate source, from a potentiometer, or fu | om plate  |
| D=C Screen voltage ↓       20000 30000 50000 50000 ohms       Pesister (4107, or by combination methods.         D=C Grid Voltage ↓       -75 -80 -85 -90 volts       Data on operating frequencies for the 807 are given on the 5 sheet TRANS. TUBE RATINGS vs FREQUENCY.         Peak R=F Grid Voltage ↓       -75 110 115 volts       Data on operating frequencies for the 807 are given on the 5 sheet TRANS. TUBE RATINGS vs FREQUENCY.         D=C Plate Current       80 83 100 ma.       -55.75 5 6.5 ma. <sup>0</sup> Driver stage should be capable of supplying the grids of the class A82 stage should be ffective inpedance at the highest desired resistance per grid circuit of the class A82 stage should be ffective frequency should not exceed 700 ohms.         sponse frequency should not exceed 700 ohms.       of the ffective frequency should not exceed 700 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D-C Plate Voltage 325                      | 400 475        | 600           | volts    | supply through a series resistor of value shown,             | en prate  |
| D-C Grid Voltage + { 2000 30000 50000 50000 ohms<br>D-C Grid Voltage + { 25000 22800 21300 22500 ohms<br>D-C Plate Current 80 80 83 100 ma,<br>D-C Screen Current 5 5.75 5 6.5 ma.<br>Priver stage should be capable of supplying the grids of the class AB2<br>stage with the specified peak values at 100 mis. The effective<br>resistance per grid circuit of the class AB2 stage should be kept be-<br>tow 500 ohms and the effective impedance at the highest desired re-<br>sponse frequency should not exceed 700 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D-C Screen Voltage A 225                   | 225 225        | 275           | volts    | Dotained from fixed supply, by grid resistor (12800), by     | cathode   |
| Peak R-F Grid Voltage 90 95 110 115 volts<br>D-C Plate Current 80 80 83 100 ma.<br>D-C Screen Current 5 5.75 5 6.5 ma.<br><sup>9</sup> Driver stage should be capable of supplying the grids of the class AB <sub>2</sub><br>stage with the specified peak values at 10m in the effective<br>resistance per grid circuit of the class AB <sub>2</sub> stage should be kept be-<br>tow 500 ohms and the effective impedance at the highest desired re-<br>sponse frequency should not exceed 700 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20000 1 20000                              | 30000 50000    | 50000         | ohms     |                                                              |           |
| Peak R-F Grid Voltage 90 95 110 115 volts<br>D-C Plate Current 80 80 83 100 ma.<br>D-C Screen Current 5 5.75 51 6.5 ma.<br><sup>o</sup> Driver stage should be capable of supplying the grids of the class A82<br>stage with the specified peak values at low distortion. The effective<br>resistance per grid circuit of the class A82 stage should be kept be-<br>low 500 ohms and the effective impedance at the highest desired re-<br>sponse frequency should not exceed 700 ohms.<br>Obtained preferably from modulated fixed supply. or from modulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                |               | volts    | Data on operation frequencies for the 807 are given          | on the    |
| Peak K-F Grid Voltage 90 95 110 115 volts<br>D-C Plate Current 80 80 83 100 ma.<br>D-C Screen Current 5 5.75 5 6.5 ma.<br><sup>9</sup> Driver stage should be capable of supplying the grids of the class AB <sub>2</sub><br>stage with the specified peak values at 10m in the effective<br>resistance per grid circuit of the class AB <sub>2</sub> stage should be kept be-<br>low 500 ohms and the effective impedance at the highest desired re-<br>sponse frequency should not exceed 700 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L 25000                                    | 22800 21300    | 22500         | ohms     |                                                              | on the    |
| D-C Screen Current 5 5.75 5 6.5 ma.<br><sup>o</sup> Driver stage should be capable of supplying the grids of the class AB <sub>2</sub><br>stage with the specified peak values at low distortion. The effective<br>resistance per grid circuit of the class AB <sub>2</sub> stage should be kept be-<br>tow 500 ohms and the effective impedance at the highest desired re-<br>sponse frequency should not exceed 700 ohms.<br>Obtained preferably from modulated fixed supply, or from modulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peak R-F Grid Voltage 90                   |                |               | volts    | SHEET MAND. TODE MATTING VS THEQUENCI.                       |           |
| <sup>0</sup> Driver stage should be capable of supplying the grids of the class AB <sub>2</sub><br>stage with the specified peak values at low distortion. The effective<br>resistance per grid circuit of the class AB <sub>2</sub> stage should be kept be-<br>low 500 ohms and the effective impedance at the highest desired re-<br>sponse frequency should not exceed 700 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D-C Plate Current 80                       | 80 83          | 100           | ma.      |                                                              | 1         |
| <sup>0</sup> Driver stage should be capable of supplying the grids of the class AB <sub>2</sub><br>stage with the specified peak values at low distortion. The effective<br>resistance per grid circuit of the class AB <sub>2</sub> stage should be kept be-<br>low 500 ohms and the effective impedance at the highest desired re-<br>sponse frequency should not exceed 700 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D-C Screen Current 5                       |                | 6.5           | ma.      |                                                              |           |
| stage with the specified peak values at low distortion. The effective<br>resistance per grid circuit of the class Ads stage should be kept be-<br>low 500 ohms and the effective impedance at the highest desired re-<br>sponse frequency should not exceed 700 ohms.<br>Obtained preferably from modulated fixed supply, or from modulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | alving the gr  | ids of the c  | ACC 48-  |                                                              |           |
| sponse frequency should not exceed 700 ohms.<br>O obtained preferably from modulated fixed supply, or from modulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stage with the specified peak values       | at low disto   | rtion. The ef | fective  |                                                              |           |
| sponse frequency should not exceed 700 ohms.<br>O obtained preferably from modulated fixed supply, or from modulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | resistance per grid circuit of the c       | lass AB2 stag  | e should be i | ept be-  |                                                              |           |
| O obtained preferably from modulated fixed supply, or from modulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                |               |          |                                                              |           |
| May be obtained from grid resistor (25000, 22800, 22800) al-<br>though combination of either grid resistor and cathode resistor or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O Obtained preferably from modulated       | fixed supply.  | or from mo    | dulated  |                                                              |           |
| though combination of either grid resistor and cathode resistor or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A May be obtained from grid resistor       | (25000. 22800  | . 21300. 2250 | 0) a1-   |                                                              | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | though combination of either grid r        | esistor and    | cathode resis | tor or   |                                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                |               |          |                                                              |           |
| tortion does not exceed 25. In practice, plate-voltage regulation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tortion does not exceed 25. In prac        | tice, plate-   | voltade redu  | lation.  |                                                              |           |
| screen-voltage regulation, and grid-bias regulation, should not be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | screen-vollage regulation, and grid        | -01as regulat  | ion, should   | not ce   |                                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f See end of tabulation.                   |                | - Indicates a | change.  | Indicates a change.                                          |           |

269

# APPENDIX

**{**----

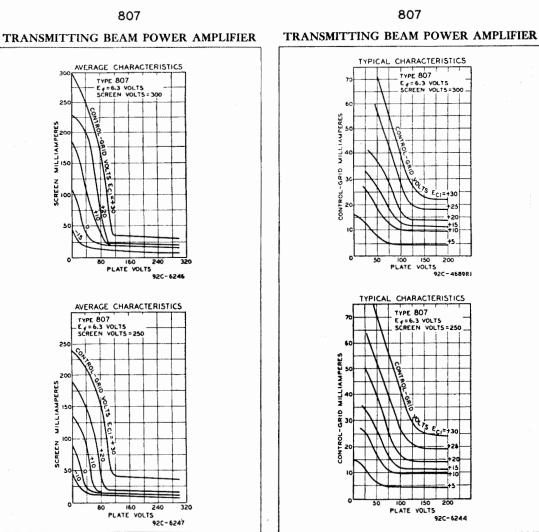

1111

<del>.</del>--

€--

**«---**

• • Except for the heater rating, the electrical characteristics of the 1625 are the same as those of the 807 shown below. The heater rating of the 1625 is 12.6 volts, 0.45 amp.




PPENDIX

270

Except for the heater rating, the electrical characteristics of the 1625 are the same as those of the 807 shown below. The heater rating of the 1625 is 12.6 volts, 0.45 amp.

1625



807

200

150

(5

920-6244

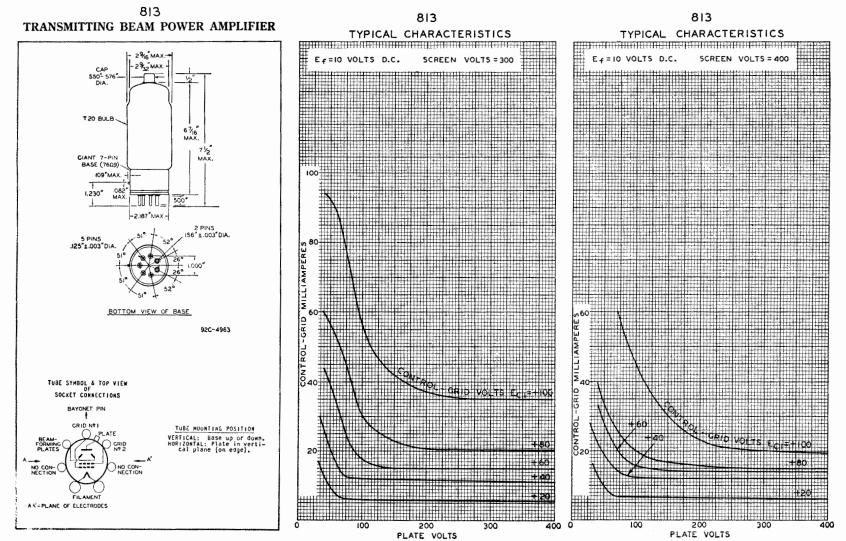
92C-4689R1

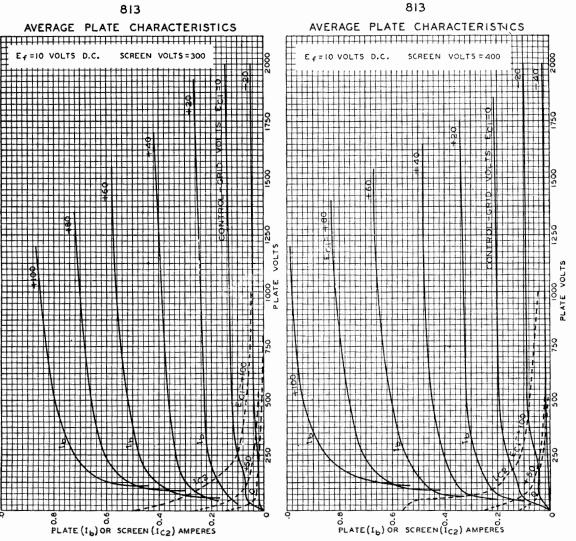
APPENDIX

#### **TRANSMITTING BEAM POWER AMPLIFIER**

11 Aliment Thoriated Tungsten itace 10.0 a-c or d-c volts Current 5 amp. Transconductance for plate current of 50 ma. 3750 approx. µmhos Direct Interelectrode Capacitances: Grid to Plate (with external shielding) 0.2 max. μµf μµf Input 16.3 Output 14 μμ f 7-1/2" Maximum Overall Length Maximum Diameter 2-9/16" Bulb T-20 Cap Medium Metal Giant 7-Pin, Bayonet Base RCA Socket Type UT-104 MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS R-F POWER AMPLIFIER - Class B Telephony Carrier conditions per tube for use with a max. modulation fact. of 1.0 D-C Plate Voltage 2000 max. volts D-C Screen Voltage (Grid #2) D-C Plate Current 400 max. volts 100 max. ma. Plate Input 150 max. watts 15 max. Screen Input watts Plate Dissipation 100 max. watts Typical Operation: D-C Plate Voltage 1500 2000 volts D-C Screen Voltage D-C Grid Voltage (Grid #1) • 400 400 -75 volts -60 volts Peak R-F Grid Voltage Beam-Forming Plate Voltage\* 70 80 volts 0 0 volts D-C Plate Current 100 75 ma. D-C Screen Current 4 3 па. D-C Grid Current # --- approx.ma. Driving Power • A \_ - approx.watt Power Output 50 50 approx.watts Usually negligible. Fixed supply or by-passed cathode-resistor bias recommended.
 Usually negligible. Never more than 2 watts. GRID-MODULATED R-F POWER AMPLIFIER - Class C Telephony Carrier conditions per tube for use with a max. modulation fact. or 1.0 D-C Plate Voltage 2000 max. volts D-C Screen Voltage (Grid #2) D-C Grid Voltage (Grid #1) 400 max. volts -200 max. volts D-C Plate Current 100 max. ma. Plate Input 150 max. watts Screen Input 15 max. watts Plate Dissipation 100 max. watts Typical Operation: D-C Plaie Voltage 1500 2000 volts D-C Screen Voltage 400 400 volts • • 0: See end of tabulation.

#### 813 TRANSMITTING BEAM POWER AMPLIFIER


| (continued from pro                                                                                                              |               |                           |           |
|----------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|-----------|
| D-C Grid Voltage                                                                                                                 | -140          | -120                      | volts     |
| Peak R-F Grid Voltage                                                                                                            | 145           | 120                       | volts     |
| Peak A-F Grid Voltage                                                                                                            | 60            | 60                        | volts     |
| Beam-Forming Poate Voltage*                                                                                                      | 0             | 0                         | volts     |
| D-C Plate Current                                                                                                                | 70            | 75                        | ma.       |
| D-C Screen Current                                                                                                               | 3             | 3                         | ma.       |
| D-C Grid Current                                                                                                                 | -             | <ul> <li>appro</li> </ul> | x.ma.     |
| Driving Power O A                                                                                                                | -             | <ul> <li>appro</li> </ul> | x.watt    |
| Power Output                                                                                                                     | 40            | 50 appro                  | x.watts   |
| <ul> <li>Usually negligible. Fixed supply or<br/>recommended.</li> <li>Usually negligible. Never more than</li> </ul>            |               | d cathode-resi:           | stor bias |
| PLATE-MODULATED R-F POWER AMPL                                                                                                   |               | Class C Telep             | hony      |
| Carrier conditions per tube for use wit                                                                                          | th a max, s   | odulation fact            | . of 1.0  |
| D-C Plate Voltage                                                                                                                |               | 1600 max.                 | volts     |
| D-C Screen Voltage (Grid #2)                                                                                                     |               | 400 max.                  | volts     |
| D-C Grid Voltage (Grid #1)                                                                                                       |               | -300 max.                 | volts     |
| D-C Plate Current                                                                                                                |               | 150 max.                  | ma.       |
| D-C Grid Current                                                                                                                 |               | 25 max.                   | ma.       |
| Plate Input                                                                                                                      |               | 240 max.                  | watts     |
| Screen Input                                                                                                                     |               | 15 max.                   | watts     |
| Plate Dissipation                                                                                                                |               | 67 max.                   | watts     |
| Typical Operation:                                                                                                               |               |                           |           |
| D-C Plate Voltage                                                                                                                | 1250          | 1600                      | volts     |
| D-C Screen Voltage                                                                                                               | 400           | 400                       | volts     |
| 5                                                                                                                                | <b>1</b> -120 | -130                      | volts     |
| D-C Grid Voltage 🛉 🕈                                                                                                             | 30000         | 21600                     | ohms      |
| Peak R-F Grid Voltage                                                                                                            | 195           | 210                       | volts     |
| Beam-Forming Plate Voltage *                                                                                                     | 0             | 0                         | volts     |
| D-C Plate Current                                                                                                                | 150           | 150                       | ma.       |
| D-C Screen Current                                                                                                               | 16            | 20                        | ma.       |
| D-C Grid Current                                                                                                                 | 4             | 6 appro                   |           |
| Driving Power                                                                                                                    | 0.7           |                           | x.watts   |
| Power Output                                                                                                                     | 135           | 175 <u>appro</u>          | x.watts   |
| Total effective grid-circuit resistan                                                                                            | ce should     | not exceed 300            | 00 ohms.  |
| † Total effective grid-circuit resistan<br>Grid bias obtained by grid leak or by<br>Obtained from fixed supply, modulate<br>age. | dsimultan     | eously with pla           | te volt-  |
| R-F POWER AMPLIFIER & OSCILLAT                                                                                                   | OR - Cla      | ss C Telegrap             | ohy       |
| Isy-down conditions per tube                                                                                                     | without       | modulation #              | *         |
| D-C Plate Voltage                                                                                                                |               | 2000 max.                 | volts     |
| D-C Screen Voltage (Grid #2)                                                                                                     |               | 400 max.                  | volts     |
| D-C.Grid Voltage (Grid #1)                                                                                                       |               | -300 max.                 | volts     |
| D-C Plate Current                                                                                                                |               | 180 max.                  | ma.       |
| D-C Grid Current                                                                                                                 |               | 25 max.                   | ma.       |
| Plate Input                                                                                                                      |               | 360 max.                  | watts     |
| Screen Input                                                                                                                     |               | 22 max.                   | watts     |
| Plate Dissipation                                                                                                                |               | 100 max.                  | watts     |
| Typical Operation:                                                                                                               |               |                           |           |
| D-C Plate Voltage 1250                                                                                                           | 0 1500        | 2000                      | volts     |
| o, ⊕, *, **:See end of tabulation.                                                                                               |               |                           |           |
|                                                                                                                                  |               |                           |           |


### 813

#### TRANSMITTING BEAM POWER AMPLIFIER

|    | (continued                                                                                                                                            | d from           | prec                 | eding            | page)                  |                       |                 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|------------------|------------------------|-----------------------|-----------------|
|    | D.C. Comerce Malterer &                                                                                                                               | ſ                | 300                  | 30               | 0 40                   | 0                     | volts           |
|    | D-C Screen Voltage 🖇                                                                                                                                  |                  | 2000                 |                  | 0 10700                |                       | ohms            |
|    | D-C Grid Voltage *                                                                                                                                    |                  | -60                  | -7               |                        | -                     | volts           |
|    | 5                                                                                                                                                     | lε               | 3500                 | 1170             |                        |                       | ohms            |
|    | Peak R-F Grid Voltage                                                                                                                                 |                  | 145                  | 15               |                        |                       | volts           |
|    | Beam-Forming Plate Volta                                                                                                                              | ige"             | 0                    |                  | 0                      | 0                     | volts           |
|    | D-C Plate Current                                                                                                                                     |                  | 180                  | 18               |                        |                       | ma.             |
|    | D-C Screen Current                                                                                                                                    |                  | 23                   |                  |                        | 5                     | ma.             |
|    | D-C Grid Current                                                                                                                                      |                  | 7                    |                  | 6                      | 3 approx              |                 |
|    | Driving Power                                                                                                                                         |                  | 1                    | 0.               |                        |                       |                 |
|    | Power Output                                                                                                                                          |                  | 155                  | 19               |                        | 0 approx              |                 |
| ## | Modulation essentially nega the audio-frequency envelop                                                                                               | tive             | may t                | e use            | d if the               | positive              | peak of         |
|    |                                                                                                                                                       |                  |                      |                  |                        |                       |                 |
| ×  | Obtained by grid leak or ot                                                                                                                           | her se           | 11- (                | or fix           | ed-bias m              | ethod.                |                 |
| 8  | series resistor connected t                                                                                                                           | eparat<br>o plat | e sou                | orce o<br>oply m | r potenti<br>ay be use | ometer,               | aithough        |
| *  | Obtained by grid leak or ot<br>Preferably obtained from s<br>series resistor connected t<br>Beam-forming plates should<br>circuit operated on a.c., o | be con           | nect                 | ed to            | the mid-               | point of              | filament        |
|    |                                                                                                                                                       | or to t          | he ne                | egativ           | e end of               | filament              | operated        |
| ŧ  |                                                                                                                                                       | f d.c.           | . is 1               | used,            | the state              | d voltage             | s should        |
| 0  | At crest of audio-frequency                                                                                                                           | cycle            | with                 | h modu           | lation fa              | ctor of 1             | .0.             |
|    |                                                                                                                                                       |                  |                      |                  |                        |                       |                 |
|    | OPERATION                                                                                                                                             | AT H             | I GH                 | FREQU            | ENCIES                 |                       |                 |
|    | nimum kanmissikle kee                                                                                                                                 |                  |                      |                  |                        |                       |                 |
| đ  | zimum permissible pe                                                                                                                                  | rcen             | tage                 | 0 1              | maximu                 | m rated               | flate           |
|    |                                                                                                                                                       |                  |                      |                  |                        |                       |                 |
|    | voltage                                                                                                                                               |                  |                      |                  | nput                   |                       |                 |
| FF |                                                                                                                                                       |                  | <i>pla</i>           |                  |                        | 60                    | 120             |
| -  | voltage<br>REQUENCY (MC)                                                                                                                              | and              | ¢ L a<br>3<br>10     | ite i            | nput<br>45<br>935      | 60<br>88≴             | 765             |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)                                                                                                                              | and              | ¢ L a                | te i             | 45<br>935<br>93        | 60<br>88≸<br>88       | 765             |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |
| T  | voltage<br>REQUENCY (MC)<br>ELEPHONY {Class B<br>Class C Fid H<br>Class C Fid H                                                                       | and              | pla<br>3<br>10<br>10 | te i             | 45<br>935<br>93<br>87  | 60<br>88≴<br>88<br>75 | 765<br>76<br>50 |

APPENDIX

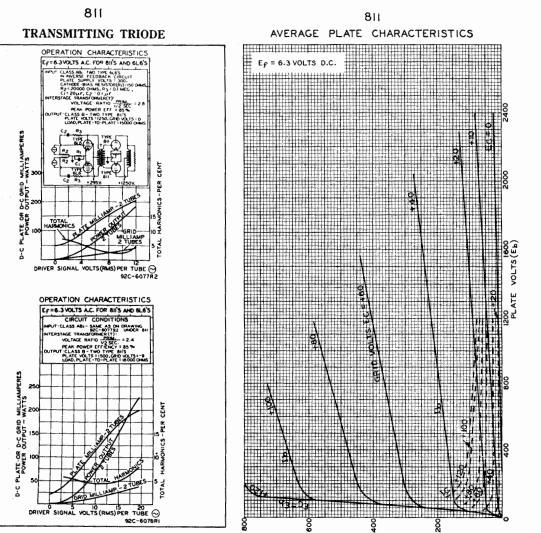




#### TRANSMITTING TRIODE

## 811 TRANSMITTING TRIODE

#### 811


#### TRANSMITTING TRIODE

|                                    |                |                 | ·····   |                                                                                                   |                     |                               |          | (continued from p                         | (aceding page)      |                  |
|------------------------------------|----------------|-----------------|---------|---------------------------------------------------------------------------------------------------|---------------------|-------------------------------|----------|-------------------------------------------|---------------------|------------------|
|                                    | ed Tungsten    |                 |         | (continued                                                                                        | from preceding page |                               |          |                                           |                     |                  |
|                                    | 6.3            | a-cord-         | c volts |                                                                                                   | CCS                 | ICAS                          |          |                                           | ICAS ICAS           |                  |
| Current                            | 4              |                 | amp.    | D-C Grid Voltage∦                                                                                 | 0                   | 6                             | volts    | Peak R-F Grid Voltage                     | 180 225             | volts            |
|                                    | 160            |                 |         | Peak R-F Grid Voltage                                                                             | 26                  | 35                            | volts    | D-C Plate Current                         | 125 150             | ma.              |
| Direct Interelectrode Capacit      |                |                 | 1       | D-C Plate Current                                                                                 | 48                  | 50                            | ma.      | D-C Grid Current**                        | 35 approx. 35       | approx.ma.       |
|                                    | 5.5            |                 | μµf     | D-C Grid Current**                                                                                | 6 approx.           | 6 appro                       | x.ma.    | Driving Power**                           | 7 арргох. 8         | approx.watts     |
|                                    | 5.5            |                 | μµf     | Driving Power** 0                                                                                 | 1 approx.           | 1.5 appro                     |          |                                           |                     | approx.watts     |
|                                    | 0.6            |                 | μµf     | Power Output                                                                                      | 20 approx.          | 25 appro                      | x.watts  | ** Subject to wide variations as expla    | land on chart TOIN  | TURC DATINGS     |
| Maximum Overall Length             |                |                 | 6-9/16* | Que erest of a f curle with m                                                                     | dulation factor of  | 1.0                           |          |                                           |                     | 5. TOBE RAITAUS. |
| Maximum Diameter                   |                |                 | 2-7/16" | O At crest of a-f cycle with mo<br># Grid voltages are given for e<br>a.c. is used, the circuit r | ither a-c or d-c fi | lament operati                | on. When | HIGH-FREQUENC                             | Y OPERATION         |                  |
| Bulb                               |                |                 | ST-19   | a.c. is used, the circuit r<br>filament circuit. When d.c.                                        | eturns are made to  | o the midpoin<br>turosare mad | t of the | Naximum permissible percentage of max     | inum rated plate vo | ltage and plate  |
| Cap                                |                |                 | n Metal | negative filament terminal.                                                                       | ta Maco, the it     | torna ure mao                 |          | inpu                                      | t.                  |                  |
| Base                               | Medium 4-Pir   | n,"Micanol"     |         | PLATE-MODULATED R-F POWE                                                                          | R AMPLIEIER - C     | lass C Teler                  | phony    | FREQUENCY (NC)                            | 60 80               | 100              |
| RCA Socket                         |                | 0               | R-542-A | A                                                                                                 |                     |                               |          |                                           | 100 90              | 83<br>60         |
| MAXIMUM CCS a                      |                | 400             |         | Carrier conditions per tube for                                                                   |                     | •                             | . of 1.0 | TELEPHONY {Class B<br>Class C, Plate Mod. | 100 75<br>100 75    | 60               |
| with TYPICAL OPE                   |                |                 |         |                                                                                                   | ccs                 | ICAS                          |          | TELEGRAPHY - Class C                      | 100 13              |                  |
| WILD ITFICAL OPE                   | RAIING CONDI   | 11049           |         | D-C Plate Voltage                                                                                 | 1000 max.           | 1250 max.                     | volts    |                                           |                     |                  |
| CCS = Continuous Connerc           | ial Service    |                 |         | D-C Grid Voltage                                                                                  | -200 max.           | -200 max.                     | volts    |                                           |                     |                  |
| ICAS = Internittent Comm           | ercial and A   | nateur Servi    | ce      | D-C Plate Current                                                                                 | 105 max.            | 125 max.                      | ma.      | OUTLINE DIMENSIONS for the 811            | the same as         | those for the    |
|                                    |                | c)              |         | D-C Grid Current                                                                                  | 50 max.             | 50 max.                       | ma.      | 809                                       | Э.                  |                  |
| A-F POWER AMPLIFIER                | & MODULATOR    | - Class B       |         | Plate Input                                                                                       | 105 max.            | 155 max.                      | watts    |                                           |                     |                  |
|                                    | ccs            | ICAS            |         | Plate Dissipation                                                                                 | 27 max.             | 40 max.                       | watts    |                                           |                     |                  |
| D-C Plate Voltage                  | 1250 max.      | 1500 max.       | volts   | Typical Operation:                                                                                |                     |                               |          |                                           |                     |                  |
| MaxSig. D-C Plate Current*         | 125 max.       | 125 max.        | ma.     | D-C Plate Voltage                                                                                 | 1000                | 1250                          | volts    |                                           |                     |                  |
| MaxSig. Plate Input                | 125 max.       | 150 max.        | watts   |                                                                                                   | (-100)              | -125                          | volts    | TOP VIE                                   | W OF                |                  |
| Plate Dissipation*                 | 40 max.        | 50 max.         | watts   | D-C Grid Voltage <sup>D</sup>                                                                     | 2000                | 2500                          | ohms     | 37. LET CON                               | NECTIONS            |                  |
| Typical Operation:                 | 40 max.        | JU max.         | watts   | Peak R-F Grid Voltage                                                                             | 195                 | 230                           | volts    | PLA                                       |                     |                  |
| Unless otherwise specifi           | ied, values a  | re for 2 tub    | e 3     | D-C Plate Current                                                                                 | 105                 | 125                           | ma.      |                                           |                     |                  |
| D-C Plate Voltage                  | 1250           | 1500            | volts   | D-C Grid Current**                                                                                | 50 approx.          | 50 appro                      |          | GRID (3)                                  | 2 NO CON-           |                  |
| D-C Grid Voltage #                 | 0.             | -9              | volts   | Driving Power**                                                                                   | 9 approx.           | 11 appro                      |          |                                           | • 7                 |                  |
| Peak A-F Grid-to-Grid Volt.        | 140            | 160             | volts   | Power Output                                                                                      | 82 approx.          | 120 appro                     |          | 4                                         | ··· )               |                  |
| Zero-Sig. D-C Plate Current        | 48             | 20              | ma.     | 1_ ·                                                                                              |                     |                               |          |                                           |                     |                  |
| MaxSig. D-C Plate Current          | 200            | 200             | ma.     | Obtained preferably from grid<br>grid leak with either fixed s                                    | leak of value sho   | wn, or combin                 | ation of |                                           | 4                   |                  |
| MaxSig. D-C Grid Current           | 38             | 38              | ma.     | sistor.                                                                                           |                     | oj-pusses cut                 | nout re- |                                           | - U+                |                  |
| Load Resistance (per tube)         |                | 4500            | ohms    | R-F POWER AMPLIFIER &                                                                             | OSCILLATOR - Cla    | ass C Telear                  | aphy     | FILAN                                     |                     |                  |
| Effective Load Resistance          |                |                 |         |                                                                                                   |                     |                               |          | AA'= PLANE OF                             | ELECTRODES          |                  |
|                                    | 15000          | 18000           | ohms    | Key-down conditions                                                                               |                     |                               |          |                                           |                     |                  |
| MaxSig. Driving Power              | 3.8 approx.    |                 |         |                                                                                                   | <u>ccs</u>          | ICAS                          |          |                                           |                     |                  |
| MaxSig. Power Output               | 175 approx     |                 |         | D-C Plate Voltage                                                                                 | 1250 max.           | 1500 max.                     | volts    |                                           |                     |                  |
|                                    |                |                 |         | D-C Grid Voltage                                                                                  | -200 max.           | -200 max.                     | volts    | MOUNTING P                                | OSITION             |                  |
| * Averaged over any audio-frequenc |                |                 |         | D-C Plate Current                                                                                 | 125 max.            | 150 max.                      | ma.      | VERTICAL: B                               | ase down.           |                  |
| R-F POWER AMPLIFIE                 | R - Class B T  | felephony       |         | D-C Grid Current                                                                                  | 50 max.             | 50 max.                       | ma.      | HORIZONTAL:                               | Plane of            |                  |
| Carrier conditions per tube for us | e with a war - | indulation fact | atio    | Plate Input                                                                                       | 155 max.            | 225 max.                      | watts    | electrodes                                | vertical.           |                  |
|                                    | CCS            | ICAS            | ,       | Plate Dissipation                                                                                 | 40 max.             | 55 max.                       | watts    |                                           |                     |                  |
|                                    |                |                 | , I     | Typical Operation:                                                                                |                     |                               |          |                                           |                     |                  |
| D-C Plate Voltage                  | 1250 max.      | 1500 max.       | volts   | D-C Plate Voltage                                                                                 | 1250                | 1250                          | volts    |                                           |                     |                  |
| D-C Plate Current                  | 60 max.        | 60 max.         | ma.     |                                                                                                   | (-87.5              | -113                          | volts    |                                           |                     |                  |
| Plate input                        | 60 max.        | 75 max.         | watts   | D-C Grid Voltage‡                                                                                 | 2500                | 3200                          | ohms     |                                           |                     |                  |
| Plate Dissipation                  | 40 max.        | 50 max.         | watts   |                                                                                                   | 550                 | 610                           | ohms     |                                           |                     |                  |
| lypical Operation:                 |                |                 |         | ## Modulation essentially negat                                                                   | ive may be used i   | f the positive                | peak of  |                                           |                     |                  |
| 2 Plate Voltage                    | 1250           | 1500            | volts   | the audio-frequency envelope                                                                      | does not exceed 11  | 5% of the carr                | ier con- |                                           |                     |                  |
| # See next page.                   |                |                 |         | ditions.<br>I Obtained from fixed supply,                                                         | or grid resistor    | (2500, 3200)                  | , or by  |                                           |                     |                  |
|                                    |                |                 |         | cathode resistor (550, 610).                                                                      |                     |                               |          |                                           |                     |                  |
|                                    |                |                 |         | See next page.                                                                                    |                     |                               |          |                                           |                     |                  |

1

275

# APPENDIX



D-C PLATE(Ib)OR D-C GRID(IC) MILLIAMPERES

APPENDIX

276

#### 6V6, 6V6-GT/G

#### **BEAM POWER AMPLIFIER**

#### Heater \* Coated Unipotential Cathode Voltage 6.3 0.45 a-c or d-c volts Current amp. Direct Interelectrode Capacitances (Approx.): 6760 616-61/000 Grid to Plate 0.3 0.7 μµf 10 9.5 Inout μµf 11 7.5 Output μµf 3-5/16" 2-3/4" 1-5/16" 3-1/4" Maximum Overall Length 2-11/16" Maximum Seated Height Maximum Diameter 1-5/16" Metal Shell.MT-8 T--9 Bulb ∫Small Wafer Intermed.Sh. Base lOctal 7-Pin loctal 7-Pin Basing Designation Pin 1 [6V6, Shel] 7AC G-7AC Pin 4 - Screen $\bigcirc$ $(\mathfrak{s})$ Pin 5-Grid 16V6-GT/G, No Con.G Pin 7-Heater Pin 2-Heater Pin 3-Plate 7 Pin 8-Cathode Mounting Position Any () BOTTOM VIEW Maximum Katings Are Design-Center Values SINGLE-TUBE AMPLIFIER 315 max. volts Plate Voltage Screen Voltage 285 max. volts 12 max. watts Plate Dissipation Screen Dissipation 2 max. watts Typical Operation and Characteristics - Class A, Amplifier: Plate Voltage 180 250 315 volts 225 180 250 volts Screen Voltage -13 volts -12.5 Grid Voltage -8.5 Peak A-F Grid Volt. 8.5 12.5 13 volts 29 45 3Á Zero-Sig. Plate Cur. ma. 35 Max.-Sig. Plate Cur. Zero-Sig. Screen Cur. 47 30 ma. 2.2 approx. ma. 3 4.5 Max.-Sig. Screen Cur. ٨ 6 approx. ma. 52000 77000 Plate Resistance 58000 ohms 3750 4100 umhos 3700

5500

8

2

PUSH-PULL AMPLIFIER

In circuits where the cathode is not directly connected to the heater, the potential difference between heater and cathode should be kept as low as possible. Now With no external shield.

5000

8

4.5

8500

12

5.5

315 max.

285 max.

12 max.

2 max.

- Indicates a change.

ohms

watts

volts

yolts

watts

watts

X

# 6V6.6V6-GT/G

#### BEAM POWER AMPLIFIER (continued from preceding page)

Unless otherwise specified, values are for 2 tubes

Plate Voltage

Screen Voltage

Grid Voltage<sup>\*</sup> Peak A-F Grid-to-Grid Volt.

Zero-Sig. Plate Cur. Max.-Sig. Plate Cur.

Zero-Sig. Screen Cur.

Max.-Sig. Screen Cur.

Total Harmonic Dist.

Max.-Sig. Power Output

sistance not to exceed 0.5 megohm.

Plate Resistance

Transconductance

Effec. Load Res.

250

250

-15

30

70

79

5

13

60000

3750

10000

5

10

285

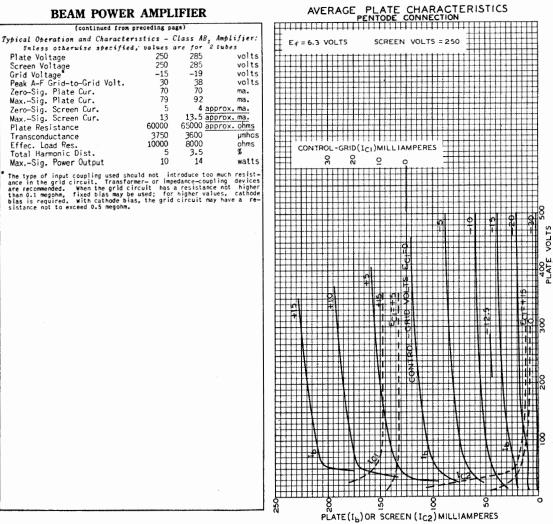
285

-19

38

70

92


3600

8000

3.5

14

#### 6V6



# 277

Transconductance

Tot. Harmonic Dist. Max.-Sig. Power Output

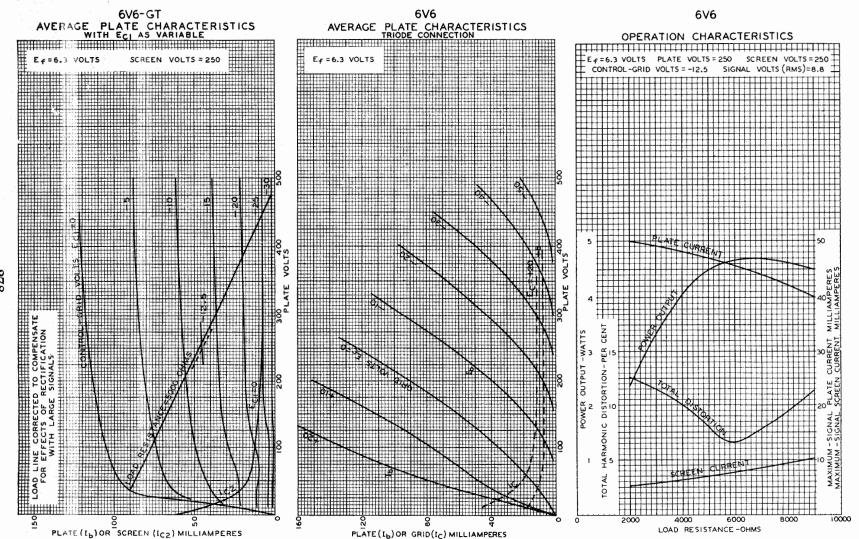

Load Resistance

Plate Voltage

Screen Voltage

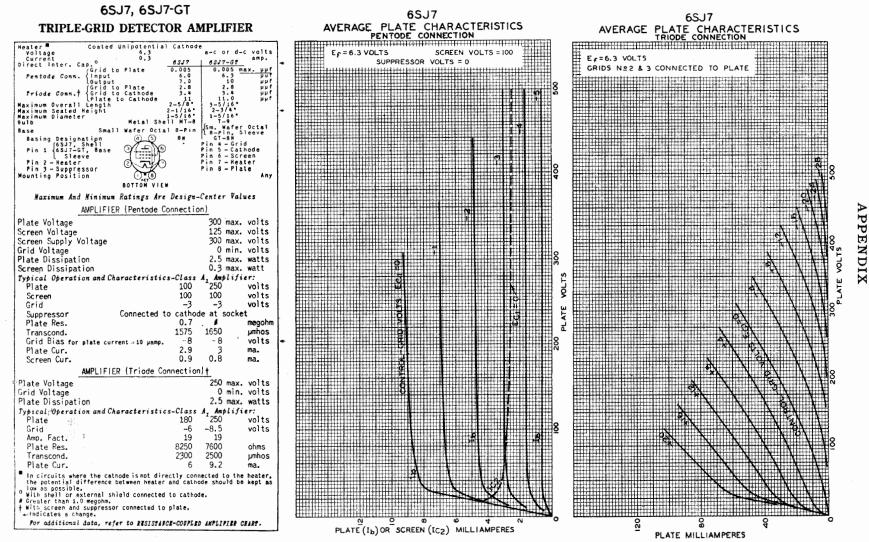

": See next page.

Plate Dissipation Screen Dissipation PPENDIX



#### 12SJ7-12SJ7-GT

The 12SJ7 and 12SJ7-GT are same as the 6SJ7 and 6SJ7-GT respectively except for heater rating. The 12SJ7-12SJ7-GT heater rating is 12.6 volts, 0.15 amp.



#### 866-A/866

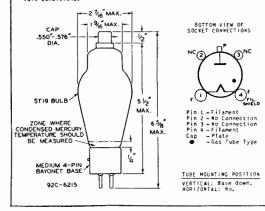
#### HALF-WAVE MERCURY VAPOR RECTIFIER

| Filament* Coat                                                              | ed               |                    |
|-----------------------------------------------------------------------------|------------------|--------------------|
| Voltage 2.                                                                  | 5                | a-c volts          |
| Current 5.                                                                  | 0                | amp.               |
| Maximum Overall Length                                                      |                  | 6-5/8"             |
| Maximum Diameter                                                            |                  | 2-7/16"            |
| 8ulb                                                                        |                  | ST-19              |
|                                                                             |                  | nsulating Collar   |
| Base                                                                        | Mediu            | m 4-Pin, Bayonet   |
| RCA Socket                                                                  |                  | UR-542A            |
| MAXIMUM                                                                     | RATINGS          |                    |
| Peak Inverse Voltage:                                                       | Column I         | Column II          |
| For supply frequency up to 19                                               |                  |                    |
| Cond. Mercury Temp. 25° to 60                                               |                  | 10000 max. volts   |
| Cond. Mercury Temp. 25° to 70                                               |                  | – volts            |
| For supply frequency up to 10                                               |                  |                    |
| Cond. Mercury Temp. 25° to 70                                               |                  | 5000 max. volts    |
| Peak Plate Current                                                          | 2.0 max.         |                    |
| Average Plate Current                                                       | 0.5 max.         | 0.25 max. amp.     |
| Tube Voltage Drop (Approx.)                                                 | 15               | 15 volts           |
| * The filament of the 866-A/866 is pa<br>permit operation from a power supp | rtially shielded | from the plate to  |
| cycles per second. The filament sho                                         | uld be allowed t | o come up to oper- |
| ating temperature before plate volt<br>ditions, the delay is approximately  | age is applied.  | For average con-   |
| # Operation at 100 ± 5°C is recommend                                       | led.             |                    |
| For shielding and r-f filter c                                              | ircuits, refer   | to Type 871.       |

for shielding r-J Juiter curcuits, reter to type 8/1. NOTES ON COLUMN II

The table on the next page gives empirical values of choke inductance (L) and the condenser capacitance (C) for chokeinput-to-filter circuits which will keep the peak plate current below the recommended maximum, provided the average d-c load current does not exceed the maximum load-current values shown. Values of (L) and (C) are based on a 60-cycle a-c voltage supply.

The capacitance (C) is small enough to prevent excessive surges when power is first applied to the circuit, and yet large enough to give adequate filtering. If the inductance (L) is increased, it is permissible to increase the capacitance in the same proportion. In a two-section filter with two inductances of unequal value, the larger inductance should be placed next to the rectifier tubes. With such an arrangement, the maximum value of each capacitance should be determined on the basis of the value of the inductance preceding it.


The circuits (see Type 872) of Figs. 1, 2, and 3 will give a ripple voltage less than 5% when used with a two-section filter having the minimum of inductance and the corresponding maximum of capacitance. The circuits of Figs. 4 and 5 will give a ripple voltage of less than 1%. For any of these circuits, better filtering may be obtained with the inductances larger than the minimum given in the table. For these larger inductances, the corresponding capacitances may be increased by the same percentage as the inductances to give still better results.

#### 866-A/866

#### **HALF-WAVE MERCURY VAPOR RECTIFIER** Por Circuits, refer to type 872.

|                         |                      | MAX.         |         | E INPUT     | MAX.    |
|-------------------------|----------------------|--------------|---------|-------------|---------|
|                         | AC                   | D-C          | ONE-SEC | TION FILTER | 0-C     |
| CIRCUIT                 | INPUT                | OUTPUT       | HIN.    | MAX.        | LOAD    |
|                         | VOLTS**              | VOLTS        | CHOKE   | CONDENSER   | CURRENT |
|                         | (RHS)                | TO           | (L)     | (c)         |         |
|                         |                      | FILTER       | henrys  | و ر         | amperes |
| SINGLE-PHASE            | 3535 per tube        | 3180         | 8.0     | 1.25        | 0.5     |
| FULL-WAVE<br>(2 tubes)  | 3000                 | 2700         | 6.8     | 1.5         | 0.5     |
| FIG.1                   | 1500                 | 1350         | 3.4     | 2.1         | 0.5     |
| SINGLE-PHASE            | 7070 total           | 6360         | 16.0    | 0.6         | 0.5     |
| FULL-WAVE               | 6000 ·               | 5400         | 13.5    | 0.7         | 0.5     |
| (4 tubes)               | 5000 .               | 4500         | 11.0    | 0.9         | 0.5     |
| F1G.2                   | 4000 .               | 3600         | 8.9     | 1.1         | 0.5     |
| THPEE PHASE             | #080 per leg         | 4780         | 3.2     | 1.4         | 0.75    |
| HALF-WAVE               | 3000                 | 3510         | 2.2     | 2.0         | 0.75    |
| FIG.3                   | 2000                 | 2340 1750    | 1.4     | 3.0         | 0.75    |
|                         |                      |              | 1.1     | 4.0         | 0.75    |
| THREE-PHASE<br>DOUBLE-Y | 4080 per leg<br>3000 | 4780<br>3510 | 2.0     | 0.5         | 1.5     |
| PARALLEL                | 2000 .               | 2340         | 1.0     | 1.1         | 1.5     |
| FIG.4                   | 1500 .               | 1750         | 0.7     | 1.5         | 1.5     |
| THREE-PHASE             | 4080 per leg         | 9570         | 1.8     | 0.5         | 0.75    |
| FULL-WAVE               | 3000                 | 7020         | 1.4     | 0.7         | 0.75    |
| FIG.5                   | 2000                 | 4680         | 0.9     | 1.2         | 0.75    |
|                         | 1300                 | 3510         | 0.7     | 1.5         | 0.75    |
| SINGLE-PHASE            | 3535 per tube        | 3950         | -       | -           | 0.25    |
| FULL-WAVE               | 3000                 | 3390<br>2260 | -       | -           | 0.25    |
| (2 tubes)<br>FIG.1*     | 1500                 | 1700         | -       | -           | 0.25    |
| F 10.1                  | 1.000                |              |         |             | 0.20    |

With condenser input to filter.
 For use under the conditions of the 10000-volt peak inverse rating.
 If the 86-A/865 is to be used under frequency and/or temperature conditions such that the peak inverse voltage is limited to 5000 volts, the a-c input voltage and d-c output voltage values into the table should be multipled by a factor of 0.5 to give new values for the 5000-volt orditions.



APPENDIX

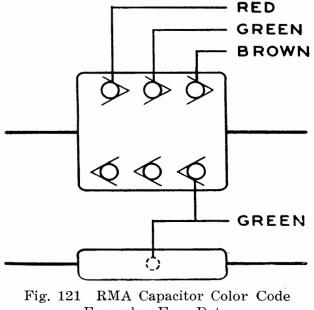
ż

#### TABLE XX—APPLICABLE COLOR CODES

#### CAPACITOR COLOR CODES

There are two Color Codes for mica capacitors that may be applied to capacitors in this equipment.

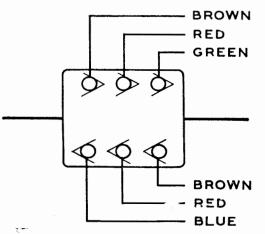
Most generally used is the one incorporating four dots of different colors corresponding to the Standard RMA color coding as listed below:

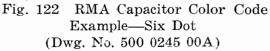

| Capacity Code | Ciphers           |          |
|---------------|-------------------|----------|
| 0—Black       | Black             | None     |
| 1—Brown       | Brown             | 0        |
| 2—Red         | Red               | 00       |
| 3—Orange      | Orange            | 000      |
| 4-Yellow      | Yellow            | 0000     |
| 5—-Green      | Green             | 00000    |
| 6Blue         | Blue              | 000000   |
| 7-Violet      | $\mathbf{Violet}$ | 0000000  |
| 8—Gray        | Gray              | 00000000 |
| 9-White       | White             | 00000000 |

The capacity value is indicated in micromicrofarads and is determined by the sequence of the dots. The first dot in the upper left-hand corner of the capacitor is the first number and the second dot is the second number. The third dot indicates the number of ciphers to be used with the first two numbers. The fourth dot located in the lower right-hand corner or on the edge of the capacitor indicates the capacity tolerance.

The tolerance color code is as follows:

| 1% | Brown   | 6%  | Blue   |
|----|---------|-----|--------|
| 2% | Red     | 7%  | Violet |
| 3% | Orange  | 8%  | Gray   |
| 4% | Yellow  | 9%  | White  |
| 5% | Gold or | 10% | Silver |
|    | Green   |     |        |


The capacitor shown below has a capacity of 250 mmf (0.00025 mf). The color sequence is red (2), green (5), and brown (1). The tolerance is  $\pm 5\%$ , as indicated by the green spot in the lower right-hand corner or on the edge.




Example—Four Dot (Dwg. No. 500 0246 00A)

The second capacitor color coding system is the Standard RMA system. In operation it is similar to the first system except that it uses six dots to indicate three numbers, multiplier, tolerance and voltage rating.

An example of this system is illustrated below:





#### APPLICABLE COLOR CODES

This being a 1250 mmf (0.00125 mf) 600 volt capacitor with a  $\pm 2\%$  tolerance. The first three dots being the first three numbers and, continuing in a clockwise rotation, the fourth dot is the number of ciphers, the fifth the tolerance, and the sixth the voltage rating.

The voltage ratings are:

| Brown 10             | 0 | volts                  |
|----------------------|---|------------------------|
| Red 20               | 0 | volts                  |
| Orange 30            | 0 | volts                  |
| Yellow 40            | 0 | volts                  |
| Green or no color 50 | 0 | volts                  |
| Blue 60              | 0 | $\operatorname{volts}$ |
| Violet 70            | 0 | volts                  |
| Gray 80              | 0 | volts                  |
| White 90             | 0 | volts                  |
| Gold100              | 0 | volts                  |
| Silver200            | 0 | volts                  |

#### CERAMIC CAPACITORS

Characteristics of ceramic capacitors are determined from the following instructions and table:

1. The temperature coefficient of capacitance is indicated by the color appearing on that end of the capacitor which provides termination for the inside plate or electrode. This color covers the entire end.

2. The next three dots or bands of color indicate the capacity in micromicrofarads.

a. The first dot or band immediately adjacent to the end color indicates the first significant figure of the capacity.

b. The second and next adjacent color dot or band indicates the second significant figure of the capacity.

c. The third and next adjacent color dot or band indicates the multiplier appropriate to the capacitor in mmf.

d. The fourth and last adjacent color dot or band indicates the capacitance tolerance either in percent, in the case of capacitors of nominal capacitance in excess of 10 mmf, or in mmf, in case of capacitors of nominal capacitance of 10 mmf or less.

#### CHARACTERISTICS OF CERAMIC CAPACITORS Tolerance Values

| Color          | Significant<br>Figures | Multiplier | Capacitance<br>More than<br>10 mmf | Capacitance<br>10 mmf<br>or less | TEMPERATURE<br>COEFFICIENT<br>in mmf/mmf/C° |
|----------------|------------------------|------------|------------------------------------|----------------------------------|---------------------------------------------|
| Black          | 0                      | 1          | $\pm 20\%$                         | $\pm 2.0$ mmf                    | Zero ±.00003                                |
| Brown          | 1                      | 10         | $\pm 1\%$                          | $\pm 0.1 \text{ mmf}$            | 00003                                       |
| $\mathbf{Red}$ | 2                      | 100        | $\pm 2\%$                          | $\pm 0.2$ mmf                    | 00008                                       |
| Orange         | 3                      | 1000       | $\pm 3\%$                          | $\pm 0.3 \mathrm{mmf}$           | 00015                                       |
| Yellow         | 4                      | 10,000     | $\pm 4\%$                          | $\pm 0.4$ mmf                    | 00022                                       |
| Green          | 5                      |            | $\pm 5\%$                          | $\pm 0.5$ mmf                    | 00033                                       |
| Blue           | 6                      |            | $\pm 6\%$                          | $\pm 0.6$ mmf                    | 00047                                       |
| Violet         | 7                      | 0.001      | $\pm 7\%$                          | $\pm 0.7$ mmf                    | 00075                                       |
| Gray           | 8                      | 0.01       | $\pm 2.5\%$                        | $\pm 0.25$ mmf                   |                                             |
| White          | 9                      | 0.1        | ±10%                               | $\pm 1.0 \text{ mmf}$            |                                             |

#### APPLICABLE COLOR CODES

#### RESISTOR COLOR CODE

The Standard RMA Color Code is used to indicate the resistance of the small resistors used in the equipment. The colors and corresponding numbers are listed below:

| 0.1—Gold | 5—Green  |
|----------|----------|
| 0—Black  | 6—Blue   |
| 1—Brown  | 7—Violet |
| 2-Red    | 8—Gray   |
| 3—Orange | 9—White  |
| 4-Yellow |          |

The resistors are marked with three color "bands" near one end. All resistance values are in ohms. The color sequence begins with the color nearest the end of the resistor. The first "band" indicates the first number of the sequence, the second "band" the second number, and the third "band" the number of ciphers.

Tolerance values for the resistors are designated by the fourth "band" on the resistor body using the following colors to indicate the percentage of tolerance:

| 1% | $\operatorname{Brown}$ | 6%         | Blue   |
|----|------------------------|------------|--------|
| 2% | Red                    | 7%         | Violet |
| 3% | Orange                 | 8%         | Gray   |
| 4% | Yellow                 | <b>9</b> % | White  |
| 5% | Gold or                | 10%        | Silver |
|    | Green                  |            |        |

For example, the resistor below has a resistance of 10,000 ohms and a tolerance of  $\pm 5\%$ . Brown (1), black (0), orange (3), and gold (5).

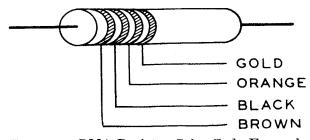



Fig. 123 RMA Resistor Color Code Example (Dwg. No. 500 0242 00A)

#### HOOKUP WIRE CODE

This wire code is the standard code for all unit wiring in connection with the Model TCZ Radio Transmitting Equipment.

Two classes of wire are employed, consisting of Flameproof and bus bar.

Flameproof wire is supplied in two degrees of insulation rated at 1000 volts and 3000 volts. The voltage rating of the wire is indicated by an identification thread in the strands of the conductor. A blue thread indicates 1000 volts insulation while a white thread indicates 3000 volts insulation. Two other threads of different colors serve to indicate the manufacturer of the wire and the year in which it was made.

Standard RMA Color Code Numerals are used for designating the body color and the color of the tracers. This code is as follows:

| 0—Black  | 5—Green  |
|----------|----------|
| 1—Brown  | 6—Blue   |
| 2-Red    | 7-Violet |
| 3—Orange | 8—Gray   |
| 4—Yellow | 9White   |

Note: Wires employing code numbers 7 and 8, also 4, are not used by this contractor.

The wire color code is made up of a letter designating the wire size and voltage rating of insulation followed by numerals designating the body color and the colors of up to three tracers. The tracers are coded as follows when viewing the wire in a horizontal position:

- 1 color tracer—
  - Criss cross tracers, both same color.
- 2 color tracers—
  - First color tracer named goes lower left to upper right.
  - Second color tracer named goes lower right to upper left.

3 color tracers-

Third color tracer named is parallel to and just below the second color tracer from lower right to upper left.

### APPLICABLE COLOR CODES

A shielded Flameproof wire is indicated by inserting the letter S after the first letter of the code. Example: AS956 indicates a white wire with green and blue tracers in a tinned shielding braid.

The standard TCZ wire code is as follows, note that complete wire specifications are supplied:

#### Code for Bus-Bar

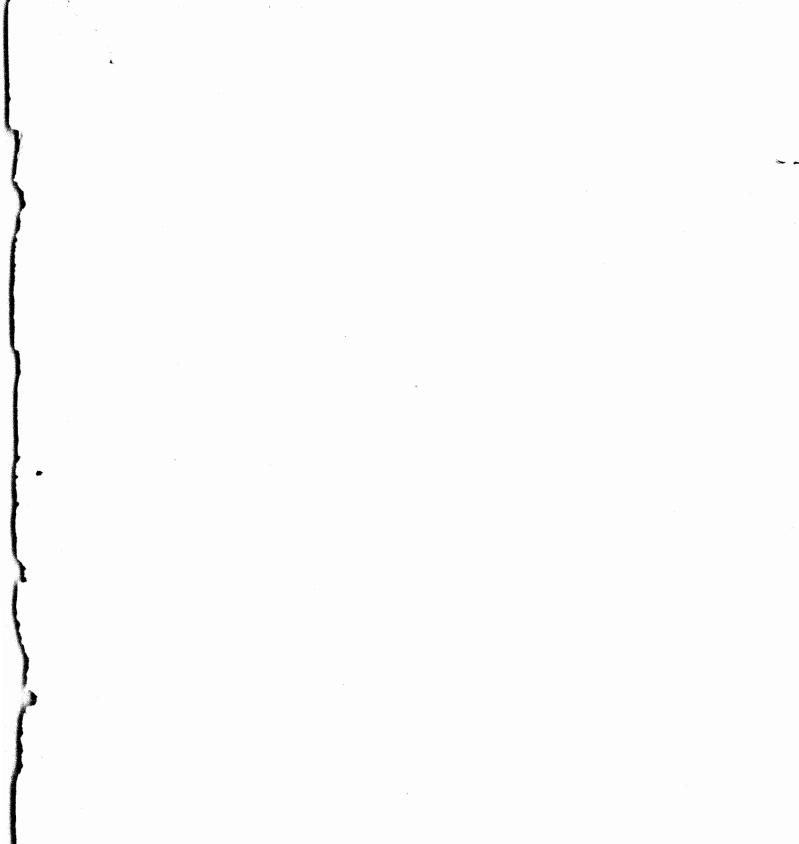
The code for bus-bar is made up of the letter designation BB followed by the wire size as shown below:

| #20BB20 | #14BB14 |
|---------|---------|
| #18BB18 | #12BB12 |
| #16BB16 |         |

Note: \* indicates shielded type of wire is used.

### CABLE WIRE CODE

| Color | Body  | First<br>Tracer | Second<br>Tracer     | Third<br>Tracer |                       |
|-------|-------|-----------------|----------------------|-----------------|-----------------------|
| Code  | Color | Color           | Color                | Color           | Wire Specifications   |
| *A9   | White |                 |                      |                 | No. 22 A.W.G.         |
| *A90  | White | Black           |                      |                 | Flameproof Insulation |
| *A92  | White | Red             |                      |                 | Lacquered Glass Braid |
| *A93  | White | Orange          |                      |                 | 1000 volt rating      |
| *A95  | White | Green           |                      |                 | Part No. 443N22 plus  |
| *A96  | White | Blue            |                      |                 | Color Numerals        |
| A902  | White | Black           | Red                  |                 | example: 443N229363   |
| A9020 | White | Black           | $\mathbf{Red}$       | Black           | Shielded: 443NS229363 |
| A9023 | White | Black           | $\operatorname{Red}$ | Orange          |                       |
| A9025 | White | Black           | Red                  | Green           |                       |
| A9026 | White | Black           | Red                  | Blue            |                       |
| A903  | White | Black           | Orange               |                 |                       |
| A9030 | White | Black           | Orange               | Black           |                       |
| A9035 | White | Black           | Orange               | Green           |                       |
| A9036 | White | Black           | Orange               | Blue            |                       |
| A905  | White | Black           | Green                |                 |                       |
| A9050 | White | Black           | Green                | Black           |                       |
| A906  | White | Black           | Blue                 |                 |                       |
| A9060 | White | Black           | Blue                 | Black           |                       |
| A9202 | White | Red             | Black                | Red             |                       |
| A923  | White | Red             | Orange               |                 |                       |
| A925  | White | Red             | Green                |                 |                       |
| A9252 | White | Red             | Green                | Red             |                       |
| A9256 | White | Red             | Green                | Blue            |                       |
| A926  | White | Red             | Blue                 |                 |                       |
| A9262 | White | Red             | Blue                 | Red             |                       |
| A9303 | White | Orange          | Black                | Orange          |                       |
| A935  | White | Orange          | Green                |                 |                       |
| A9353 | White | Orange          | Green                | Orange          |                       |
| A9356 | White | Orange          | Green                | Blue            |                       |
| A936  | White | Orange          | Blue                 |                 |                       |
| A9363 | White | Orange          | Blue                 | Orange          |                       |
| A9505 | White | Green           | Black                | Green           |                       |
| A9525 | White | Green           | Red                  | Green           |                       |
| A9535 | White | Green           | Orange               | Green           |                       |
| A956  | White | Green           | Blue                 |                 |                       |
| A9606 | White | Blue            | Black                | Blue            |                       |
| A9626 | White | Blue            | Red                  | Blue            |                       |
| A9636 | White | Blue            | Orange               | Blue            |                       |


# CABLE WIRE CODE (Cont.)

| Color<br>Code                                                                        | Body<br>Color                                                                                   | First<br>Tracer<br>Color                                                                               | Second<br>Tracer<br>Color               | Third<br>Tracer<br>Color | Wire Specifications                                                                                                                                                         |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B9<br>*B90<br>B91<br>B92<br>B93<br>B94<br>B95<br>B96<br>B902<br>B925                 | White<br>White<br>White<br>White<br>White<br>White<br>White<br>White<br>White                   | Black<br>Brown<br>Red<br>Orange<br>Yellow<br>Green<br>Blue<br>Black<br>Red                             | Red<br>Green                            |                          | No. 20 A.W.G.<br>Flameproof Insulation<br>Lacquered Glass Braid<br>1000 volt rating<br>Part No. 443N20 plus<br>Color Numerals<br>Example: 443N2090<br>Shielded: 443NS2090   |
| C9<br>C90<br>C92<br>C95<br>C96<br>C902<br>C903<br>C925<br>C935<br>*CS93              | White<br>White<br>White<br>White<br>White<br>White<br>White<br>White<br>White                   | Black<br>Red<br>Green<br>Blue<br>Black<br>Black<br>Black<br>Red<br>Orange<br>Orange                    | Red<br>Orange<br>Green<br>Green         |                          | No. 18 A.W.G.<br>Flameproof Insulation<br>Lacquered Glass Braid<br>1000 volt rating<br>Part No. 443N18 plus<br>Color Numerals<br>Example: 443N18935<br>Shielded: 443NS18935 |
| D9<br>D90<br>D91<br>D92<br>D93<br>D95<br>D96<br>D902<br>D903<br>D925<br>D935<br>D936 | White<br>White<br>White<br>White<br>White<br>White<br>White<br>White<br>White<br>White<br>White | Black<br>Brown<br>Red<br>Orange<br>Green<br>Blue<br>Black<br>Black<br>Black<br>Red<br>Orange<br>Orange | Red<br>Orange<br>Green<br>Green<br>Blue |                          | No. 16 A.W.G.<br>Flameproof Insulation<br>Lacquered Glass Braid<br>1000 volt rating<br>Part No. 443N16 plus<br>Color Numerals<br>Example: 443N16936<br>Shielded: 443NS16936 |
| E9<br>E90<br>E92<br>E93<br>E95<br>E96<br>E902<br>E903<br>E920<br>E925                | White<br>White<br>White<br>White<br>White<br>White<br>White<br>White<br>White<br>White          | Black<br>Red<br>Orange<br>Green<br>Blue<br>Black<br>Black<br>Red<br>Red                                | Red<br>Orange<br>Black<br>Green         |                          | No. 14 A.W.G.<br>Flameproof Insulation<br>Lacquered Glass Braid<br>1000 volt rating<br>Part No. 443N14 plus<br>Color Numerals<br>Example: 443N1492<br>Shielded: 443NS1492   |

# CABLE WIRE CODE (Cont.)

| Color<br>Code                            | Body<br>Color                                      | First<br>Tracer<br>Color                        | Second<br>Tracer<br>Color | Third<br>Tracer<br>Color | Wire Specifications                                                                                                                                                         |
|------------------------------------------|----------------------------------------------------|-------------------------------------------------|---------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F9<br>F91<br>F96<br>F906                 | White<br>White<br>White<br>White                   | Brown<br>Blue<br>Black                          | Orange                    |                          | No. 12 A.W.G.<br>Flameproof Insulation<br>Lacquered Glass Braid<br>1000 volt rating<br>Part No. 443N12 plus<br>Color Numerals<br>Example: 443N1291<br>Shielded: 443NS1291   |
| <b>J</b> 9<br><b>J</b> 90                | White<br>White                                     | Black                                           |                           |                          | No. 6 A.W.G.<br>Flameproof Insulation<br>Lacquered Glass Braid<br>1000 volt rating<br>Part No. 443N6 plus<br>Color Numerals<br>Example: 443N690<br>Shielded: 443NS690       |
| L92<br>L96                               | White<br>White                                     | Red<br>Blue                                     |                           |                          | No. 20 A.W.G.<br>Flameproof Insulation<br>Lacquered Glass Braid<br>3000 volt rating<br>Part No. 447N20 plus<br>Color Numerals<br>Example: 447N2096<br>Shielded: 447NS2096   |
| N90<br>N92<br>N95<br>N96<br>N902<br>N906 | White<br>White<br>White<br>White<br>White<br>White | Black<br>Red<br>Green<br>Blue<br>Black<br>Black | Red<br>Blue               |                          | No. 16 A.W.G.<br>Flameproof Insulation<br>Lacquered Glass Braid<br>3000 volt rating<br>Part No. 447N16 plus<br>Color Numerals<br>Example: 447N16906<br>Shielded: 447NS16906 |

 $(\cdot, \cdot)$ 



LAURANCEPRESS CO., CEDAR RAPIDS, IOWA

PRINTED IN U.S.A.